CCA encryption in the QROM, pt. I Known security statements for CCA transformations

Kathrin Hövelmanns¹

¹Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

Berkeley lattice workshop: From Theory to Practice April 28th, 2020

Context: NIST 'competition'

Goal: Quantum-secure public-key encryption and signaturesDesired:Active security (CCA)Easier to achieve:Passive security (OW/CPA)

Can we turn passive into active, generically?

Frequently used solution: FO transformation [FO99,13] and its variants

Originally proven in random oracle model

This talk: What happens if quantum adversary interacts with (non-quantum) network?

Outline

Goal of this talk: Preparation for next talk

- \rightarrow No newness, but a survey:
 - 1. Reminder: Quantum ROM and Oneway-to-Hiding (OWTH)
 - 2. Overview: FO-like transformations and known security results
 - Results for deterministic schemes
 - Results with derandomisation
 - 3. Does OWTH imply quadratic loss?

Security reductions and (quantum) Random Oracles

Proof heuristic: Replace hash fct. with perfectly random fct. H

Common proof strategy:

A can distinguish $H(x^*)$ from random

 \Rightarrow Reduction learns preimage x^* (and x^* solves P)

What if A is quantum?

Quantum Random Oracle Model (QROM) [BDFLSZ10]

Scenario: Quantum adversary interacting with non-quantum network \Rightarrow

- "Online" primitives (decryption, signing, ...) stay classical
- "Offline" primitives (like hash functions) computable in superposition

What's new: A might evaluate hash function on some superposition

 $\sum_{x\in X} \alpha_x |x\rangle$

Superposition: Function's domain X gives rise to vector space \mathbb{C}^X Quantum state = Linear combination of base vectors $|x\rangle$ s. th.

$$\sum_{x \in X} |\alpha_x|^2 = 1$$

How do we formalise quantum-accessibility of the random oracle?

(Q)ROM · Overview FO · Deterministic schemes · Derandomisation · Quadratic loss

5 / 21

Quantum Random Oracle Model (QROM) [BDFLSZ10]

Model quantum-accessible version of O by mapping $U_{\rm O}$:

 $|x
angle |y
angle \mapsto |x
angle |y\oplus {\sf O}(x)
angle \;\;,$

where x(y) are base states of the input (output) register

Model $A^{|O\rangle}$ via sequence of attack unitaries A_i , interleaved with oracle queries:

$$\mathsf{A}^{|\mathsf{O}\rangle} \stackrel{_{\frown}}{=} \mathsf{A}_{\mathsf{N}} \circ U_{\mathsf{O}} \circ \mathsf{A}_{\mathsf{N}-1} \circ \cdots \circ U_{\mathsf{O}} \circ \mathsf{A}_{1}$$

(*i*th random oracle query $\hat{=}$ output of A_i)

Question: How to extract a particular preimage from a query?

(Q)ROM · Overview FO · Deterministic schemes · Derandomisation · Quadratic loss 6 / 21

Original "Oneway to Hiding" [Unruh14]

Quantum generalisation of "random-until-QUERY":

$$\left| \mathsf{Pr}\left[1 \leftarrow \mathsf{A}^{|\mathsf{O}\rangle}(x^*,\mathsf{O}(x^*)) \right] - \mathsf{Pr}\left[1 \leftarrow \mathsf{A}^{|\mathsf{O}\rangle}(x^*,\$) \right] \right| \leq 2q \cdot \sqrt{\epsilon}$$

where

 $\epsilon := \Pr[\text{Measuring a random query gives us } x^*]$

Tightness improvements for OWTH:

Variant	Bound	Additional restrictions
Original (above)	$2q\sqrt{\epsilon}$	
Semi-classical [AHU18]	$2\sqrt{q\epsilon}$	\checkmark
Double-sided [BH+19]	$2\sqrt{\epsilon}$	\checkmark
Next talk [KS+20]	$4q\epsilon$	\checkmark

Overview: FO-like transformations and current results

Common ground of all recent modularisations

At least one step uses OWTH

(Q)ROM · Overview FO · Deterministic schemes · Derandomisation · Quadratic loss 9 / 21

 U^{\bot}

- Encapsulation:
 - 1. Choose uniformly random plaintext m
 - 2. Use Enc' to encrypt m to ciphertext c

3.
$$k := H(m, c)$$

 U^{\bot}

- Encapsulation:
 - 1. Choose uniformly random plaintext m
 - 2. Use Enc' to encrypt *m* to ciphertext *c*
 - 3. k := H(m, c)

- Decapsulation:
 - 1. Use Dec' to decrypt c to plaintext m'
 - 2. If c decrypts to \perp
 - return ⊥
 - 4. return k' := H(m', c)

U_{m}^{\perp}

- Encapsulation:
 - 1. Choose uniformly random plaintext m
 - 2. Use Enc' to encrypt *m* to ciphertext *c*
 - 3. k := H(m, c) H(m)

- Decapsulation:
 - 1. Use Dec' to decrypt c to plaintext m'
 - 2. If c decrypts to \perp
 - 3. return \perp
 - 4. return k' := H(m', c) H(m')

U<mark>∦</mark>

- Encapsulation:
 - 1. Choose uniformly random plaintext m
 - 2. Use Enc' to encrypt *m* to ciphertext *c*
 - 3. k := H(m, c) H(m)

- Decapsulation:
 - 1. Use Dec' to decrypt c to plaintext m'
 - 2. If c decrypts to \perp
 - 3. return \perp return pseudorandom value ("implicit rejection")
 - 4. return k' := H(m', c) H(m')

(Q)ROM \cdot Overview FO \cdot Deterministic schemes \cdot Derandomisation \cdot Quadratic loss 10 / 21

U[⊥]⊘

- Encapsulation:
 - 1. Choose uniformly random plaintext m
 - 2. Use Enc' to encrypt m to ciphertext c
 - 3. k := H(m, c) H(m)

- Decapsulation:
 - 1. Use Dec' to decrypt c to plaintext m'
 - 2. If c decrypts to \perp or $Enc'(m') \neq c$ ("reencryption")
 - 3. return \perp return pseudorandom value ("implicit rejection")

10 / 21

4. return k' := H(m', c) H(m')

Cave: New reencryption step not always emphasised!

U[⊥]^Ŭ-KC

- Encapsulation:
 - 1. Choose uniformly random plaintext m
 - 2. Use Enc' to encrypt *m* to ciphertext *c*
 - 3. k := H(m, c) H(m)
 - 4. Append to c a "key confirmation ciphertext" d := H'(m)
- Decapsulation:
 - 1. Use Dec' to decrypt c to plaintext m'
 - 2. If c decrypts to \perp or $Enc'(m') \neq c$ or $H'(m') \neq d$
 - 3. return \perp return pseudorandom value ("implicit rejection")

10 / 21

4. return k' := H(m', c) H(m')

Cave: New reencryption step not always emphasised!

Common ground of all recent modularisations

At least one step uses OWTH

(Q)ROM \cdot Overview FO \cdot Deterministic schemes \cdot Derandomisation \cdot Quadratic loss 11 / 21

Deterministic schemes

SXY18: PKE' perf. correct and disjoint simulatable \rightarrow tight CCA security Disjoint simulatability: Efficiently sampleable "fake ciphertexts" s.th.

- $1. \ {\rm fake \ cts}$ indistinguishable from real cts
- 2. fake cts invalid w.o.p

SXY18: PKE' perf. correct and disjoint simulatable \rightarrow tight CCA security

Disjoint simulatability: Efficiently sampleable "fake ciphertexts" s.th.

- $1. \ \mbox{fake cts}$ indistinguishable from real cts
- 2. fake cts invalid w.o.p

Intuition: Disjoint simulatability \rightarrow can circumvent OWTH perfect correctness required for consistency generalisation not straightforward ©

PKE' FFC and η -injective \rightarrow CCA security with quadratic loss in the advantage [BHHHP19] or linear loss in the number of RO queries [KS+20] (next talk)

FFC: Hard to find a valid ciphertext that decrypts incorrectly $\eta\text{-injective: Enc}'$ is injective w.p. $1-\eta$

All results use reencryption (= use U° -variant)

Equivalency for implicit reject (U^{\neq}) : We can derive the key via k = H(m, c) (= use $U^{\neq, \odot}$) via k = H(m) (= use $U_m^{\neq, \odot}$)

Implication for explicit reject (U^{\perp}) :

Works for U_m -variant if we add key confirmation (= use $U_m^{\perp \circ}$ -KC)

Applying U to deterministic schemes: Proof overview

			Add.	CCA Bound	
Variant	Notion	Correctness	requ.	(simplified)	How
U∰Ơ	DS(det.)	perfect		tight	SXY18, Th. 4.2
$U_m^{\perp \circlearrowleft}$ -KC	DS (det.)	perfect		tight	JZM19a, Th. 5

Applying U to deterministic schemes: Proof overview

			Add.	CCA Bound	
Variant	Notion	Correctness	requ.	(simplified)	How
U∰Ŏ	DS (det.)	perfect		tight	SXY18, Th. 4.2
$U_m^{\perp \circlearrowleft}$ -KC	DS (det.)	perfect		tight	JZM19a, Th. 5
U≮Q	OW (det.)	FFC	η -inj.	\sqrt{OW}	BH+19, Th. 2
				or $q \cdot OW$	KS+20 (next talk)

Tradeoff: generality vs tightness

Applying U to deterministic schemes: Proof overview

			Add.	CCA Bound	
Variant	Notion	Correctness	requ.	(simplified)	How
U [⊥] C	DS (det.)	perfect		tight	SXY18, Th. 4.2
$U_m^{\perp \circlearrowleft}$ -KC	DS (det.)	perfect		tight	JZM19a, Th. 5
U⊥Q	OW (det.)	FFC	η -inj.	\sqrt{OW}	BH+19, Th. 2
				or $q \cdot OW$	KS+20 (next talk)

Tradeoff: generality vs tightness

Applying [BH+19, Ths. 5 and 4] leads to the following corollaries:

			Add.	CCA Bound	
Variant	Notion	Correctness	requ.	(simplified)	How
U ^{⊥d}	DS (det.)	perfect		tight	Th. 5
U∰Ơ	OW (det.)	FFC	η -inj.	\sqrt{OW} , $q\cdotOW$	Th. 5
U [⊥] _ <i>m</i> -KC	OW (det.)	FFC	η -inj.	\sqrt{OW} , $q\cdotOW$	Th. 5, then 4

(Q)ROM · Overview FO · Deterministic schemes · Derandomisation · Quadratic loss 14 / 21

Derandomisation

Common ground of all recent modularisations

At least one step uses OWTH

(Q)ROM · Overview FO · Deterministic schemes · Derandomisation · Quadratic loss 16 / 21

Applying FO variants: State of the art

Diverse variants (like U-variants)

Recent tightness improvements for $\mathsf{U} \Rightarrow \mathsf{Improvements}$ for FO

Even nonmodular proofs imply security of other variants ([BH+19])

All results work for $\delta\text{-correctness},$ require sufficiently large $\mathcal M$

		Add.	CCA Bound	
Variant	Notion	requ.	(simplified)	How
FO [⊥] _(m)	OW		$q\sqrt{OW}+q\sqrt{\delta}$	JZ+18, Ths. 1, 2
$FO_{(m)}^{\perp}$ -KC				JZM19a, Ths. 2, 4
$FO_{(m)}^{\perp}$ -KC	CPA		$\sqrt{q\cdotCPA}+q\sqrt{\delta}$	JZM19a, Ths. 1, 3

All results work for $\delta\text{-correctness},$ require sufficiently large $\mathcal M$

		Add.	CCA Bound	
Variant	Notion	requ.	(simplified)	How
FO [⊥] _(m)	OW		$q\sqrt{OW}+q\sqrt{\delta}$	JZ+18, Ths. 1, 2
$FO_{(m)}^{\perp}$ -KC				JZM19a, Ths. 2, 4
$FO_{(m)}^{\perp}$ -KC	CPA		$\sqrt{q\cdotCPA}+q\sqrt{\delta}$	JZM19a, Ths. 1, 3
FO [⊥] _m	CPA	DS	$\sqrt{q \cdot \text{CPA}} + \text{DS} + q^2 \delta$	HK+18, Th. 3.2
	CPA	Punct.	$\sqrt{q\cdot CPA} + q^2\delta$	HK+18, Th. 3.6

DS: ciphertexts (disjoint) simulatable

Puncturing: Removing one message from ${\mathcal M}$ achieves DS, generically

All results work for $\delta\text{-correctness},$ require sufficiently large $\mathcal M$

		Add.	CCA Bound	
Variant	Notion	requ.	(simplified)	How
FO [⊥] _(m)	OW		$q\sqrt{OW}+q\sqrt{\delta}$	JZ+18, Ths. 1, 2
$FO_{(m)}^{\perp}$ -KC				JZM19a, Ths. 2, 4
$FO_{(m)}^{\perp}$ -KC	CPA		$\sqrt{q\cdotCPA}+q\sqrt{\delta}$	JZM19a, Ths. 1, 3
$FO_{(m)}^{\not\perp}, \ FO_m^{\perp} -KC$	CPA	DS	$\sqrt{q \cdot \text{CPA}} + \text{DS} + q^2 \delta$	HK+18, Th. 3.2
	CPA	Punct.	$\sqrt{q\cdot CPA} + q^2\delta$	HK+18, Th. 3.6

DS: ciphertexts (disjoint) simulatable

Puncturing: Removing one message from $\mathcal M$ achieves DS, generically

(These results are derived via BH+19, Ths. 4 and 5)

(Q)ROM \cdot Overview FO \cdot Deterministic schemes \cdot Derandomisation \cdot Quadratic loss 18 / 21

All results work for $\delta\text{-correctness},$ require sufficiently large $\mathcal M$

		Add.	CCA Bound	
Variant	Notion	requ.	(simplified)	How
FO [⊥] _(m)	OW		$q\sqrt{OW}+q\sqrt{\delta}$	JZ+18, Ths. 1, 2
$FO_{(m)}^{\perp}$ -KC				JZM19a, Ths. 2, 4
$FO_{(m)}^{\perp}$ -KC	CPA		$\sqrt{q\cdot CPA} + q\sqrt{\delta}$	JZM19a, Ths. 1, 3
$FO_{(m)}^{\not\perp}, \ FO_m^{\perp} -KC$	CPA	DS	$\sqrt{q \cdot \text{CPA}} + \text{DS} + q^2 \delta$	HK+18, Th. 3.2
	CPA	Punct.	$\sqrt{q\cdot CPA} + q^2\delta$	HK+18, Th. 3.6
$FO_{(m)}^{\not\perp}, FO_m^{\perp}-KC$	CPA	INJ	$\sqrt{q\cdot CPA} + q^2\delta$	BH+19, Ths. $1+2+$ Lm. 6
			or $q^2 \cdot { m CPA} + q^2 \delta$	replace Th. 2 with next talk

DS: ciphertexts (disjoint) simulatable

Puncturing: Removing one message from ${\mathcal M}$ achieves DS, generically

INJ : T[PKE] is η -injective

(These results are derived via BH+19, Ths. 4 and 5)

(Q)ROM · Overview FO · Deterministic schemes · Derandomisation · Quadratic loss 18 / 21

Does OWTH imply quadratic loss?

Last year's impossibility result [JZM19b]

One of the '10 questions': Is the sqare root meaningful? BH+19: It might be impossible to avoid [JZM19b] Apparently, it is not! (next talk) So, how do we place the result of [JZM19b]?

Last year's impossibility result [JZM19b]

Reminder: $A^{|O\rangle}$ modeled via

$$\mathsf{A}_{\mathsf{N}} \circ \mathit{U}_{\mathsf{O}} \circ \mathsf{A}_{\mathsf{N}-1} \circ \cdots \circ \mathit{U}_{\mathsf{O}} \circ \mathsf{A}_{1}$$

(*i*th random oracle query $\hat{=}$ output of A_i)

All OWTH applications until [KS+20]:

Extract preimage from oracle queries $\hat{=}$ output register of A_i

 \rightarrow only considers input/output behaviour of A

[JZM19b]: This 'query extraction' approach leads to quadratic loss

New approach: Also consider A's internal workings:

A has to measure to recognise the difference between O(x*) and \$ \rightarrow Measurement reveals x^*

References

SXY18: Tightly-Secure Key-Encapsulation Mechanism in the Quantum Random Oracle Model, eprint: 2017/1005

JZCMW18: IND-CCA-secure Key Encapsulation Mechanism in the Quantum Random Oracle Model, Revisited, eprint: 2017/1096

HKSU18: Generic Authenticated Key Exchange in the Quantum Random Oracle Model, eprint: 2018/928

JZM19a: Key Encapsulation Mechanism with Explicit Rejection in the Quantum Random Oracle Model, eprint: 2019/052

JZM19b: On the non-tightness of measurement-based reductions for key encapsulation mechanism in the quantum random oracle model, eprint: 2019/494

 $BH{+}19{:}$ Tighter proofs of CCA security in the quantum random oracle model, eprint: 2019/590

KS+20: Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs for One-Way to Hiding and CCA Security (to appear)