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NTRU Lattices

Let ϕ ∈ Z[x] a monic polynomial of degree n.

For any polynomial f ∈ C[x]/(ϕ), we denote Cϕ(f ) the n × nmatrix:

Cϕ(f ) =


f mod ϕ
xf mod ϕ
. . .

xn−1f mod ϕ


For any f, g ∈ C[x]/(ϕ):

Cϕ(f + g) = Cϕ(f ) + Cϕ(g)
Cϕ(fg) = Cϕ(f )Cϕ(g)

3



NTRU Lattices

Cϕ is a ring isomorphism fromC[x]/(ϕ) onto its image.

We use polynomials to compute on matrices.

Let f, g ∈ Z[x]/(ϕ) with small coe�cients. Let q be a given integer. The
NTRU equation is:

fG − gF = q mod ϕ

for two other polynomials F, G ∈ Z[x]/(ϕ).
Most of the work in the trapdoor generation is solving the NTRU equation,
i.e. �nding a solution (F, G)with small coe�cients.
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NTRU Lattices

If f, g, F, G, h ∈ Z[x](ϕ) such that:

fG − gF = q mod ϕ
fh = g mod ϕ mod q

then the two following matrices 2n × 2n:

B =
[
g −f
G −F

]
P =

[
h In
qIn On

]
denote two bases for the same lattice of dimension 2n.

B is the trapdoor (private key) for P (public key). NTRUEncrypt only
needs (f, g), but NTRUSign and Falcon also need (F, G).
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NTRU Lattices

Falcon parameters

• ϕ = xn + 1 with n = 512 or 1024 (n is a power of two)

• q = 12289

• |fj |, |gj | ≤ 20, |Fj |, |Gj | ≤ 120

q is chosen such that there are 2n-th primitive roots of 1 in Zq.

f must be invertible in Zq[x]/(ϕ).
ϕ is the 2n-th cyclotomic polynomial. ϕ is irreducible over Q[x] and has n
distinct roots inC:

γj = e2iπ((2j+1)/2n)
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NTRU Lattices

Toy example: Falcon-8

ϕ = x8 + 1
q = 12289
f = −55 + 11x − 23x2 − 23x3 + 47x4 + 16x5 + 13x6 + 61x7

g = −25 − 24x + 30x2 − 3x3 + 36x4 − 39x5 + 6x6 + 0x7

F = 58 + 20x + 17x2 − 64x3 − 3x4 − 9x5 − 21x6 − 84x7

G = −41 − 34x − 33x2 + 25x3 − 41x4 + 31x5 − 18x6 − 32x7

h = −4839 − 6036x − 4459x2 − 2665x3

−186x4 − 4303x5 + 3388x6 − 3568x7

Public key is h. Private key is (f, g, F, G).
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Fourier Transform

The (discrete) Fourier transform of f ∈ C[x]/(ϕ) is f̂ = (f (γj)).

• The Fourier transform is a bijection.

• The Fourier transforms of f + g and fg can be computed by simple
term-wise additions and multiplications, respectively, of f̂ and ĝ.

• If f ∈ R[x]/(ϕ) then f (γn−1−j) = f (γj): we can store only n/2
complex values for f̂ .

• The Fast Fourier Transform (FFT) can compute f from f̂ , or vice
versa, withO(n log n) operations.
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NTT

Similar to FFT but in Zp[x]/(ϕ) for a prime p such that ϕ splits over Zp.

For ϕ = xn + 1 and n = 2e, we need p = 1 mod 2n. If w is a primitive
2n-th root of unity in Zp, then the NTT of f is (f (w2j+1)) for 0 ≤ j < n.

NTT and inverse NTT can be applied with O(n log n) operations (mod-
ulo p).

Given f, g ∈ Z[x]/(ϕ), the NTT allows e�cient computation of f + g and
fg modulo any prime p such that ϕ splits over Zp.
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Babai’s Nearest Plane

For f ∈ C[x]/(ϕ), its adjoint is the unique polynomial f ∗ ∈ C[x]/(ϕ)
such that:

f ∗(γj) = f (γj)

for all roots γj of ϕ.

If f ∈ R[x]/(ϕ) then f ∗ ∈ R[x]/(ϕ).
If ϕ = xn + 1 (cyclotomic) then:

f ∗ = f0 −
n−1∑
i=1
fixn−i
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Babai’s Nearest Plane

Given a solution (F, G) to fG − gF = q mod ϕ, then:

(G − kg)f − (F − kf )g = q mod ϕ

for any k ∈ C[x]/(ϕ).
Thus, if k ∈ Z[x]/(ϕ), then (F − kf, G − kg) is also a solution.

Babai’s Nearest Plane: Set:

k =
⌊
Ff ∗ + Gg∗

ff ∗ + gg∗

⌉
This makes (F, G) smaller. Apply repeatedly if necessary.
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Babai’s Nearest Plane

We can use an approximation of k, e.g. using �oating-point numbers.

• Approximate f and g with �oating-point numbers: f ≈ 2c
∑
f̃jxj

and g ≈ 2c
∑
g̃jxj (c such that max{|f̃j |, |g̃j |} ≈ 1)

• Approximate F andG similarly: F ≈ 2d
∑
F̃jxj andG ≈ 2d

∑
G̃jxj

(d such that max{|F̃j |, |G̃j |} ≈ 225)

• Compute k̃:

k̃ =

⌊
F̃ f̃ ∗ + G̃g̃∗

f̃ f̃ ∗ + g̃ g̃∗

⌉
• Replace: (F, G) ← (F − 2d−ck̃f, G − 2d−ck̃g)

• Repeat while it works (each call reduces (F, G) by about 25 bits, un-
til they have about the same size as (f, g)).
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Resultants

For a, b ∈ C[x], of degree n andm respectively, the resultant of a and b is:

Res(a, b) = amn
∏
j
b(αj) = (−1)mnbnm

∏
k
a(βk)

where (αj)1≤j≤n are the roots of a, and (βk)1≤k≤m are the roots of b.

• If a, b ∈ Z[x], then Res(a, b) ∈ Z.

• If a, b ∈ Z[x] are co-prime, then the extended Euclidean GCD
yields coe�cients u, v ∈ Z[x] such that:

au + bv = Res(a, b)
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Solving the NTRU Equation: Classical Method

Input: f, g ∈ Z[x]/(ϕ). We want F, G ∈ Z[x]/(ϕ) with small coe�cients
such that:

fG − gF = q mod ϕ

1. Using the extended Euclidean GCD algorithm (on polynomials),
�nd s, s′, t, t′ ∈ Z[x] such that:

fs + ϕs′ = Res(ϕ, f )
gt + ϕt′ = Res(ϕ, g)

2. Using the extended Euclidean GCD algorithm (on integers), �nd
δ = GCD(Res(ϕ, f ),Res(ϕ, g)), and u, v ∈ Z such that:

Res(ϕ, f )u + Res(ϕ, g)v = δ
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Solving the NTRU Equation: Classical Method

3. If δ does not divide q, then there is no solution. Otherwise, a solu-
tion to the NTRU equation is:

F = −(vq/δ)t
G = (uq/δ)s

4. Apply Babai’s Nearest Plane to make F, G small.
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Solving the NTRU Equation: Classical Method

ϕ = x8 + 1
f = −55 + 11x − 23x2 − 23x3 + 47x4 + 16x5 + 13x6 + 61x7

Res(ϕ, f ) = 116876023987729
s = −1977840025967 − 760360482925x

−1187952761129x2 + 2178875333716x3

+99053048645x4 + 107066058579x5

−1300496523049x6 − 1203258774093x7

fs = Res(ϕ, f ) mod ϕ

16



Solving the NTRU Equation: Classical Method

g = −25 − 24x + 30x2 − 3x3 + 36x4 − 39x5 + 6x6 + 0x7

Res(ϕ, g) = 799035204433
t = −4807592197 − 51641354937x

+19364169957x2 + 16709964258x3

−52685146080x4 + 9320244186x5

+33116290887x6 − 32824810485x7

gt = Res(ϕ, g) mod ϕ
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Solving the NTRU Equation: Classical Method

Res(ϕ, f ) and Res(ϕ, g) are co-prime:

u = −100370007727
v = 14681264812448
1 = Res(ϕ, f )u + Res(ϕ, g)v
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Solving the NTRU Equation: Classical Method

F = −(vq/δ)t
= 867376473223614208793597984
+9317033242897564742483631264x
−3493646040670060020250780704x2

−3014779388909280957159763776x3

+9505352019386623340060789760x4

−1681540405336416891479433792x5

−5974777064855398078572749664x6

+5922188735242431676324453920x7
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Solving the NTRU Equation: Classical Method

G = (uq/δ)s
= 2439560895870075494581093601
+937864375558787364488966275x
+1465276799004141081630849287x2

−2687527298124415179709584748x3

−122176688164106452497275435x4

−132060311428150464760136637x5

+1604093567321845579875767047x6

+1484155955158541731692732579x7
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Solving the NTRU Equation: Classical Method

k =
⌊
Ff ∗ + Gg∗

ff ∗ + gg∗

⌉
= 46221236115316417392158135
−68526924500308653393182213x
−39379940466826749574857212x2

+74818915148468494772033582x3

−20521406202631888037868720x4

−54794384152196015337787199x5

+16122893448186786590846354x6

+14590574907049908758419681x7
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Solving the NTRU Equation: Classical Method

F ← F − kf
G ← G − kg

F = 58 + 20x + 17x2 − 64x3 − 3x4 − 9x5 − 21x6 − 84x7

G = −41 − 34x − 33x2 + 25x3 − 41x4 + 31x5 − 18x6 − 32x7
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Solving the NTRU Equation: Classical Method

Main problem: intermediate F and G values have many coe�cients and
they are large.

With Falcon-1024:

• n = 1024

• Size of each coe�cient of s and t: ≈ 6300 bits

• Size of each coe�cient of F andG: ≈ 13000 bits

• Total for (F, G): 3.3 megabytes

Small embedded systems typically have 64 kB of RAM (or less).
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f g F G
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Degree Halving

Let n = 2e.

Intuition: computations over polynomials a, b ∈ C[x]/(xn/2 + 1) are
equivalent to computations over polynomials a(x2), b(x2) ∈ C[x]/(xn+1).

a(x2) + b(x2) = (a + b)(x2)

a(x2)b(x2) = (ab)(x2)

This works for any ϕ such that all non-zero coe�cients have even indices.

With ϕ = xn + 1 and n = 2e this can be done repeatedly.
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Degree Halving

Let f ∈ C[x]/(xn + 1).

We can write separately the even-indexed and odd-indexed coe�cients of
f as:

f = fe(x2) + xfo(x2)

with fe, fo ∈ C[x]/(xn/2 + 1).

Let f ′ = fe(x2) − xfo(x2). We then have:

ff ′ = (fe(x2) + xfo(x2))(fe(x2) − xfo(x2))

= (fe(x2))2 − x2(fo(x2))2

= (f 2
e − xf

2
o )(x

2)
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Degree Halving

We writeN (f )(x2) = ff ′.
This is the field norm forQ[x]/(xn + 1) as a �eld extension of degree 2 of
Q[x]/(xn/2 + 1).

Fact:
Res(xn + 1, f ) = Res(xn/2 + 1, N (f ))

Therefore:

Res(xn + 1, f ) = Res(xn/2 + 1, N (f ))
= Res(xn/4 + 1, N (N (f )))
= Res(xn/8 + 1, N (N (N (f ))))
= . . .
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Fast Resultant

Let p prime such that p = 1 mod 2n. Let w ∈ Zp such that wn + 1 = 0.

Then (w2)n/2 + 1 = 0: w2 is a root of xn/2 + 1. Moreover:

N (f )(w2) = f (w)f ′(w)
= f (w)(fe(w2) − wfo(w2))

= f (w)(fe((−w)2) + (−w)fo((−w)2))
= f (w)f (−w)

But −w is also a root of xn + 1. Therefore:

The NTT representation of N (f ) (in Zp[x]/(xn/2 + 1)) is obtained by
pair-wise multiplying the elements of the NTT representation of N (f )
(in Zp[x]/(xn + 1)).
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Fast Resultant

Let ϕ = xn + 1 with n = 2e. Let f ∈ Z[x]/(ϕ). To compute Res(ϕ, f ):

1. For many small primes p such that p = 1 mod 2n:

(a) Set fp ∈ Zp[x]/(ϕ) such that fp = f mod p.
(b) Convert fp to NTT representation (in Zp).
(c) Multiply together (modulo p) all elements of the NTT repre-

sentation of fp into rp ∈ [0 . . . p − 1].

2. For each p, Res(ϕ, f ) = rp. Use the CRT to rebuild Res(ϕ, f ).

This improves the speed of the �rst steps of the classic NTRU solver, but
does not reduce memory usage.
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Recursive Solver

The �eld norm is a product:N (f )(x2) = ff ′

Let fn, gn ∈ Z[x]/(xn + 1). Let:

fn/2 = N (fn)
gn/2 = N (gn)

We have:

fn/2(x2) = fnf ′n
gn/2(x2) = gng′n

Consequence: f1 = Res(xn + 1, f ) and g1 = Res(xn + 1, g).
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Recursive Solver

Suppose that we found Fn/2, Gn/2 ∈ Z[x]/(xn/2 + 1) such that:

fn/2Gn/2 − gn/2Fn/2 = q

Then set:

Fn = g′nFn/2(x
2)

Gn = f ′nGn/2(x
2)

We then have:

fnGn − gnFn = fnf ′nGn/2(x
2) − gng′nFn/2(x

2)

= fn/2(x2)Gn/2(x2) − gn/2(x2)Fn/2(x2)

= (fn/2Gn/2 − gn/2Fn/2)(x2)

= q
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Recursive Solver

Input: fn, gn ∈ Z[x]/(xn + 1)

1. If n = 1, then:
(a) Use extended GCD on integers: f1u + g1v = δ.
(b) If δ does not divide q, then Fail.
(c) Set F1 = −(vq/δ) andG1 = (uq/δ).

else:
(a) Set fn/2 = N (fn) and gn/2 = N (gn).
(b) Call the solver recursively to get Fn/2 andGn/2.
(c) Set Fn = g′nFn/2(x2) andGn = f ′nGn/2(x2).

2. Apply Babai’s Nearest Plane reduction on (Fn, Gn) to make the co-
e�cients about the same size as those of (fn, gn).

3. Return the solution (Fn, Gn).
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f g F G
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f g F G
40



f g F G
41



f g F G
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Recursive Solver

At each recursive call, polynomial coe�cients are twice bigger, but degree
is halved: no uncontrolled memory expansion.

Total size for n = 1024: 28.7 kB

• New solver is 115 times smaller!

• It is also about 100 times faster (20 milliseconds instead of about 2
seconds).

Implemented on ARM Cortex M4: about 170 million cycles for Falcon-
512, 510 million cycles for Falcon-1024.
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Implementation

Principle: key pair generation is allowed to fail.

• It is not a problem if a small(-ish) proportion of potential private
keys are rejected.

• Whether a solution to the NTRU equation is correct or not is inex-
pensive to verify (small coe�cients, can use FFT or NTT).

• For each value, we can measure the average size in bits and standard
deviation, and allocate a one-size-�ts-all bu�er. E.g. size of Res(ϕ, f )
(deepest recursion):

log |Res(ϕ, f )| ≈ 6307.52 ± 24.48

⇒ allocate a 6455-bit bu�er, which will almost always be su�cient.
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Polynomial Representation

Three competing representations:

• Base-231: each coe�cient fj is represented as an array of 31-bit words:

fj =
∑
k
fj,k231k

(Two’s complement for negative values)

• Residue Number System: each coe�cient fj is represented as an ar-
ray of 31-bit words modulo small primes pk:

f̆j,k = fj mod pk

• RNS + NTT: like RNS, but each polynomial f mod pk is in NTT
representation.
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f0

�  mod p4

f1 f2 f3

�  mod p3

�  mod p2

�  mod p1

CRT / mod

NTT / iNTT
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Polynomial Representation

• Field norms: use RNS + NTT.

• Polynomial multiplications: use RNS. Also use NTT if degree is
high (threshold: n = 16 or 32).

• RNS to RNS with more moduli: go to base-231 with CRT, then
reduce modulo all target primes pk.

• CRT can be done mostly in-place.

Requires for each pk:
(∏

j<k pj
)−1

mod pk (precomputed).

• NTT requires a table of primitive root powers: this is regenerated
dynamically.
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Polynomial Representation

Integers modulo pk:

• All pk are chosen close to 231 (but lower).

• Montgomery representation: z ∈ Zpk is represented by 231z mod
pk.

• E�cient constant-time additions, subtractions and multiplications.

• Inversion modulo pk: uses Fermat’s Little Theorem (raise to power
pk − 2 inO(log pk)multiplications).
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Floating-Point

Babai’s Nearest Plane uses non-integers:

• IEEE-754 “binary64” �oating-point values can be used (in C, use
type double).

• On recent x86, operations are constant-time (no subnormals, in-
�nites or NaNs), except some shortcuts for divisions by a power of
two (very rare, never observed over thousands of key pair genera-
tions).

• If using constant-time emulation of �oating-point operations with
pure integer code (much slower, but constant-time on all relevant
architectures), then key generation time is multiplied by about 2.3.

• Fixed-point (with integer multiplication) probably possible, but re-
quires extra care not to leak information on size of f, g.
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Extra Tweaks

• (fn, gn) can be discarded at each recursive call: they have to be recom-
puted afterwards (CPU overhead: +15%) but this saves some kilo-
bytes of RAM and avoids recursive calls (better for shallow stacks).

• When q is prime, and GCD(Res(ϕ, f ),Res(ϕ, g)) , 1, q, the cur-
rent f, g are discarded.

– We can quickly compute Res(ϕ, f ) mod 2: it is the sum mod-
ulo 2 of the coe�cients.

– If both Res(ϕ, f ) and Res(ϕ, g) are even, we can discard f, g
immediately.

50


