Mod-NTRU trapdoors and applications

Alexandre Wallet

Lattices: From Theory to Practice
Simons Institute, 29/04 /2020

Based on a joint work with Chitchanok Chuengsatiansup, Thomas Prest,
Damien Stehlé and Keita Xagawa, ePrint 2019/1456

NTT

1/17 A. Wallet

Today’s talk

A larger class of almost “optimal”’ trapdoors from NTRU modules

Known applications: (not detailed today)

(A) New meaningful security/efficiency trade-offs for GPV signatures
Acceptably efficient PKE/KEM a la NTRUEncrypt

(B) Extension of [DLP'14]'s IBE

(A) see our article (B) Cheon, Kim, Kim, and Son, ePrint 2019/1468

Roadmap

0 Lattice trapdoors, NTRU lattices
© Hard NTRU lattices with half-trapdoors

© Completing the trapdoor, application to signatures

3/17

A. Wallet

Lattice trapdoors

n

Parity-check lattices X
For A€ Z™*™ and q € Z A | =0mod ¢
AF(A)={x€Z™ : xA = 0mod q}.

q

[Ajt'96] (A, (A))a are “hard lattices™: for A < U(Z]*™), SISm.q > SIVPLo1y(n)

A trapdoor is a short basis B of A;-(A).

B A =0modg

(Bl smax := max; ||by]| is small)

What is “optimal”? ||B||max ~ Vol(AZ(A))"/™, where B = GSO(B).

Canonical example: GPV signatures

If B is basis of A,-(A), then BA = 0 mod ¢

Simplified Signg (msg) : Simplified Verif a (msg, s) :
@ c such that cA = H(msg) @ If ||s|| too big, refuse.
@ v < Dy (B),c,o With TheSampler? o If sA # H(msg), refuse.
@ Signature: s=c — v. @ Accept.

Requirements

_ B Gaussian of std.dev. o = ||s|| = oy/m
o small = B short Want n and ¢ s.t. SIS,, , . /m is hard

Hard to compute B from A
Method determines m = m(n, q).

Easy to generate (A, B)

T: remember Thomas’ talk

Development of lattice trapdoors

Algorithms to generate trapdoored hard lattices: B = GSO(B)
. X optimal
Ajt'99] A hard and | B|[max = O(m®/?). P
° [At99] ard and |[B] (m*) X practical
e [AP'09] A hard, m = Q(nlogq) v optimal
H1§||max = O(y/nlogq) X practical

6/17 A. Wallet

Development of lattice trapdoors

Algorithms to generate trapdoored hard lattices: B = GSO(B)
- _ 5/2 X optimal
e [Ajt'99] A hard and ||B||max = O(m>/?). X practical
e [AP'09] A hard, m = Q(nlogq) v optimal
H]§||max = O(y/nlogq) X practical

e [MP’12] Meaningful improvements

But still | B|| = O(y/nlogq)

6/17 A. Wallet

Development of lattice trapdoors

Algorithms to generate trapdoored hard lattices: B = GSO(B)
. X optimal
Ajt'99] A hard and | B|[max = O(m®/?). P
° [At99] ard and |[B] (m*) X practical
e [AP'09] A hard, m = Q(nlogq) v optimal
H1§||max = O(y/nlogq) X practical

e [MP’12] Meaningful improvements

But still | B|| = O(y/nlogq)

o [DLP'14] A an NTRU lattice, m = 2n

B[max ~ /4 v opt|m_al
v practical

o Today: A an NTRU lattice, m = cn
Bl max =~ q%-

6/17 A. Wallet

NTRU modules

R =7[X]/(¢),deg ¢ = n, irreducible. f=3, X
q a prime (fo, -y fn=1) or T(f) multiplication matrix

F € R™*™ invertible mod ¢, G € R™**¥
k

H=F !G modgq

NTRU modules

R =7[X]/(¢),deg ¢ = n, irreducible. f=3, X
q a prime (fo, -y fn=1) or T(f) multiplication matrix

F € R™*™ invertible mod ¢, G € R™**¥
k,

H=F ! G| modq

ETN”T’IEU = Ar(H] - 1]) = {(u,v) € R™+F) . uH — v = 0 mod ¢},
(full) rank (m + k)n lattice with volume ¢*"
easy (public) basis:

Minima, covering radius, smoothing
~ k/(m+k)
L., T(H) parameter all are =~ ¢

0 qun

Use of NTRU modules

Non exhaustive; all of these are form =k =1

PKE/KEM: Signatures:
@ NTRUEncrypt [HPS'98] e NTRUSign [HHS+'03]
o NTRUEnc-HRSS [HH+'17] e Falcon (from [DLP'14] from [GPV'08])
o NTRUPrime [BCLV'17] o BLISS [DDLL'13]
Advanced:
o HE [LTV'12]

e Multilinear maps [GGH'13]
o IBE [DLP'14]

Where are we?

© Hard NTRU lattices with half-trapdoors
@ Trapdoor generation, a starter
@ Hardness of trapdoored NTRU

9/17 A. Wallet

How to generate a useful NTRU module

Trapdoor basis B = Pj Sr] should give us ||'T'(B)Hrrlax ~ g/ (m+k)

Lemma: If B = [by,...,b;,1%], then:

IT(B)llmax = maxi{[[ball,. .., [[bsll} > g/ Cn+0)

A starter: take s ~ gk/(m+k)
1) Sample b; + Dg}:fk for1 <i<m
2) Parse as [by,...,b,,] = [F|G]; restart if F not invertible mod ¢

How to generate a useful NTRU module

Trapdoor basis B = E: Sr] should give us ||'T'(B)HmaX ~ g/ (m+k)

Lemma: If B = [by,...,b;,1%], then:

IT(B)llmax = maxi{[[ball,. .., [[bsll} > g/ Cn+0)

A starter: take s ~ gk/(m+k)
1) Sample b; + Dg}:fk for1 <i<m
2) Parse as [by,...,b,,] = [F|G]; restart if F not invertible mod ¢

Caveat: orthogonal projections shrink vectors by some factor ~;
= b; will be maximal, completion of basis will compensate.

How to generate a useful NTRU module

Trapdoor basis B = E: Sr] should give us ||'T'(B)Hrnax ~ g/ (m+k)

Lemma: If B = [by,...,b;,1%], then:

IT(B)llmax = maxi{[[ball,. .., [[bsll} > g/ Cn+0)

A better start: set s; ~ 7, - ¢"/(m+k)

1) Sample b; + DELTk fori1<i<m

2) Parse as [by,...,by] = [F|G]; restart if F not invertible mod ¢
Output a half-trapdoor for H = F~'G mod q.

Remaining problems:
o Is Ay (H) a hard lattice ?
@ How to complete the basis?
o Will the completion be nice?

How hard are trapdoored NTRU lattices?

“NTRU assumption”

Computational Decisional
Hard to compute F, G from H Hard to distinguish H from U(R;"*¥)
Well, if not, it's not a trapdoor... Needed for Aql(H) to be “hard”

Call &, the distribution of H = F~!G mod ¢

How hard are trapdoored NTRU lattices?

“NTRU assumption”

Computational Decisional
Hard to compute F, G from H Hard to distinguish H from U(R;"*¥)
Well, if not, it's not a trapdoor... Needed for Aql(H) to be “hard”

Call &, the distribution of H = F~!G mod ¢

New result: ® = X" + 1, n a power of two, ¢ = 3 mod 8, for 3k > m > 1

When s > O(n - qmik), then & %Z/I(R;"Xk)
[SS'11] for m = k =1, the result hold for all g.

Strongly supports hardness of the trapdoored NTRU lattices

On the uniformity of the public basis

New result: ® = X" + 1, n a power of two, ¢ = 3 mod 8, for 3k > m > 1,

%), then & ~ U(RMF)

when s > 6(n

Intermediate useful result:

if g=pi...pr, when s > O(n - %) then P, Dmxm[F invertible mod ¢] > 1 —

n/r

On the uniformity of the public basis

New result: ® = X" + 1, n a power of two, ¢ = 3 mod 8, for 3k > m > 1,

%), then & ~ U(RMF)

when s > 6(n

Intermediate useful result:

if g=pi...pr, when s > O(n - %) then P F invertible mod ¢] > 1 —

m X m
F«Dp' ["/f

Proof ideas/tools:
@ Inspired of [SS'11] and [LPR'13]
@ Involve module “multi-lattices” (additive subgroups of M,,(R), see also [BF'11])
@ {Mod g invertibles} is not a lattice; our strategy to describe it:

inclusion/exclusion over *all* lattices containing g M., (R
g4q

(They correspond to *all* r-uples of subspaces of (F.,»)™)

© Completing the trapdoor, application to signatures

13/17 A. Wallet

Generating a somewhat short basis!

From now on, £k =1 and m > 1.

h= F-18.modq with[Flg]=[b;,...,b,] and b; « D!

Now, need (f’,¢') € R™! such that

D := det F g:q
' g

Generating a somewhat short basis!

From now on, £k =1 and m > 1.

h= F-18.modq with[Flg]=[b;,...,b,] and b; « D!

Now, need (f’,¢') € R™ such that With Shur’s complement and
' ’ adj(F) = det(F) - F~1 € Rmxm:
D := det F g =q D = det(F) - det(y' —f'-F~' - g)
£ g =g -det(F) —f' - adj(F)g
—— ~———
known known
€ER €R™

Take f' = (..., 0, f/,0,...) = back to solving an NTRU equation

(remember Thomas' talk)

LFor another approach, see Cheon et al. ePrint 2019/1468

Almost optimal trapdoors

Last problem: how large is b,,+1 = (f',¢')?

Fact 1: ||Em+1|| > q_ Since all ||li||s are about ¢*/(m+1),
I L]| b1l should be, too.

Fact 2: ||;tv)m+1|| computable from Bl, e ,Bm without knowing by, 11

Almost optimal trapdoors

Last problem: how large is b,,+1 = (f',¢')?

Fact 1: ||by1| > _q Since all ||b;||'s are about ¢'/(m+1),
I L]| b1l should be, too.
Fact 2: ||f)m+1|| computable from Bl, e ,Bm without knowing by, 11

Finishing the trapdoor generation:
1) for 1 <4 < m, resample any vector that is too far from ¢'/(m+1)

2) Compute ||bpy1]|, restart if too large
3) Compute by,4+1 and output (H, B).

[bi||'s close to A;'s, || T(B)|lmax close to ne(Ag (H))

These trapdoors are almost optimal.

A practical application: Mod-Falcon?

Minimizing |sig]| Minimizing |sig|+|vk|

m n Isl| Qsec [vk| |sig] [vk| |sig]
Falcon-512 1 512 6598 109 897 658 28 1276
Falcon-1024 1 1024 9331 252 1793 1274 63 2508
Mod-Falcon 2 512 1512 174 1792 972 940 1438

security/efficiency trade-off for Falcon

270 appear at AsiaCCS 2020; all size expressed in bytes

A practical application: Mod-Falcon?

Minimizing |sig| Minimizing |sig|+|vk|
m n sl Qsec [vk| |sig] [vk| |sig]
Falcon-512 1 512 6598 109 897 658 28 1276
Falcon-1024 1 1024 9331 252 1793 1274 63 2508
Mod-Falcon 2 512 1512 174 1792 972 940 1438
security/efficiency trade-off for Falcon
[vk| |sig] Qsec
dilithium-III 1472 2701 125
qTesla-p-I 14880 2592 140 more compact
dilithium- IV~ 1760 3366 158 for equivalent security
1792 972
Mod-Falcon 040 1438 174

270 appear at AsiaCCS 2020; all size expressed in bytes

16/17 A. Wallet

Food for thoughts

Question 1: We have almost optimal trapdoors for h = F~!g
Can this be extended to almost optimal trapdoors for H = F~1G?

(main problem: how to complete the basis?)

Question 2: We can use them for signature/IBE.
Can we use these new trapdoors for something else?

Can half-trapdoors’ usefulness be improved too?

Question 3: Extend uniformity results to all ¢'s
And to more fields (Galois, all?)
Generally, find new tools/techniques to compute Gaussian mass of subsets

Also, related to repartition of algebraic numbers

Food for thoughts

Question 1: We have almost optimal trapdoors for h = F~!g
Can this be extended to almost optimal trapdoors for H = F~1G?

(main problem: how to complete the basis?)

Question 2: We can use them for signature/IBE.
Can we use these new trapdoors for something else?

Can half-trapdoors’ usefulness be improved too?

Question 3: Extend uniformity results to all ¢'s
And to more fields (Galois, all?)
Generally, find new tools/techniques to compute Gaussian mass of subsets

Also, related to repartition of algebraic numbers

Thank you!

nBo~atnoc O

	Lattice trapdoors, NTRU lattices
	Hard NTRU lattices with half-trapdoors
	Trapdoor generation, a starter
	Hardness of trapdoored NTRU

	Completing the trapdoor, application to signatures

