Generating NTRU Trapdoors

Thomas Pornin, NCC Group

April 29th, 2020

Outline

- NTRU Lattices
- Tools: FFT \& NTT, Babai's Nearest Plane, Resultants
- Classic NTRU Solver
- More Tools: Field Norm, Fast Resultants
- New Solver
- Implementation Issues
https://eprint.iacr.org/2019/015
https://eprint.iacr.org/2019/893

NTRU Lattices

Let $\phi \in \mathbb{Z}[x]$ a monic polynomial of degree n.
For any polynomial $f \in \mathbb{C}[x] /(\phi)$, we denote $C_{\phi}(f)$ the $n \times n$ matrix:

$$
C_{\phi}(f)=\left[\begin{array}{c}
f \bmod \phi \\
x f \bmod \phi \\
\cdots \\
x^{n-1} f \bmod \phi
\end{array}\right]
$$

For any $f, g \in \mathbb{C}[x] /(\phi)$:

$$
\begin{aligned}
C_{\phi}(f+g) & =C_{\phi}(f)+C_{\phi}(g) \\
C_{\phi}(f g) & =C_{\phi}(f) C_{\phi}(g)
\end{aligned}
$$

NTRU Lattices

C_{ϕ} is a ring isomorphism from $\mathbb{C}[x] /(\phi)$ onto its image. We use polynomials to compute on matrices.

Let $f, g \in \mathbb{Z}[x] /(\phi)$ with small coefficients. Let q be a given integer. The NTRU equation is:

$$
f G-g F=q \bmod \phi
$$

for two other polynomials $F, G \in \mathbb{Z}[x] /(\phi)$.
Most of the work in the trapdoor generation is solving the NTRU equation, i.e. finding a solution (F, G) with small coefficients.

NTRU Lattices

If $f, g, F, G, b \in \mathbb{Z}[x](\phi)$ such that:

$$
\begin{aligned}
f G-g F & =q \bmod \phi \\
f b & =g \bmod \phi \bmod q
\end{aligned}
$$

then the two following matrices $2 n \times 2 n$:

$$
B=\left[\begin{array}{l|l}
g & -f \\
\hline G & -F
\end{array}\right] \quad P=\left[\begin{array}{c|c}
b & I_{n} \\
\hline q I_{n} & O_{n}
\end{array}\right]
$$

denote two bases for the same lattice of dimension $2 n$.
B is the trapdoor (private key) for P (public key). NTRUEncrypt only needs (f, g), but NTRUSign and Falcon also need (F, G).

NTRU Lattices

Falcon parameters

- $\phi=x^{n}+1$ with $n=512$ or 1024 (n is a power of two)
- $q=12289$
- $\left|f_{j}\right|,\left|g_{j}\right| \leq 20,\left|F_{j}\right|,\left|G_{j}\right| \leq 120$
q is chosen such that there are $2 n$-th primitive roots of 1 in \mathbb{Z}_{q}. f must be invertible in $\mathbb{Z}_{q}[x] /(\phi)$.
ϕ is the $2 n$-th cyclotomic polynomial. ϕ is irreducible over $\mathbb{Q}[x]$ and has n distinct roots in \mathbb{C} :

$$
\gamma_{j}=e^{2 i \pi((2 j+1) / 2 n)}
$$

NTRU Lattices

Toy example: Falcon-8

$$
\begin{aligned}
\phi= & x^{8}+1 \\
q= & 12289 \\
f= & -55+11 x-23 x^{2}-23 x^{3}+47 x^{4}+16 x^{5}+13 x^{6}+61 x^{7} \\
g= & -25-24 x+30 x^{2}-3 x^{3}+36 x^{4}-39 x^{5}+6 x^{6}+0 x^{7} \\
F= & 58+20 x+17 x^{2}-64 x^{3}-3 x^{4}-9 x^{5}-21 x^{6}-84 x^{7} \\
G= & -41-34 x-33 x^{2}+25 x^{3}-41 x^{4}+31 x^{5}-18 x^{6}-32 x^{7} \\
b= & -4839-6036 x-4459 x^{2}-2665 x^{3} \\
& -186 x^{4}-4303 x^{5}+3388 x^{6}-3568 x^{7}
\end{aligned}
$$

Public key is h. Private key is (f, g, F, G).

Fourier Transform

The (discrete) Fourier transform of $f \in \mathbb{C}[x] /(\phi)$ is $\hat{f}=\left(f\left(\gamma_{j}\right)\right)$.

- The Fourier transform is a bijection.
- The Fourier transforms of $f+g$ and $f g$ can be computed by simple term-wise additions and multiplications, respectively, of \hat{f} and \hat{g}.
- If $f \in \mathbb{R}[x] /(\phi)$ then $f\left(\gamma_{n-1-j}\right)=\overline{f\left(\gamma_{j}\right)}$: we can store only $n / 2$ complex values for \hat{f}.
- The Fast Fourier Transform (FFT) can compute f from \hat{f}, or vice versa, with $O(n \log n)$ operations.

NTT

Similar to FFT but in $\mathbb{Z}_{p}[x] /(\phi)$ for a prime p such that ϕ splits over \mathbb{Z}_{p}.
For $\phi=x^{n}+1$ and $n=2^{e}$, we need $p=1 \bmod 2 n$. If w is a primitive $2 n$-th root of unity in \mathbb{Z}_{p}, then the NTT of f is $\left(f\left(w^{2 j+1}\right)\right)$ for $0 \leq j<n$. NTT and inverse NTT can be applied with $O(n \log n)$ operations (modulo p).

Given $f, g \in \mathbb{Z}[x] /(\phi)$, the NTT allows efficient computation of $f+g$ and $f g$ modulo any prime p such that ϕ splits over \mathbb{Z}_{p}.

Babai's Nearest Plane

For $f \in \mathbb{C}[x] /(\phi)$, its adjoint is the unique polynomial $f^{*} \in \mathbb{C}[x] /(\phi)$ such that:

$$
f^{*}\left(\gamma_{j}\right)=\overline{f\left(\gamma_{j}\right)}
$$

for all roots γ_{j} of ϕ.
If $f \in \mathbb{R}[x] /(\phi)$ then $f^{*} \in \mathbb{R}[x] /(\phi)$.
If $\phi=x^{n}+1$ (cyclotomic) then:

$$
f^{*}=f_{0}-\sum_{i=1}^{n-1} f_{i} x^{n-i}
$$

Babai's Nearest Plane

Given a solution (F, G) to $f G-g F=q \bmod \phi$, then:

$$
(G-k g) f-(F-k f) g=q \quad \bmod \phi
$$

for any $k \in \mathbb{C}[x] /(\phi)$.
Thus, if $k \in \mathbb{Z}[x] /(\phi)$, then $(F-k f, G-k g)$ is also a solution.

Babai's Nearest Plane: Set:

$$
k=\left|\frac{F f^{*}+G g^{*}}{f f^{*}+g g^{*}}\right|
$$

This makes (F, G) smaller. Apply repeatedly if necessary.

Babai's Nearest Plane

We can use an approximation of k, e.g. using floating-point numbers.

- Approximate f and g with floating-point numbers: $f \approx 2^{c} \sum \tilde{f}_{j} x^{j}$ and $g \approx 2^{c} \sum \tilde{g}_{j} x^{j}\left(c\right.$ such that $\left.\max \left\{\left|\tilde{f}_{j}\right|,\left|\tilde{g}_{j}\right|\right\} \approx 1\right)$
- Approximate F and G similarly: $F \approx 2^{d} \sum \tilde{F}_{j} x^{j}$ and $G \approx 2^{d} \sum \tilde{G}_{j} x^{j}$ (d such that $\max \left\{\left|\tilde{F}_{j}\right|,\left|\tilde{G}_{j}\right|\right\} \approx 2^{25}$)
- Compute \tilde{k} :

$$
\tilde{k}=\left|\frac{\tilde{F} \tilde{f}^{*}+\tilde{G} \tilde{g}^{*}}{\tilde{f} \tilde{f}^{*}+\tilde{g} \tilde{g}^{*}}\right|
$$

- Replace: $(F, G) \leftarrow\left(F-2^{d-c} \tilde{k} f, G-2^{d-c} \tilde{k} g\right)$
- Repeat while it works (each call reduces (F, G) by about 25 bits, until they have about the same size as (f, g)).

Resultants

For $a, b \in \mathbb{C}[x]$, of degree n and m respectively, the resultant of a and b is:

$$
\operatorname{Res}(a, b)=a_{n}^{m} \prod_{j} b\left(\alpha_{j}\right)=(-1)^{m n} b_{m}^{n} \prod_{k} a\left(\beta_{k}\right)
$$

where $\left(\alpha_{j}\right)_{1 \leq j \leq n}$ are the roots of a, and $\left(\beta_{k}\right)_{1 \leq k \leq m}$ are the roots of b.

- If $a, b \in \mathbb{Z}[x]$, then $\operatorname{Res}(a, b) \in \mathbb{Z}$.
- If $a, b \in \mathbb{Z}[x]$ are co-prime, then the extended Euclidean GCD yields coefficients $u, v \in \mathbb{Z}[x]$ such that:

$$
a u+b v=\operatorname{Res}(a, b)
$$

Solving the NTRU Equation: Classical Method

Input: $f, g \in \mathbb{Z}[x] /(\phi)$. We want $F, G \in \mathbb{Z}[x] /(\phi)$ with small coefficients such that:

$$
f G-g F=q \bmod \phi
$$

1. Using the extended Euclidean GCD algorithm (on polynomials), find $s, s^{\prime}, t, t^{\prime} \in \mathbb{Z}[x]$ such that:

$$
\begin{aligned}
f s+\phi s^{\prime} & =\operatorname{Res}(\phi, f) \\
g t+\phi t^{\prime} & =\operatorname{Res}(\phi, g)
\end{aligned}
$$

2. Using the extended Euclidean GCD algorithm (on integers), find $\delta=\operatorname{GCD}(\operatorname{Res}(\phi, f), \operatorname{Res}(\phi, g))$, and $u, v \in \mathbb{Z}$ such that:

$$
\operatorname{Res}(\phi, f) u+\operatorname{Res}(\phi, g) v=\delta
$$

Solving the NTRU Equation: Classical Method

3. If δ does not divide q, then there is no solution. Otherwise, a solution to the NTRU equation is:

$$
\begin{aligned}
F & =-(v q / \delta) t \\
G & =(u q / \delta) s
\end{aligned}
$$

4. Apply Babai's Nearest Plane to make F, G small.

Solving the NTRU Equation: Classical Method

$$
\begin{aligned}
\phi= & x^{8}+1 \\
f= & -55+11 x-23 x^{2}-23 x^{3}+47 x^{4}+16 x^{5}+13 x^{6}+61 x^{7} \\
\operatorname{Res}(\phi, f)= & 116876023987729 \\
s= & -1977840025967-760360482925 x \\
& -1187952761129 x^{2}+2178875333716 x^{3} \\
& +99053048645 x^{4}+107066058579 x^{5} \\
& -1300496523049 x^{6}-1203258774093 x^{7} \\
f s= & \operatorname{Res}(\phi, f) \bmod \phi
\end{aligned}
$$

Solving the NTRU Equation: Classical Method

$$
\begin{aligned}
g= & -25-24 x+30 x^{2}-3 x^{3}+36 x^{4}-39 x^{5}+6 x^{6}+0 x^{7} \\
\operatorname{Res}(\phi, g)= & 799035204433 \\
t= & -4807592197-51641354937 x \\
& +19364169957 x^{2}+16709964258 x^{3} \\
& -52685146080 x^{4}+9320244186 x^{5} \\
& +33116290887 x^{6}-32824810485 x^{7} \\
g t= & \operatorname{Res}(\phi, g) \bmod \phi
\end{aligned}
$$

Solving the NTRU Equation: Classical Method

$\operatorname{Res}(\phi, f)$ and $\operatorname{Res}(\phi, g)$ are co-prime:

$$
\begin{aligned}
u & =-100370007727 \\
v & =14681264812448 \\
1 & =\operatorname{Res}(\phi, f) u+\operatorname{Res}(\phi, g) v
\end{aligned}
$$

Solving the NTRU Equation: Classical Method

$$
\begin{aligned}
F= & -(v q / \delta) t \\
= & 867376473223614208793597984 \\
& +9317033242897564742483631264 x \\
& -3493646040670060020250780704 x^{2} \\
& -3014779388909280957159763776 x^{3} \\
& +9505352019386623340060789760 x^{4} \\
& -1681540405336416891479433792 x^{5} \\
& -5974777064855398078572749664 x^{6} \\
& +5922188735242431676324453920 x^{7}
\end{aligned}
$$

Solving the NTRU Equation: Classical Method

$$
\begin{aligned}
G= & (u q / \delta) s \\
= & 2439560895870075494581093601 \\
& +937864375558787364488966275 x \\
& +1465276799004141081630849287 x^{2} \\
& -2687527298124415179709584748 x^{3} \\
& -122176688164106452497275435 x^{4} \\
& -132060311428150464760136637 x^{5} \\
& +1604093567321845579875767047 x^{6} \\
& +1484155955158541731692732579 x^{7}
\end{aligned}
$$

Solving the NTRU Equation: Classical Method

$$
\begin{aligned}
k= & \left|\frac{F f^{*}+G g^{*}}{f f^{*}+g g^{*}}\right| \\
= & 46221236115316417392158135 \\
& -68526924500308653393182213 x \\
& -39379940466826749574857212 x^{2} \\
& +74818915148468494772033582 x^{3} \\
& -20521406202631888037868720 x^{4} \\
& -54794384152196015337787199 x^{5} \\
& +16122893448186786590846354 x^{6} \\
& +14590574907049908758419681 x^{7}
\end{aligned}
$$

Solving the NTRU Equation: Classical Method

$$
\begin{aligned}
& F \leftarrow F-k f \\
& G \leftarrow G-k g
\end{aligned}
$$

$$
F=58+20 x+17 x^{2}-64 x^{3}-3 x^{4}-9 x^{5}-21 x^{6}-84 x^{7}
$$

$$
G=-41-34 x-33 x^{2}+25 x^{3}-41 x^{4}+31 x^{5}-18 x^{6}-32 x^{7}
$$

Solving the NTRU Equation: Classical Method

Main problem: intermediate F and G values have many coefficients and they are large.

With Falcon-1024:

- $n=1024$
- Size of each coefficient of s and $t: \approx 6300$ bits
- Size of each coefficient of F and $G: \approx 13000$ bits
- Total for (F, G) : 3.3 megabytes

Small embedded systems typically have 64 kB of RAM (or less).

Degree Halving

Let $n=2^{e}$.
Intuition: computations over polynomials $a, b \in \mathbb{C}[x] /\left(x^{n / 2}+1\right)$ are equivalent to computations over polynomials $a\left(x^{2}\right), b\left(x^{2}\right) \in \mathbb{C}[x] /\left(x^{n}+1\right)$.

$$
\begin{aligned}
a\left(x^{2}\right)+b\left(x^{2}\right) & =(a+b)\left(x^{2}\right) \\
a\left(x^{2}\right) b\left(x^{2}\right) & =(a b)\left(x^{2}\right)
\end{aligned}
$$

This works for any ϕ such that all non-zero coefficients have even indices. With $\phi=x^{n}+1$ and $n=2^{e}$ this can be done repeatedly.

Degree Halving

Let $f \in \mathbb{C}[x] /\left(x^{n}+1\right)$.
We can write separately the even-indexed and odd-indexed coefficients of f as:

$$
f=f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)
$$

with $f_{e}, f_{0} \in \mathbb{C}[x] /\left(x^{n / 2}+1\right)$.
Let $f^{\prime}=f_{e}\left(x^{2}\right)-x f_{o}\left(x^{2}\right)$. We then have:

$$
\begin{aligned}
f f^{\prime} & =\left(f_{e}\left(x^{2}\right)+x f_{o}\left(x^{2}\right)\right)\left(f_{e}\left(x^{2}\right)-x f_{o}\left(x^{2}\right)\right) \\
& =\left(f_{e}\left(x^{2}\right)\right)^{2}-x^{2}\left(f_{o}\left(x^{2}\right)\right)^{2} \\
& =\left(f_{e}^{2}-x f_{o}^{2}\right)\left(x^{2}\right)
\end{aligned}
$$

Degree Halving

We write $N(f)\left(x^{2}\right)=f f^{\prime}$.
This is the field norm for $\mathbb{Q}[x] /\left(x^{n}+1\right)$ as a field extension of degree 2 of $\mathbb{Q}[x] /\left(x^{n / 2}+1\right)$.

Fact:

$$
\operatorname{Res}\left(x^{n}+1, f\right)=\operatorname{Res}\left(x^{n / 2}+1, N(f)\right)
$$

Therefore:

$$
\begin{aligned}
\operatorname{Res}\left(x^{n}+1, f\right) & =\operatorname{Res}\left(x^{n / 2}+1, N(f)\right) \\
& =\operatorname{Res}\left(x^{n / 4}+1, N(N(f))\right) \\
& =\operatorname{Res}\left(x^{n / 8}+1, N(N(N(f)))\right) \\
& =\cdots
\end{aligned}
$$

Fast Resultant

Let p prime such that $p=1 \bmod 2 n$. Let $w \in \mathbb{Z}_{p}$ such that $w^{n}+1=0$. Then $\left(w^{2}\right)^{n / 2}+1=0: w^{2}$ is a root of $x^{n / 2}+1$. Moreover:

$$
\begin{aligned}
N(f)\left(w^{2}\right) & =f(w) f^{\prime}(w) \\
& =f(w)\left(f_{e}\left(w^{2}\right)-w f_{o}\left(w^{2}\right)\right) \\
& =f(w)\left(f_{e}\left((-w)^{2}\right)+(-w) f_{o}\left((-w)^{2}\right)\right) \\
& =f(w) f(-w)
\end{aligned}
$$

But $-w$ is also a root of $x^{n}+1$. Therefore:
The NTT representation of $N(f)$ (in $\left.\mathbb{Z}_{p}[x] /\left(x^{n / 2}+1\right)\right)$ is obtained by pair-wise multiplying the elements of the NTT representation of $N(f)$ (in $\mathbb{Z}_{p}[x] /\left(x^{n}+1\right)$).

Fast Resultant

Let $\phi=x^{n}+1$ with $n=2^{e}$. Let $f \in \mathbb{Z}[x] /(\phi)$. To compute $\operatorname{Res}(\phi, f)$:

1. For many small primes p such that $p=1 \bmod 2 n$:
(a) $\operatorname{Set} f_{p} \in \mathbb{Z}_{p}[x] /(\phi)$ such that $f_{p}=f \bmod p$.
(b) Convert f_{p} to NTT representation (in \mathbb{Z}_{p}).
(c) Multiply together (modulo p) all elements of the NTT representation of f_{p} into $r_{p} \in[0 \ldots p-1]$.
2. For each $p, \operatorname{Res}(\phi, f)=r_{p}$. Use the CRT to rebuild $\operatorname{Res}(\phi, f)$.

This improves the speed of the first steps of the classic NTRU solver, but does not reduce memory usage.

Recursive Solver

The field norm is a product: $N(f)\left(x^{2}\right)=f f^{\prime}$
Let $f_{n}, g_{n} \in \mathbb{Z}[x] /\left(x^{n}+1\right)$. Let:

$$
\begin{aligned}
& f_{n / 2}=N\left(f_{n}\right) \\
& g_{n / 2}=N\left(g_{n}\right)
\end{aligned}
$$

We have:

$$
\begin{aligned}
& f_{n / 2}\left(x^{2}\right)=f_{n} f_{n}^{\prime} \\
& g_{n / 2}\left(x^{2}\right)=g_{n} g_{n}^{\prime}
\end{aligned}
$$

Consequence: $f_{1}=\operatorname{Res}\left(x^{n}+1, f\right)$ and $g_{1}=\operatorname{Res}\left(x^{n}+1, g\right)$.

Recursive Solver

Suppose that we found $F_{n / 2}, G_{n / 2} \in \mathbb{Z}[x] /\left(x^{n / 2}+1\right)$ such that:

$$
f_{n / 2} G_{n / 2}-g_{n / 2} F_{n / 2}=q
$$

Then set:

$$
\begin{aligned}
F_{n} & =g_{n}^{\prime} F_{n / 2}\left(x^{2}\right) \\
G_{n} & =f_{n}^{\prime} G_{n / 2}\left(x^{2}\right)
\end{aligned}
$$

We then have:

$$
\begin{aligned}
f_{n} G_{n}-g_{n} F_{n} & =f_{n} f_{n}^{\prime} G_{n / 2}\left(x^{2}\right)-g_{n} g_{n}^{\prime} F_{n / 2}\left(x^{2}\right) \\
& =f_{n / 2}\left(x^{2}\right) G_{n / 2}\left(x^{2}\right)-g_{n / 2}\left(x^{2}\right) F_{n / 2}\left(x^{2}\right) \\
& =\left(f_{n / 2} G_{n / 2}-g_{n / 2} F_{n / 2}\right)\left(x^{2}\right) \\
& =q
\end{aligned}
$$

Recursive Solver

Input: $f_{n}, g_{n} \in \mathbb{Z}[x] /\left(x^{n}+1\right)$

1. If $n=1$, then:
(a) Use extended GCD on integers: $f_{1} u+g_{1} v=\delta$.
(b) If δ does not divide q, then Fail.
(c) Set $F_{1}=-(v q / \delta)$ and $G_{1}=(u q / \delta)$.
else:
(a) $\operatorname{Set} f_{n / 2}=N\left(f_{n}\right)$ and $g_{n / 2}=N\left(g_{n}\right)$.
(b) Call the solver recursively to get $F_{n / 2}$ and $G_{n / 2}$.
(c) Set $F_{n}=g_{n}^{\prime} F_{n / 2}\left(x^{2}\right)$ and $G_{n}=f_{n}^{\prime} G_{n / 2}\left(x^{2}\right)$.
2. Apply Babai's Nearest Plane reduction on $\left(F_{n}, G_{n}\right)$ to make the coefficients about the same size as those of $\left(f_{n}, g_{n}\right)$.
3. Return the solution $\left(F_{n}, G_{n}\right)$.

$\square f$
$\square g$
$\square F$
$\square G$

Recursive Solver

At each recursive call, polynomial coefficients are twice bigger, but degree is halved: no uncontrolled memory expansion.
Total size for $n=1024: 28.7 \mathrm{kB}$

- New solver is 115 times smaller!
- It is also about 100 times faster (20 milliseconds instead of about 2 seconds).

Implemented on ARM Cortex M4: about 170 million cycles for Falcon512, 510 million cycles for Falcon-1024.

Implementation

Principle: key pair generation is allowed to fail.

- It is not a problem if a small(-ish) proportion of potential private keys are rejected.
- Whether a solution to the NTRU equation is correct or not is inexpensive to verify (small coefficients, can use FFT or NTT).
- For each value, we can measure the average size in bits and standard deviation, and allocate a one-size-fits-all buffer. E.g. size of $\operatorname{Res}(\phi, f)$ (deepest recursion):

$$
\log |\operatorname{Res}(\phi, f)| \approx 6307.52 \pm 24.48
$$

\Rightarrow allocate a 6455-bit buffer, which will almost always be sufficient.

Polynomial Representation

Three competing representations:

- Base- 2^{31} : each coefficient f_{j} is represented as an array of 31 -bit words:

$$
f_{j}=\sum_{k} f_{j, k} 2^{31 k}
$$

(Two's complement for negative values)

- Residue Number System: each coefficient f_{j} is represented as an array of 31-bit words modulo small primes p_{k} :

$$
\breve{f}_{j, k}=f_{j} \bmod p_{k}
$$

- RNS + NTT: like RNS, but each polynomial $f \bmod p_{k}$ is in NTT representation.

Polynomial Representation

- Field norms: use RNS + NTT.
- Polynomial multiplications: use RNS. Also use NTT if degree is high (threshold: $n=16$ or 32).
- RNS to RNS with more moduli: go to base- 2^{31} with CRT, then reduce modulo all target primes p_{k}.
- CRT can be done mostly in-place. Requires for each $p_{k}:\left(\Pi_{j<k} p_{j}\right)^{-1} \bmod p_{k}($ precomputed $)$.
- NTT requires a table of primitive root powers: this is regenerated dynamically.

Polynomial Representation

Integers modulo p_{k} :

- All p_{k} are chosen close to 2^{31} (but lower).
- Montgomery representation: $z \in \mathbb{Z}_{p k}$ is represented by $2^{31} z \bmod$ p_{k}.
- Efficient constant-time additions, subtractions and multiplications.
- Inversion modulo p_{k} : uses Fermat's Little Theorem (raise to power $p_{k}-2$ in $O\left(\log p_{k}\right)$ multiplications).

Floating-Point

Babai's Nearest Plane uses non-integers:

- IEEE-754 "binary64" floating-point values can be used (in C, use type double).
- On recent x86, operations are constant-time (no subnormals, infinites or NaNs), except some shortcuts for divisions by a power of two (very rare, never observed over thousands of key pair generations).
- If using constant-time emulation of floating-point operations with pure integer code (much slower, but constant-time on all relevant architectures), then key generation time is multiplied by about 2.3.
- Fixed-point (with integer multiplication) probably possible, but requires extra care not to leak information on size of f, g.

Extra Tweaks

- $\left(f_{n}, g_{n}\right)$ can be discarded at each recursive call: they have to be recomputed afterwards (CPU overhead: $+15 \%$) but this saves some kilobytes of RAM and avoids recursive calls (better for shallow stacks).
- When q is prime, and $\operatorname{GCD}(\operatorname{Res}(\phi, f), \operatorname{Res}(\phi, g)) \neq 1, q$, the current f, g are discarded.
- We can quickly compute $\operatorname{Res}(\phi, f) \bmod 2:$ it is the sum modulo 2 of the coefficients.
- If both $\operatorname{Res}(\phi, f)$ and $\operatorname{Res}(\phi, g)$ are even, we can $\operatorname{discard} f, g$ immediately.

