Mod-NTRU trapdoors and applications

Alexandre Wallet

Lattices: From Theory to Practice Simons Institute, 29/04/2020

Based on a joint work with Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé and Keita Xagawa, ePrint 2019/1456

Today's talk

A larger class of almost "optimal" trapdoors from NTRU modules

Known applications: (not detailed today)

- (A) New meaningful security/efficiency trade-offs for GPV signatures
 Acceptably efficient PKE/KEM à la NTRUEncrypt
- (B) Extension of [DLP'14]'s IBE

(A) see our article (B) Cheon, Kim, Kim, and Son, ePrint 2019/1468

Roadmap

- Lattice trapdoors, NTRU lattices
- 2 Hard NTRU lattices with half-trapdoors
- 3 Completing the trapdoor, application to signatures

Lattice trapdoors

Parity-check lattices

For $\mathbf{A} \in \mathbb{Z}^{m \times n}$ and $q \in \mathbb{Z}$

$$\Lambda_q^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m \, : \, \mathbf{x}\mathbf{A} = \mathbf{0} \bmod q\}.$$

$$\mathbf{A}^{m} = 0 \bmod q$$

$$[\mathsf{Ajt'96}]\ (\Lambda_q^{\perp}(\mathbf{A}))_{\mathbf{A}}\ \text{are "hard lattices": for } \mathbf{A} \leftarrow \mathcal{U}(\mathbb{Z}_q^{m\times n})\text{, } \mathsf{SIS}_{m,q} \geq \mathsf{SIVP}_{\mathrm{poly}(n)}$$

A trapdoor is a **short** basis **B** of
$$\Lambda_a^{\perp}(\mathbf{A})$$
.

$$(\|\mathbf{B}\|_{\max} := \max_i \|\mathbf{b}_i\| \text{ is small})$$

 $\mathbf{B} \quad \mathbf{A} = 0 \bmod q$

What is "optimal"?
$$\|\widetilde{\mathbf{B}}\|_{\max} \approx \operatorname{Vol}(\Lambda_q^{\perp}(\mathbf{A}))^{1/m}$$
, where $\widetilde{\mathbf{B}} = \operatorname{GSO}(\mathbf{B})$.

Canonical example: GPV signatures

If ${f B}$ is basis of $\Lambda_q^{\perp}({f A})$, then ${f B}{f A}={f 0} mod q$

Simplified $Sign_{\mathbf{B}}(msg)$:

- c such that $cA = \mathcal{H}(msg)$
- $\mathbf{v} \leftarrow D_{\mathcal{L}(\mathbf{B}), \mathbf{c}, \sigma}$ with TheSampler[†]
- Signature: $\mathbf{s} = \mathbf{c} \mathbf{v}$.

Simplified $Verif_{\mathbf{A}}(msg, \mathbf{s})$:

- If $\|\mathbf{s}\|$ too big, refuse.
- If $\mathbf{sA} \neq \mathcal{H}(\mathrm{msg})$, refuse.
- Accept.

Requirements

 $\sigma \text{ small} \Rightarrow \widetilde{\mathbf{B}} \text{ short}$

Hard to compute ${\bf B}$ from ${\bf A}$

Easy to generate (\mathbf{A}, \mathbf{B})

B Gaussian of std.dev. $\sigma \Rightarrow \|\mathbf{s}\| \approx \sigma \sqrt{m}$ Want n and q s.t. $SIS_{m,q,\sigma\sqrt{m}}$ is hard

 $\label{eq:method_determines} \ m = m(n,q).$

Development of lattice trapdoors

Algorithms to generate trapdoored hard lattices: $\mathbf{B} = \mathsf{G}$

• [Ajt'99] **A** hard and
$$\|\mathbf{B}\|_{\max} = O(m^{5/2})$$
.

• [AP'09] **A** hard,
$$m = \Omega(n \log q)$$

 $\|\widetilde{\mathbf{B}}\|_{\max} = O(\sqrt{n \log q})$

$$\widetilde{\mathbf{B}} = \mathsf{GSO}(\mathbf{B})$$

- X optimalX practical
- ✓ optimal
- × practical

Development of lattice trapdoors

Algorithms to generate trapdoored hard lattices:

$$\widetilde{\mathbf{B}} = \mathsf{GSO}(\mathbf{B})$$

• [Ajt'99] **A** hard and $\|\mathbf{B}\|_{\max} = O(m^{5/2})$.

X optimal X practical

• [AP'09] **A** hard, $m = \Omega(n \log q)$ $\|\widetilde{\mathbf{B}}\|_{\max} = O(\sqrt{n \log q})$ ✓ optimalX practical

• [MP'12] Meaningful improvements

But still $\|\widetilde{\mathbf{B}}\| = O(\sqrt{n \log q})$

getting there!

Development of lattice trapdoors

Algorithms to generate trapdoored hard lattices:

$$\widetilde{\mathbf{B}} = \mathsf{GSO}(\mathbf{B})$$

• [Ajt'99]
$$\mathbf A$$
 hard and $\|\mathbf B\|_{\max} = O(m^{5/2}).$

• [AP'09] **A** hard,
$$m = \Omega(n \log q)$$

$$\|\widetilde{\mathbf{B}}\|_{\max} = O(\sqrt{n \log q})$$

• [MP'12] Meaningful improvements But still $\|\widetilde{\mathbf{B}}\| = O(\sqrt{n\log q})$

• [DLP'14] ${\bf A}$ an NTRU lattice, m=2n $\|\widetilde{{\bf B}}\|_{\rm max} \approx \sqrt{q}$

✓ optimal

• Today: A an NTRU lattice, m=cn $\|\widetilde{\mathbf{B}}\|_{\max} \approx q^{\frac{1}{c}}.$

NTRU modules

$$R=\mathbb{Z}[X]/(\phi), \deg \phi=n, \text{ irreducible.} \qquad \qquad f=\sum_i f_i X^i \\ q \text{ a prime} \qquad \qquad (f_0,\dots,f_{n-1}) \text{ or } \mathsf{T}(f) \text{ multiplication matrix}$$

 $\mathbf{F} \in R^{m \times m}$ invertible mod q, $\mathbf{G} \in R^{m \times k}$

$$\mathbf{H} = \mathbf{F}^{-1} \mathbf{G} m \mod q$$

NTRU modules

$$R = \mathbb{Z}[X]/(\phi), \deg \phi = n, \text{ irreducible}.$$
 $q \text{ a prime}$

$$f = \sum_i f_i X^i$$
 (f_0, \dots, f_{n-1}) or $\mathsf{T}(f)$ multiplication matrix

 $\mathbf{F} \in \mathbb{R}^{m \times m}$ invertible mod $q, \mathbf{G} \in \mathbb{R}^{m \times k}$

$$\mathbf{H} = \mathbf{F}^{-1} \mathbf{G} m \mod q$$

$$\mathcal{L}_{\mathsf{NTRU}}^{m,k} := \Lambda_q^{\perp}([\mathbf{H}|-\mathbf{I}_k]) = \{(\mathbf{u},\mathbf{v}) \in R^{(m+k)} : \mathbf{uH} - \mathbf{v} = \mathbf{0} \bmod q\},$$
(full) rank $(m+k)n$ lattice with volume q^{kn}

easy (public) basis:

Minima, covering radius, smoothing parameter all are $\approx q^{k/(m+k)}$

Use of NTRU modules

Non exhaustive; all of these are for m = k = 1

PKE/KEM:

- NTRUEncrypt [HPS'98]
- NTRUEnc-HRSS [HH+'17]
- NTRUPrime [BCLV'17]

Advanced:

- HE [LTV'12]
- Multilinear maps [GGH'13]
- IBE [DLP'14]

Signatures:

- NTRUSign [HHS+'03]
- Falcon (from [DLP'14] from [GPV'08])
- BLISS [DDLL'13]

Where are we?

- Lattice trapdoors, NTRU lattices
- 2 Hard NTRU lattices with half-trapdoors
 - Trapdoor generation, a starter
 - Hardness of trapdoored NTRU

3 Completing the trapdoor, application to signatures

How to generate a useful NTRU module

Trapdoor basis
$$\mathbf{B} = \begin{bmatrix} \mathbf{F} & \mathbf{G} \\ * & * \end{bmatrix}$$
 should give us $\|\widetilde{\mathsf{T}}(\mathbf{B})\|_{\max} \approx q^{k/(m+k)}$

Lemma: If $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_{m+k}]$, then:

$$\|\widetilde{\mathbf{T}}(\mathbf{B})\|_{\max} = \max_{i} \{\|\widetilde{\mathbf{b}}_{1}\|, \dots, \|\widetilde{\mathbf{b}}_{m+k}\|\} \ge q^{k/(m+k)}$$

A starter: take $s \approx q^{k/(m+k)}$

- 1) Sample $\mathbf{b}_i \leftarrow D_{R,s}^{m+k}$ for $1 \leq i \leq m$
- 2) Parse as $[\mathbf{b}_1, \dots, \mathbf{b}_m] = [\mathbf{F}|\mathbf{G}]$; restart if \mathbf{F} not invertible mod q

How to generate a useful NTRU module

Trapdoor basis
$$\mathbf{B} = \begin{bmatrix} \mathbf{F} & \mathbf{G} \\ * & * \end{bmatrix}$$
 should give us $\|\widetilde{\mathsf{T}}(\mathbf{B})\|_{\max} \approx q^{k/(m+k)}$

Lemma: If $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_{m+k}]$, then:

$$\|\widetilde{\mathbf{T}}(\mathbf{B})\|_{\max} = \max_{i} \{\|\widetilde{\mathbf{b}}_{1}\|, \dots, \|\widetilde{\mathbf{b}}_{m+k}\|\} \ge q^{k/(m+k)}$$

A starter: take $s \approx q^{k/(m+k)}$

- 1) Sample $\mathbf{b}_i \leftarrow D_{R,s}^{m+k}$ for $1 \leq i \leq m$
- 2) Parse as $[\mathbf{b}_1, \dots, \mathbf{b}_m] = [\mathbf{F}|\mathbf{G}]$; restart if \mathbf{F} not invertible mod q

Caveat: orthogonal projections shrink vectors by some factor γ_i \Rightarrow \mathbf{b}_1 will be maximal, completion of basis will compensate.

How to generate a useful NTRU module

Trapdoor basis
$$\mathbf{B} = \begin{bmatrix} \mathbf{F} & \mathbf{G} \\ * & * \end{bmatrix}$$
 should give us $\|\widetilde{\mathsf{T}}(\mathbf{B})\|_{\max} \approx q^{k/(m+k)}$

Lemma: If $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_{m+k}]$, then:

$$\|\widetilde{\mathbf{T}}(\mathbf{B})\|_{\max} = \max_{i} \{\|\widetilde{\mathbf{b}}_{1}\|, \dots, \|\widetilde{\mathbf{b}}_{m+k}\|\} \ge q^{k/(m+k)}$$

A better start: set $s_i \approx \gamma_i \cdot q^{k/(m+k)}$

- 1) Sample $\mathbf{b}_i \leftarrow D_{R}^{m+k}$ for $1 \leq i \leq m$
- 2) Parse as $[\mathbf{b}_1,\ldots,\mathbf{b}_m]=[\mathbf{F}|\mathbf{G}]$; restart if \mathbf{F} not invertible mod q

Output a half-trapdoor for $\mathbf{H} = \mathbf{F}^{-1}\mathbf{G} \bmod q$.

Remaining problems:

- Is $\Lambda_a^{\perp}(\mathbf{H})$ a hard lattice ?
- How to complete the basis?
- Will the completion be nice?

How hard are trapdoored NTRU lattices?

"NTRU assumption"

Computational

Hard to compute F, G from H

Well, if not, it's not a trapdoor...

Decisional

Hard to distinguish \mathbf{H} from $\mathcal{U}(R_q^{m \times k})$

Needed for $\Lambda_q^\perp(\mathbf{H})$ to be "hard"

Call \mathcal{E}_s the distribution of $\mathbf{H} = \mathbf{F}^{-1}\mathbf{G} \bmod q$

How hard are trapdoored NTRU lattices?

"NTRU assumption"

Computational

Hard to compute \mathbf{F}, \mathbf{G} from \mathbf{H}

Well, if not, it's not a trapdoor...

Decisional

Hard to distinguish \mathbf{H} from $\mathcal{U}(R_q^{m\times k})$

Needed for $\Lambda_q^{\perp}(\mathbf{H})$ to be "hard"

Call \mathcal{E}_s the distribution of $\mathbf{H} = \mathbf{F}^{-1}\mathbf{G} \bmod q$

New result: $\Phi = X^n + 1$, n a power of two, $q \equiv 3 \mod 8$, for $3k \ge m \ge 1$

When
$$s \geq \widetilde{O}(n \cdot q^{\frac{k}{m+k}})$$
, then $\mathcal{E}_s \approx \mathcal{U}(R_q^{m \times k})$

[SS'11] for m = k = 1, the result hold for all q.

Strongly supports hardness of the trapdoored NTRU lattices

On the uniformity of the public basis

New result:
$$\Phi=X^n+1$$
, n a power of two, $q\equiv 3 \bmod 8$, for $3k\geq m\geq 1$, when $s\geq \widetilde{O}(n\cdot q^{\frac{k}{m+k}})$, then $\mathcal{E}_s\approx \mathcal{U}(R_a^{m\times k})$

Intermediate useful result:

if
$$q=\mathfrak{p}_1\dots\mathfrak{p}_r$$
, when $s\geq \widetilde{O}(n\cdot q^{\frac{1}{2r}})$, then $\mathbb{P}_{\mathbf{F}\leftarrow D_{R,s}^{m\times m}}[\mathbf{F} \text{ invertible } \mathrm{mod}\ q]\geq 1-\frac{4n}{q^{n/r}}$

On the uniformity of the public basis

New result:
$$\Phi=X^n+1$$
, n a power of two, $q\equiv 3 \bmod 8$, for $3k\geq m\geq 1$, when $s\geq \widetilde{O}(n\cdot q^{\frac{k}{m+k}})$, then $\mathcal{E}_s\approx \mathcal{U}(R_q^{m\times k})$

Intermediate useful result:

if $q=\mathfrak{p}_1\dots\mathfrak{p}_r$, when $s\geq \widetilde{O}(n\cdot q^{\frac{1}{2r}})$, then $\mathbb{P}_{\mathbf{F}\leftarrow D_{R,s}^{m imes m}}[\mathbf{F} \text{ invertible } \mathrm{mod } q]\geq 1-\frac{4n}{q^{n/r}}$

Proof ideas/tools:

- Inspired of [SS'11] and [LPR'13]
- Involve module "multi-lattices" (additive subgroups of $\mathcal{M}_m(R)$, see also [BF'11])
- {Mod q invertibles} is not a lattice; our strategy to describe it: inclusion/exclusion over *all* lattices containing $q\mathcal{M}_m(R)$ (They correspond to *all* r-uples of subspaces of $(\mathbb{F}_{q^n/r})^m$)

Lattice trapdoors, NTRU lattices

- 2 Hard NTRU lattices with half-trapdoors
 - Trapdoor generation, a starter
 - Hardness of trapdoored NTRU

3 Completing the trapdoor, application to signatures

Generating a somewhat short basis¹

From now on, k=1 and $m \geq 1$.

$$\mathbf{h} = \mathbf{F}^{-1} \mathbf{g} \mod q$$
 with $[\mathbf{F}|\mathbf{g}] = [\mathbf{b}_1, \dots, \mathbf{b}_n]$ and $\mathbf{b}_i \leftarrow D_{R,s_i}^{m+1}$

Now, need $(\mathbf{f}', g') \in \mathbb{R}^{m+1}$ such that

$$D := \det \begin{vmatrix} \mathbf{F} & \mathbf{g} \\ \mathbf{f}' & g' \end{vmatrix} = q$$

Generating a somewhat short basis¹

From now on, k=1 and $m\geq 1$.

$$\mathbf{h} = \mathbf{F}^{-1} \mathbf{g} m \mod q$$
 with $[\mathbf{F}|\mathbf{g}] = [\mathbf{b}_1, \dots, \mathbf{b}_n]$ and $\mathbf{b}_i \leftarrow D_{R,s_i}^{m+1}$

Now, need $(\mathbf{f}', g') \in R^{m+1}$ such that

$$D := \det \begin{bmatrix} \mathbf{F} & \mathbf{g} \\ \mathbf{f}' & g' \end{bmatrix} = q$$

With Shur's complement and $adj(\mathbf{F}) = det(\mathbf{F}) \cdot \mathbf{F}^{-1} \in \mathbb{R}^{m \times m}$:

$$D = \det(\mathbf{F}) \cdot \det(g' - \mathbf{f}' \cdot \mathbf{F}^{-1} \cdot \mathbf{g})$$

$$= g' \cdot \underbrace{\det(\mathbf{F})}_{\substack{\mathsf{known} \\ \in R}} - \mathbf{f}' \cdot \underbrace{\det(\mathbf{F})}_{\substack{\mathsf{known} \\ \in R^m}}$$

Take $\mathbf{f}' = (\dots, 0, f_i', 0, \dots) \Rightarrow \mathsf{back}$ to solving an NTRU equation (remember Thomas' talk)

¹For another approach, see Cheon et al. ePrint 2019/1468

Almost optimal trapdoors

Last problem: how large is $\mathbf{b}_{m+1} = (\mathbf{f}', g')$?

Fact 1:
$$\|\widetilde{\mathbf{b}}_{m+1}\| \geq \frac{q}{\prod_i \|\widetilde{\mathbf{b}}_i\|}$$

Since all
$$\|\widetilde{\mathbf{b}}_i\|$$
's are about $q^{1/(m+1)}$, $\|\widetilde{\mathbf{b}}_{m+1}\|$ should be, too.

Fact 2: $\|\widetilde{\mathbf{b}}_{m+1}\|$ computable from $\widetilde{\mathbf{b}}_1,\dots,\widetilde{\mathbf{b}}_m$ without knowing \mathbf{b}_{m+1}

Almost optimal trapdoors

Last problem: how large is $\mathbf{b}_{m+1} = (\mathbf{f}', g')$?

Fact 1:
$$\|\widetilde{\mathbf{b}}_{m+1}\| \ge \frac{q}{\prod_i \|\widetilde{\mathbf{b}}_i\|}$$

Since all
$$\|\widetilde{\mathbf{b}}_i\|$$
's are about $q^{1/(m+1)}$, $\|\widetilde{\mathbf{b}}_{m+1}\|$ should be, too.

Fact 2: $\|\widetilde{\mathbf{b}}_{m+1}\|$ computable from $\widetilde{\mathbf{b}}_1,\ldots,\widetilde{\mathbf{b}}_m$ without knowing \mathbf{b}_{m+1}

Finishing the trapdoor generation:

- 1) for $1 \le i \le m$, resample any vector that is too far from $q^{1/(m+1)}$
- 2) Compute $\|\widetilde{\mathbf{b}}_{m+1}\|$, restart if too large
- 3) Compute \mathbf{b}_{m+1} and output (\mathbf{H}, \mathbf{B}) .

 $\|\mathbf{b}_i\|$'s close to λ_i 's, $\|\widetilde{\mathsf{T}}(\mathbf{B})\|_{\max}$ close to $\eta_{\epsilon}(\Lambda_a^{\perp}(\mathbf{H}))$

These trapdoors are almost optimal.

A practical application: Mod-Falcon²

					Minimizing sig		Mii	Minimizing sig + vk		vk
	m	n	$\ \mathbf{s}\ $	Qsec	vk	sig		vk	sig	
Falcon-512	1	512	6598	109	897	658		28	1276	
Falcon-1024	1	1024	9331	252	1793	1274		63	2508	
Mod-Falcon	2	512	1512	174	1792	972		940	1438	

security/efficiency trade-off for Falcon

²To appear at AsiaCCS 2020; all size expressed in bytes

A practical application: Mod-Falcon²

					Minimizing sig		Mii	Minimizing sig + vk		vk
	m	n	$\ \mathbf{s}\ $	Qsec	vk	sig		vk	sig	
Falcon-512	1	512	6598	109	897	658		28	1276	
Falcon-1024	1	1024	9331	252	1793	1274		63	2508	
Mod-Falcon	2	512	1512	174	1792	972		940	1438	

security/efficiency trade-off for Falcon

	vk	sig	Qsec
dilithium-III	1472	2701	125
qTesla-p-I	14880	2592	140
dilithium-IV	1760	3366	158
Mod-Falcon	1792 940	972 1438	174

more compact for equivalent security

²To appear at AsiaCCS 2020; all size expressed in bytes

Food for thoughts

Question 1: We have almost optimal trapdoors for $\mathbf{h} = \mathbf{F}^{-1}\mathbf{g}$ Can this be extended to almost optimal trapdoors for $\mathbf{H} = \mathbf{F}^{-1}\mathbf{G}$? (main problem: how to complete the basis?)

Question 2: We can use them for signature/IBE.

Can we use these new trapdoors for something else?

Can half-trapdoors' usefulness be improved too?

Question 3: Extend uniformity results to all q's

And to more fields (Galois, all?)

Generally, find new tools/techniques to compute Gaussian mass of subsets Also, related to repartition of algebraic numbers

Food for thoughts

Question 1: We have almost optimal trapdoors for $\mathbf{h} = \mathbf{F}^{-1}\mathbf{g}$

Can this be extended to almost optimal trapdoors for $\mathbf{H} = \mathbf{F}^{-1}\mathbf{G}$?

(main problem: how to complete the basis?)

Question 2: We can use them for signature/IBE.

Can we use these new trapdoors for something else?

Can half-trapdoors' usefulness be improved too?

Question 3: Extend uniformity results to all q's

And to more fields (Galois, all?)

Generally, find new tools/techniques to compute Gaussian mass of subsets

Also, related to repartition of algebraic numbers

Thank you!

