Generating NTRU Trapdoors

Thomas Pornin, NCC Group
April 29th, 2020

Outline

e NTRU Lattices

Tools: FFT & NT'T, Babai’s Nearest Plane, Resultants

Classic NTRU Solver
* More Tools: Field Norm, Fast Resultants
* New Solver

* Implementation Issues

https://eprint.iacr.org/2019/015
https://eprint.iacr.org/2019/893

NTRU Lattices

Let ¢ € Z[x] a monic polynomial of degree 7.

For any polynomial f* € C[x]/(¢), we denote ((f) the 7 X n matrix:

f mod ¢
Co(f) = xf mod ¢

x”_lf .II.IOd ¢
Forany f, ¢ € C[x]/(¢):
Colf +9) = Co(f) + (50
Cs(fe) = Co(f)Cs(©)

NTRU Lattices

(is a ring isomorphism from C[x]/(¢) onto its image.

We use polynomials to compute on matrices.

Let £, g € Z[x]/(¢) with small coefficients. Let ¢ be a given integer. The
NTRU equation is:

fG—gF =g mod¢
for two other polynomials 75 G € Z[x]/(¢).

Most of the work in the trapdoor generation is solving the NTR U equation,
i.e. finding a solution (%, G) with small coefficients.

NTRU Lattices

Iff, ¢ F G, b € Z[x](¢) such that:

fG—gF = g mod ¢
fh ¢ mod ¢ mod g

then the two following matrices 27 X 27:

SUE T

denote two bases for the same lattice of dimension 2.

B is the trapdoor (private key) for P (public key). NTRUEncrypt only
needs (f; ¢), but NTRUSign and Falcon also need (£ G).

NTRU Lattices

Falcon parameters

* ¢ = x" + 1 with n = 512 or 1024 (n is a power of two)
. g =12289

* il lgl < 20,15, |G;| <120

¢ is chosen such that there are 27-th primitive roots of 1 in Z,.
J must be invertible in Z,[x]/(¢).

¢ is the 2n-th cyclotomic polynomial. ¢ is irreducible over Q[x] and has 7
distinct roots in C:

3 = @D/

6

NTRU Lattices

Toy example: Falcon-8

¢ = & +1

g = 12289

F = =55+ 1lx — 23x% — 2327 + 47x* +16x° + 13x° + 61x”
g = =25-24x+30x% — 3% + 36x* — 39%° + 6x° + 0«
F = 58+20x+ 17x> — 64x° — 3x* — 9x° — 21x° — 84«

G = —41—34x —33x% + 25x° — 41x* + 31x° — 18x° — 324/
h = —4839 —6036x — 4459x% — 2665x°

—186x* — 4303x> + 3388x° — 3568x

Public key is 4. Private key is (f, g, F; G).

~

Fourier Transform
The (discrete) Fourier transform of f € C[x]/(¢p) is f = (f ()

* The Fourier transform is a bijection.

* The Fourier transforms of / + ¢ and fg can be computed by simple
term-wise additions and multiplications, respectively, of f and g.

* If ' € Rlx]/(¢) then f(y,-1-) =]T'y]) we can store only 7/2

complex values for f)

* The Fast Fourier Transform (FFT) can compute f from f , or vice
versa, with O(nlog #) operations.

NTT

Similar to FFT but in Z,[x]/(¢) for a prime p such that ¢ splits over Z,.

For¢ = x” + land n = 2° weneed p = 1 mod 2n. If w is a primitive
2n-th root of unity in Zy, then the NTT of £ is (f(w¥ ™)) for 0 < j < .

NTT and inverse NTT can be applied with O(7log) operations (mod-
ulo p).

Givenf, g € Z[x]/(¢), the NTT allows efficient computation of f + ¢ and
Jfg modulo any prime p such that ¢ splits over Z,.

9

Babai’s Nearest Plane

For f € Clx]/(¢), its adjoint is the unique polynomial f* € C[x]/(¢)

such that:
) =f&)
for all roots 7; of ¢.

Iff € Rlx]/(¢) then f* € R[x]/(4).

If ¢ = x” + 1 (cyclotomic) then:

f=fim)

10

Babai’s Nearest Plane

Given a solution (F, G) to fG — ¢FF = g mod ¢, then:

(G—kg)f —(F—kf)g=g mod ¢

forany k& € Clx]/(¢).
Thus, if & € Z[x]/(¢), then (F — kf, G — kg) is also a solution.

Babai’s Nearest Plane: Set:

I + Gg*
e
This makes (£, G) smaller. Apply repeatedly if necessary.

Babai’s Nearest Plane

We can use an approximation of &, e.g. using floating-point numbers.

Approximate f and g with floating-point numbers: f = 2} ﬁxf
and g ~ 2¢ Y, g/ (¢ such that max{|fl, |g|} ~ 1)

Approximate F and G similarly: F' = 245 j*}-xf and G ~ 24 ijf
(d such that max{|i:j|, |G]|} ~ 2%)

Compute k:
Ff* + Gg*

e
Replace: (F;, G) « (F - Zd"/’ef, G- Zd"/’eg)

-

Repeat while it works (each call reduces (F, G) by about 25 bits, un-

til they have about the same size as (f, ¢)). 5

Resultants
For a, b € C|x], of degree 7 and m respectively, the resultant of aand bis:

Res(a, b) = 4 l—[b(ey) = (=1)""b},]—[a(B)
j k

where (ej)1<j<» are the roots of 2, and (8)1<r< are the roots of b.

* If 4, b € Z|x], then Res(4, b) € Z.

* It a,b € Z[x] are co-prime, then the extended Euclidean GCD
yields coefhicients %, v € Z[x] such that:

an + bv = Res(a, b)

Solving the NTRU Equation: Classical Method

Input: £, ¢ € Z[x]/(¢p). We want F, G € Z[x]/(¢) with small coefficients
such that:

fG—-gF =g mod¢

1. Using the extended Euclidean GCD algorithm (on polynomials),
finds, s/, ¢, ¢ € Z|x] such that:

fi+¢d
g+ ¢t

Res(¢, 1)
Res(¢, 2)

2. Using the extended Euclidean GCD algorithm (on integers), find
0 = GCD(Res(¢, f), Res(¢, £)), and #, v € Z such that:

Res(¢p, /) + Res(¢, g)v = 9

Solving the NTRU Equation: Classical Method

3. If d does not divide ¢, then there is no solution. Otherwise, a solu-
tion to the NTRU equation is:

F
G

—(vg/d)t
(uq/d)s

4. Apply Babai’s Nearest Plane to make F, G small.

Solving the NTRU Equation: Classical Method

¢ = xS+ 1
F o= =55+ 1lx — 23x% — 23x° + 47x* +16x° + 13x° + 61x”
Res(¢, f) = 116876023987729
s = —1977840025967 — 760360482925

—1187952761129x% + 2178875333716x°
+99053048645x* + 107066058579x°
—~1300496523049x° — 1203258774093

f5 = Res(¢,f) mod ¢

16

Solving the NTRU Equation: Classical Method

Res(¢, 2)

gf

—25 — 24x + 30x% — 32> + 36x* — 39x° + 6x° + 0x”
799035204433

—4807592197 — 51641354937

+19364169957x* + 16709964258
—52685146080x* + 9320244186x°
+33116290887x° — 32824810485x”

Res(¢,g) mod ¢

Solving the NTRU Equation: Classical Method

Res(¢, 1) and Res(¢p, ¢) are co-prime:

—100370007727
14681264812448

Res(¢p,)u + Res(¢, g)v

u

v

Solving the NTRU Equation: Classical Method

F = —(ug/d)t
= 867376473223614208793597984
+9317033242897564742483631264x
—3493646040670060020250780704x
—3014779388909280957159763776x°
+9505352019386623340060789760x*
—1681540405336416891479433792x°
—5974777064855398078572749664x°
+5922188735242431676324453920x”

Solving the NTRU Equation: Classical Method

G = (ug/d)s
= 2439560895870075494581093601
+937864375558787364488966275x
+1465276799004141081630849287 x>
—2687527298124415179709584748x
—122176688164106452497275435x*
—132060311428150464760136637x
+1604093567321845579875767047x°
+1484155955158541731692732579x"

20

Solving the NTRU Equation: Classical Method

F + Gg*w

I +g

= 46221236115316417392158135
—68526924500308653393182213x
—39379940466826749574857212x°
+74818915148468494772033582x°
—20521406202631888037868720x*
—54794384152196015337787199x°
+16122893448186786590846354x°
+14590574907049908758419681x”

21

Solving the NTRU Equation: Classical Method

F « F-Ikf
G « G—kg

S8 + 20x + 17x% — 64x° — 3x* — 9x° — 21x° — 84’
—41 — 34x — 33x% + 25x° — 41x* + 31x° — 18x° — 3247

22

Solving the NTRU Equation: Classical Method

Main problem: intermediate F and G values have many coeflicients and

they are large.
With Falcon-1024:
* n=1024

e Size of each coefficient of s and #: = 6300 bits

¢ Size of each coefficient of F and G: = 13000 bits

Total for (F, G): 3.3 megabytes

Small embedded systems typically have 64 kB of RAM (or less).

23

mf Hg

24

i1

W u Py F mG

26

Degree Halving

Let n = 2°.
Intuition: computations over polynomials 4, b6 € C[x]/ ("% + 1) are
equivalent to computations over polynomials a(x?), b(x*) € C[x]/(x"+1).
a(x?) + b(x?)

a(x?)b(x?)

(a+ b))
(ab)(x?)

This works for any ¢ such that all non-zero coefhicients have even indices.

With ¢ = x” + 1and n = 2° this can be done repeatedly.

Degree Halving

Letf € Clx]/(x" + 1).

We can write separately the even-indexed and odd-indexed coefficients of

f as:
f =ﬁ,(x2) + xﬁ,(xz)

with f;, f, € Clx]/(x"/? + 1),
Let /' = fo(x*) — xfo(x*). We then have:

= (o) + o (@))(Fx?) = #fo(x*)

(fo(x™)? = 2 (fi(x"))
(]ng _ xﬁ2>(x2)

28

Degree Halving

We write N(£)(x*) = ff'.
This is the fzeld norm tor Q[x]/(x” + 1) as a field extension of degree 2 of
Qlx]/ (" +1).

Fact:
Res(x” + 1,) = Res(x"/? + 1, N(f))

Therefore:

Res(x” +1,f) = Res(x"? +1, N(f))
= Res(x"* +1, N(N(f)))
= Res(x”® + 1, N(N(N())))

29

Fast Resultant

Let p prime such thatp = 1 mod 27. Letw € Zy such thatw” +1 = 0.

Then (w?)"? +1 = 0: w? is a root of /% + 1. Moreover:

N)w?) = fw)f (w)
= fw)(fow?) — wfy(w?))
= f@(f((~w)®) + (~w)fo((~w)*))
= fw)f(-w)

But —w s also a root of x” + 1. Therefore:

The NTT representation of N(f) (in Z,[x]/ (x™* + 1)) is obtained by
pair-wise multiplying the elements of the NTT representation of N(f)

(in Zp[x]/(x" + 1)).

30

Fast Resultant

Let ¢ = " + 1 with n = 2°. Let f € Z[x]/(¢p). To compute Res(¢, f):

1. For many small primes p such that p = 1 mod 22:

(a) Setf, € Z,[x]/(¢)such thatf, = f mod p.

(b) Convert f, to NTT representation (in Z,).
(c) Multiply together (modulo p) all elements of the NTT repre-
sentation of f, into 7, € [0...p — 1].

2. Foreach p, Res(¢, /) = 7. Use the CRT to rebuild Res(¢, f).

This improves the speed of the first steps of the classic NTRU solver, but

does 7ot reduce memory usage.
31

Recursive Solver

The field norm is a product: N(f)(xz) = ff’
Let f,, g» € Z[x]/(x" + 1). Let:

We have:

Consequence: f =

a2 = N(fn)
Inj2 = N(gn)
L&) = fifs
on*) = gg,

Res(x” +1,f)and g =

Res(x” + 1, 9).

32

Recursive Solver

Suppose that we found F,/5, G,,/» € Z[x]/ (% + 1) such that:

Jn2Gupa = guj2Fujn = g

Then set:

E, = gFp)

Gn = f;l/Gn/Z(xz)
We then have:

ﬁLGn _gnFn = ﬁafZGn/Z(xz) _gng;Fn/Z(xz)

ﬁz/Z(xz)Gn/Z(xz) _gn/Z(xZ)Fn/Z(xz)
(Fu/2Gnja = gujaFy2)(x%)
q

33

Recursive Solver

Input: £, g, € Z[x]/(x" + 1)

1. If n = 1, then:

(a) Use extended GCD on integers: fin + giv = 9.
(b) If 9 does not divide ¢, then Fail.
(c) Set /1 = —(vg/d) and Gy = (ug/9).

else:

(a) Setf,/» = N(f,)and g,/2 = N(gy).
(b) Call the solver recursively to get F,/» and G,,/5.

(c) Set F, :g,’an/z(x?‘) and G, :f,:G,L/z(xz).

2. Apply Babai’s Nearest Plane reduction on (F,, G,) to make the co-
efficients about the same size as those of (f;, g,).
3. Return the solution (£, G,).

34

W u Py mF mG

35

I I R
mr Hg mF mG 3

IIH]H]D]D]D]D]
mr Hg mF mG ;

BF

H]D]D]D]D]

Bg

.

BF

—
—
—
—
—

Bg

IIH]H]D]D]D]D]
mr Hg mF mG .

LCLLEEE]

Recursive Solver

At each recursive call, polynomial coefficients are twice bigger, but degree
is halved: no uncontrolled memory expansion.

Total size for n = 1024: 28.7 kB

¢ New solver is 115 times smaller!

* Itis also about 100 times faster (20 milliseconds instead of about 2
seconds).

Implemented on ARM Cortex M4: about 170 million cycles for Falcon-
512, 510 million cycles for Falcon-1024.

43

Implementation
Principle: key pair generation is allowed to fail.

¢ It is not a problem if a small(-ish) proportion of potential private
keys are rejected.

* Whether a solution to the NTRU equation is correct or not is inex-
pensive to verify (small coefficients, can use FFT or NTT).

* For each value, we can measure the average size in bits and standard
deviation, and allocate a one-size-fits-all buffer. E.g. size of Res(¢, f)
(deepest recursion):

log [Res(¢, f)| = 6307.52 + 24.48

= allocate a 6455-bit buffer, which will almost always be sufficient.
44

Polynomial Representation

Three competing representations:

* Base-23!: each coefficient ﬁ isrepresented as an array of 31-bit words:
_ 31k
fi=). fw
k

(Two’s complement for negative values)

* Residue Number System: each coefhicient j; is represented as an ar-
ray of 31-bit words modulo small primes py:

ﬁ’k :ﬁ modp/e

* RNS + NTT: like RNS, but each polynomial f mod py isin NTT

representation.
45

¢ Ci{T / mid ¢

NTT/iNTT

46

Polynomial Representation

Field norms: use RNS + NTT.

Polynomial multiplications: use RNS. Also use NTT if degree is
high (threshold: #» = 16 or 32).

RNS to RNS with more moduli: go to base-23! with CRT, then

reduce modulo all target primes py.

CRT can be done mostly in-place.
-1

Requires for each py: (Hj< L pj) mod py, (precomputed).

NTT requires a table of primitive root powers: this is regenerated

dynamically.

Polynomial Representation

Integers modulo py:

* All p;, are chosen close to 23! (but lower).

* Montgomery representation: z € Z,, is represented by 231z mod
g y rep D p y

Pk
* Efficient constant-time additions, subtractions and multiplications.

¢ Inversion modulo py: uses Fermat’s Little Theorem (raise to power
pr — 2 in O(log p;) multiplications).

48

Floating-Point
Babai’s Nearest Plane uses non-integers:

* IEEE-754 “binary64” floating-point values can be used (in C, use
type double).

* On recent x86, operations are constant-time (no subnormals, in-
finites or NaNs), except some shortcuts for divisions by a power of
two (very rare, never observed over thousands of key pair genera-
tions).

* If using constant-time emulation of floating-point operations with
pure integer code (much slower, but constant-time on all relevant
architectures), then key generation time is multiplied by about 2.3.

* Fixed-point (with integer multiplication) probably possible, but re-

quires extra care not to leak information on size of f, g.
49

Extra Tweaks

* (f2 g») can be discarded at each recursive call: they have to be recom-
puted afterwards (CPU overhead: +15%) but this saves some kilo-
bytes of RAM and avoids recursive calls (better for shallow stacks).

* When g is prime, and GCD(Res(¢, /), Res(¢, g)) # 1, ¢, the cur-
rent f, ¢ are discarded.

— We can quickly compute Res(¢p, /) mod 2: it is the sum mod-
ulo 2 of the coeflicients.

— If both Res(¢, f) and Res(¢, g) are even, we can discard f; ¢

immediately.

50

