LWE with Side Information: Attacks and Concrete Security Estimation

> Dana Dachman-Soled¹, Léo Ducas² Huijing Gong¹, Mélissa Rossi³

Workshop at the Simons Institue, Berkeley, CA, USA Lattices: From Theory to Practice April 2020

¹University of Maryland, College Park, USA
 ²CWI, Amsterdam, The Netherlands
 ³ANSSI, Paris, France – ENS Paris, CNRS, PSE University, Paris, France (1/25)

Dachman-Soled, Ducas, Gong, Rossi LWE with Side Information: Attacks and Concrete Security

Algorithmic Cryptanalysis and Physical Cryptanalysis

Side Channel Cryptanalysis

Dachman-Soled, Ducas, Gong, Rossi

-LWE with Side Information: Attacks and Concrete Security

- 4 🗗 ▶

→ * 注→

э

Algorithmic Cryptanalysis and Physical Cryptanalysis

Side Channel Cryptanalysis

Dachman-Soled, Ducas, Gong, Rossi

Algorithmic Cryptanalysis

LWE with Side Information: Attacks and Concrete Security

・ 同 ト ・ ヨ ト ・ ヨ ト

э

э

Our framework

Dachman-Soled, Ducas, Gong, Rossi LWE with Side Information: Attacks and Concrete Security

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Our framework

Standard methodology

(Primal Lattice Attack)

$$\text{Public Key} \xrightarrow{\begin{pmatrix} \text{ad-hoc} \\ \text{tweak} \end{pmatrix}} \text{BDD}_{\Lambda,r} \xrightarrow{\text{Kannan}} \text{uSVP}_{\Lambda',r'} \rightarrow \text{Lattice Reduction}$$

Our framework

Contributions

An Sage implementation of our framework

Dachman-Soled, Ducas, Gong, Rossi LWE with Side Information: Attacks and Concrete Security

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇◇◇

Contributions

- An Sage implementation of our framework
- A refined estimation method for the primal lattice attack

◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Contributions

- An Sage implementation of our framework
- A refined estimation method for the primal lattice attack
- Systematize several ad-hoc massaging tricks
 - Rescaling/balancing of secret inputs
 - Optimal choice of Kannan's Embedding coefficient
 - Ignoring LWE samples

< □ > < □ > < □ > < □ > < □ > = □ = □

Contributions

- An Sage implementation of our framework
- A refined estimation method for the primal lattice attack
- Systematize several ad-hoc massaging tricks
 - Rescaling/balancing of secret inputs
 - Optimal choice of Kannan's Embedding coefficient
 - Ignoring LWE samples

Application examples, exploiting data from:

- Uncompleted side-channel attack
- Decryption failures
- Real-world specifications

1st attack of [BFM+18]

revisiting [AVV18]

NTRU, LAC, Round5

< □ > < □ > < □ > < □ > < □ > = □ = □

DBDD¹ and its concrete Hardness

Hints, and their integration into DBDD

Sage Implementation

Example Applications: from real-world to hints

 ¹Distorted Bounded Distance Decoding
 ← Decoding

DBDD and its concrete Hardness

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = の < ○ 7/25

DBDD: Distorted Bounded Distance Decoding

Bounded Distance Decoding

- ▶ Given a lattice $\Lambda \subset \mathbb{R}^d$, a target $\mathbf{t} \in \mathbb{R}^d$ and a radius r > 0
- Find the unique $\mathbf{s} \in \Lambda$ such that $\|\mathbf{s} \mathbf{t}\| \leq r$

Distorted Bounded Distance Decoding

Given a lattice
$$\Lambda \subset \mathbb{R}^d$$
, a mean $\mu \in \mathbb{R}^d$ and covariance $\Sigma > 0$

 $\mathsf{DBDD}_{\Lambda,\Sigma,\mu}$

8/25

▶ Find the unique $\mathbf{s} \in \Lambda$ such that $\|\mathbf{s} - \boldsymbol{\mu}\|_{\boldsymbol{\Sigma}} \leq d$ where

$$\|\mathbf{x}\|_{\mathbf{\Sigma}} := \mathbf{x}^t \cdot \mathbf{\Sigma}^{-1} \cdot \mathbf{x} \ge 0.$$

Intuition: Balls are replaced by general Ellipsoids.

DBDD: Distorted Bounded Distance Decoding

Bounded Distance Decoding

- Given a lattice $\Lambda \subset \mathbb{R}^d$, a target $\mathbf{t} \in \mathbb{R}^d$ and a radius r > 0
- Find the unique $\mathbf{s} \in \Lambda$ such that $\|\mathbf{s} \mathbf{t}\| \leq r$

Distorted Bounded Distance Decoding

$$\cdot$$
 Given a lattice $\Lambda \subset \mathbb{R}^d$, a mean $oldsymbol{\mu} \in \mathbb{R}^d$ and covariance $oldsymbol{\Sigma} > oldsymbol{0}$

 $\mathsf{DBDD}_{\Lambda,\Sigma,\mu}$

▶ Find the unique $\mathbf{s} \in \Lambda$ such that $\|\mathbf{s} - \boldsymbol{\mu}\|_{\boldsymbol{\Sigma}} \leq d$ where

$$\|\mathbf{x}\|_{\boldsymbol{\Sigma}} := \mathbf{x}^t \cdot \boldsymbol{\Sigma}^{-1} \cdot \mathbf{x} \ge 0.$$

Intuition: Balls are replaced by general Ellipsoids.

Simplification: Gaussian \simeq Uniform over an Ellipsoid.

Isotropization

Lattice Reduction algorithms are designed for balls.

$$\mathsf{Isotropize}: (\Lambda, \boldsymbol{\Sigma}, \boldsymbol{\mu}) \mapsto (\sqrt{\boldsymbol{\Sigma}^{-1}} \cdot \Lambda, \mathsf{Id}, \sqrt{\boldsymbol{\Sigma}^{-1}} \cdot \boldsymbol{\mu})$$

After isotropization, the instance has the form

$$\mathsf{DBDD}_{\Lambda',\mathsf{Id},\mu'} = \mathsf{BDD}_{\Lambda',\sqrt{d},\mu'}.$$

9/25

Isotropization

Lattice Reduction algorithms are designed for balls.

$$\mathsf{Isotropize}: (\Lambda, \boldsymbol{\Sigma}, \boldsymbol{\mu}) \mapsto (\sqrt{\boldsymbol{\Sigma}^{-1}} \cdot \Lambda, \mathsf{Id}, \sqrt{\boldsymbol{\Sigma}^{-1}} \cdot \boldsymbol{\mu})$$

After isotropization, the instance has the form

$$\mathsf{DBDD}_{\Lambda',\mathsf{Id},\mu'} = \mathsf{BDD}_{\Lambda',\sqrt{d},\mu'}.$$

Concrete hardnessgrows with the dimensionshrink with the volume $Vol(\Lambda') = Vol(\Lambda) / \sqrt{det(\Sigma)}.$

9/25

Isotropization

Lattice Reduction algorithms are designed for balls.

$$\mathsf{Isotropize}: (\Lambda, \boldsymbol{\Sigma}, \boldsymbol{\mu}) \mapsto (\sqrt{\boldsymbol{\Sigma}^{-1}} \cdot \Lambda, \mathsf{Id}, \sqrt{\boldsymbol{\Sigma}^{-1}} \cdot \boldsymbol{\mu})$$

After isotropization, the instance has the form

$$\mathsf{DBDD}_{\Lambda',\mathbf{Id},\mu'} = \mathsf{BDD}_{\Lambda',\sqrt{d},\mu'}.$$

Concrete hardness grows with the dimension d shrink with the volume $Vol(\Lambda') = Vol(\Lambda) / \sqrt{det(\Sigma)}$. Remark Generalizes ad-hoc "rescaling" NTRU, Lizard, NTRUPrime, ...

Trivialize the optimal choice of Kannan's embedding coefficient

Dachman-Soled, Ducas, Gong, Rossi LWE with Side Information: Attacks and Concrete Security

On Hardness Estimation

Our unit of security: the **bikz**

- Security expressed in β , the needed BKZ blocksize
- Roughly, 3 bikz pprox 1 bit of security

see [ACD+18]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ のへで

On Hardness Estimation

Our unit of security: the bikz

• Security expressed in β , the needed BKZ blocksize

• Roughly, 3 bikz pprox 1 bit of security

see [ACD+18]

The 2015 estimates: GSA+Intersect

[ADPS15, AGVW17]

$$\sqrt{\beta} \leq \delta_{\beta}^{2\beta-d-1} \cdot \text{Vol}(\Lambda')^{1/d}$$
 where $\delta_{\beta} = \dots$

イロト イロト イヨト イヨト 三日 二

On Hardness Estimation

Our unit of security: the ${\bf bikz}$

• Security expressed in β , the needed BKZ blocksize

• Roughly, 3 bikz pprox 1 bit of security

see [ACD+18]

[ADPS15, AGVW17]

The 2015 estimates: GSA+Intersect

 $\sqrt{eta} \leq \delta_{eta}^{2eta-d-1} \cdot \mathsf{Vol}(\Lambda')^{1/d} \quad \mathsf{where} \quad \delta_{eta} = \dots$

Dachman-Soled, Ducas, Gong, Rossi

LWE with Side Information: Attacks and Concrete Security

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Four types of hints:

- Perfect hints: $\langle \mathbf{s}, \mathbf{v} \rangle = \ell$
- Modular hints: $\langle \mathbf{s}, \mathbf{v} \rangle = \ell \mod k$
- Approximate hints: $\langle \mathbf{s}, \mathbf{v} \rangle \approx \ell$
- Short vector hints: $\mathbf{v} \in \Lambda$

Each hint may affect the dimension of Λ , its volume, and the covariance of Σ in predictible ways.

Four types of hints:

- Perfect hints: $\langle \mathbf{s}, \mathbf{v} \rangle = \ell$
- Modular hints: $\langle \mathbf{s}, \mathbf{v} \rangle = \ell \mod k$
- Approximate hints: $\langle \mathbf{s}, \mathbf{v} \rangle \approx \ell$
- Short vector hints: $\mathbf{v} \in \Lambda$

Each hint may affect the dimension of $\Lambda,$ its volume, and the covariance of $\pmb{\Sigma}$ in predictible ways.

Simplification for this talk: Hints are homogeneous $\ell = 0$.

$$\langle \mathbf{s}, \mathbf{v}
angle = 0$$

Effect on a DBDD instance

Slice the lattice, condition the Gaussian

Easier

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ↓ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪

$$\begin{split} & \boldsymbol{\Lambda} \mapsto \boldsymbol{\Lambda} \cap \boldsymbol{v}^{\perp} \\ & \boldsymbol{\Sigma} \mapsto \boldsymbol{\Sigma} - \frac{(\boldsymbol{v}\boldsymbol{\Sigma})^{T}\boldsymbol{v}\boldsymbol{\Sigma}}{\boldsymbol{v}\boldsymbol{\Sigma}\boldsymbol{v}^{T}} \end{split}$$

Effect on the hardness

- ▶ The lattice dimension *d* decreases by 1
- ► The lattice volume increases by a factor ||v||

$\langle \mathbf{s}, \mathbf{v} angle = 0 \mod k$

Effect on a DBDD instance

Sparsify the lattice

Easier

<□ ▶ < @ ▶ < E ▶ < E ▶ E り < C 14/25

$$\Lambda \mapsto \Lambda \cap \{ \mathbf{x} \in \mathbb{Z}^d \mid \langle \mathbf{x}, \mathbf{v} \rangle = 0 \mod k \}$$
$$\mathbf{\Sigma} \mapsto \mathbf{\Sigma} + \epsilon$$

Effect on the hardness

► The lattice volume **increases** by a factor *k*

 $\langle {f s}, ~ {f v}
angle pprox 0$

More precisely: $\langle \mathbf{s}, \mathbf{v} \rangle = e$, for *e* a Gaussian error of variance σ

Effect on a DBDD instance

Condition the Gaussian

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 15/25

Easier

$$Λ ↦ Λ$$

Σ ↦ Σ − $\frac{(vΣ)^T vΣ}{vΣv^T + \sigma^2}$

Effect on the hardness

Dachman-Soled, Ducas, Gong, Rossi LWE with Side Information: Attacks and Concrete Security

 $\textbf{v}\in\Lambda$

Effect on a DBDD instance

Project the lattice

$$\begin{split} & \Lambda \mapsto \Pi_{\mathbf{v}}^{\perp} \cdot \Lambda \\ & \mathbf{\Sigma} \mapsto \Pi_{\mathbf{v}}^{\perp} \cdot \mathbf{\Sigma} \cdot \left(\Pi_{\mathbf{v}}^{\perp}\right)^{\mathcal{T}} \end{split}$$

Effect on the hardness

- ► The dimension **decreases** by 1
- The volume decreases by a factor $\|\mathbf{v}\|$

Dachman-Soled, Ducas, Gong, Rossi LWE with Side Information: Attacks and Concrete Security

Trade-off

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Effect on a DBDD instance

$$\begin{split} & \Lambda \mapsto \Pi_{\mathbf{v}}^{\perp} \cdot \Lambda \\ & \mathbf{\Sigma} \mapsto \Pi_{\mathbf{v}}^{\perp} \cdot \mathbf{\Sigma} \cdot (\Pi_{\mathbf{v}}^{\perp})^{\mathcal{T}} \end{split}$$

Effect on the hardness

- ► The dimension decreases by 1
- ► The volume **decreases** by a factor **||v**||

Remark

- ► Typical example: q-vectors (q, 0, 0, ..., 0), (0, q, 0, ..., 0), ...
- Integrating a q-vectors \Leftrightarrow Ignoring one LWE sample
- This generalize the usual 'dimension-volume' trade-off

Trade-off

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ◆) � (♥

Project the lattice

Sage Implementation

Dachman-Soled, Ducas, Gong, Rossi LWE with Side Information: Attacks and Concrete Security

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇◇◇

Implementation details

One interactive Python Class, 3 implementations

- A full-fledge version
- A fast version
- A faster version, with restrictions

```
"../framework/instance gen.sage")
            build centered binomial law(40)
   , dbdd = initialize from LWE instance(DBDD, n, q, m, D e, D s)
dbdd.estimate attack()
     Build DBDD from LWE
  n= 70
           m= 70
                   a=3301
     Attack Estimation
 > dim=141
                 \delta = 1.012362
                                 B=45.40
v = vec([randint(0, 1) for i in range(m + n)])
dbdd.leak(v)
 > 27
dbdd.integrate perfect hint(v0, 27)
 > integrate perfect hint u0 + u1 + u7 + u8 + u9 + ... = 27
             Worthy hint !
 > dim=140
                 δ=1.01252643
                                     B=41.93
```

¹Assuming hints are never redundant

Dachman-Soled, Ducas, Gong, Rossi

LWE with Side Information: Attacks and Concrete Security

э.

イロト イポト イヨト イヨト

 $\begin{array}{l} \mbox{Attack, Prediction} \\ \mbox{Prediction}^1 \\ \mbox{Prediction}^1 \end{array}$

Predictions vs. Experiments

Dachman-Soled, Ducas, Gong, Rossi LWE with Side Information: Attacks and Concrete Security

イロト イヨト イヨト イヨト

э

Predictions vs. Experiments

Looks pretty¹ good !

¹*i.e.* not perfect.

Dachman-Soled, Ducas, Gong, Rossi

LWE with Side Information: Attacks and Concrete Security

э

< ロ > < 同 > < 回 > < 回 >

Example Applications: from real-world to hints

< □ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 20/25

Typically, one does **not** get **linear** hints. One needs a bit of creativity to extract some linear hint.

Power-analysis 101: Hamming Weight

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ・ ● ● の Q · 21/25

One needs a bit of creativity to extract some linear hint.

Power-analysis 101: Hamming Weight

From the scheme design we know $\mathbf{s}_i \in \{-5, \dots, 5\}$

One needs a bit of creativity to extract some linear hint.

Power-analysis 101: Hamming Weight

- From the scheme design we know $\mathbf{s}_i \in \{-5, \dots, 5\}$
- From **power analysis**, we learn $HW(s_0) = 2$

One needs a bit of creativity to extract some linear hint.

Power-analysis 101: Hamming Weight

- ▶ From the scheme design we know $\mathbf{s}_i \in \{-5, \dots, 5\}$
- From **power analysis**, we learn $HW(s_0) = 2$
- ▶ We deduce $\mathbf{s}_0 \in \{3, 5\}$

One needs a bit of creativity to extract some linear hint.

Power-analysis 101: Hamming Weight

- ▶ From the scheme design we know $\mathbf{s}_i \in \{-5, \dots, 5\}$
- From **power analysis**, we learn $HW(s_0) = 2$
- ▶ We deduce $\mathbf{s}_0 \in \{3, 5\}$
- We encode this knowledge with two hints
 - A modular hint: $\langle \mathbf{s}, (1, 0, \dots, 0) \rangle = 1 \mod 2$
 - A approximate hint: $\langle {f s}, (1,0,\ldots,0) \rangle \approx$ 4, with error variance 1

◆□▶ ◆舂▶ ◆≧▶ ◆≧▶ ≧ のへで 21/25

Two single-trace attacks on FrodoKEM [BFM+18]

For the 1^{st} , data leaked, but was too weak for a key-recovery.

Exactly our intended **use-case**.

	NIST1	NIST2	CCS1	CCS2
Attack without hints (bikz)	487	708	239	448
Attack with hints (bikz)	337	471	190	297
Attack with hints & guesses (bikz)	298	403	126	110

Table: Cost of the attacks without/with hints & without/with guesses.

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> ○ Q ○ 22/25

Example 1: Profiling

Two single-trace attacks on FrodoKEM [BFM+18]

For the 1^{st} , data leaked, but was too weak for a key-recovery.

Exactly our intended **use-case**.

	NIST1	NIST2	CCS1	CCS2
Attack without hints (bikz)	487	708	239	448
Attack with hints (bikz)	337	471	190	297
Attack with hints & guesses (bikz)	298	403	126	110

Table: Cost of the attacks without/with hints & without/with guesses.

A decryption failure occurs when the ciphertext's noise w is s.t.

$$\langle \mathbf{s}, \mathbf{w}
angle \geq t := q/4.$$

Brute-forces decryption request with random \mathbf{w} until it triggers.

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> ○ 0 0 23/25

A decryption failure occurs when the ciphertext's noise w is s.t.

$$\langle \mathbf{s}, \mathbf{w} \rangle \geq t := q/4.$$

Brute-forces decryption request with random \mathbf{w} until it triggers.

<□▶ < @ ▶ < E ▶ < E ▶ ○ 23/25

A decryption failure occurs when the ciphertext's noise w is s.t.

$$\langle \mathbf{s}, \mathbf{w} \rangle \geq t := q/4.$$

Brute-forces decryption request with random \mathbf{w} until it triggers.

<□▶ < @ ▶ < E ▶ < E ▶ ○ 23/25

A decryption failure occurs when the ciphertext's noise w is s.t.

$$\langle \mathbf{s}, \mathbf{w} \rangle \geq t := q/4.$$

Brute-forces decryption request with random \mathbf{w} until it triggers.

Dachman-Soled, Ducas, Gong, Rossi

LWE with Side Information: Attacks and Concrete Security

Example 3: Real-World Specifications

Several real-world schemes (NTRU, LAC, Round5) use ternary secrets, with a fixed amount of 1 and $-1 \Rightarrow$ **perfect hint**:

$$\langle {f s}, (1,1,1,\ldots 1)
angle = \ell$$

	LAC-128	LAC-192	LAC-256	
without hints	509.03	985.64	1104.83	
with 2 hints	505.94	982.74	1101.61	
	$R5ND_{1}KEM_{0d}$	R5ND_{3}KEM_0d	R5ND_{5}KEM_0d	
without hints	494.39	658.67	877.71	
with 1 hint	492.94	657.23	876.24	
			•	
	ntruhps2048509	ntruhps2048677	ntruhps4096821	
without hint	372.58	515.36	617.71	
with 1 hint	371.23	513.95	616.39	

Remark

A few more interesting to be said on NTRU, w.r.t. to the attack of [MS01] exploiting symmetries (update in progress)

Thanks for code-sharing, pertinent comments, and valuable feedback

- Martin Albrecht
- Jan-Pieter D'Anvers
- Thibauld Feneuil
- Henri Gilbert

- Marco Martinoli
- Ange Martinelli
- Thomas Prest
- John Schanck

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ E り へ C 25/25

Questions ?