A Theory of Trotter Error

Yuan Su
University of Maryland

Andrew M. Childs Maryland

Minh C. Tran Maryland

Nathan Wiebe Washington

Shuchen Zhu Georgetown

Quantum simulation

- Dynamics of a quantum system are given by its Hamiltonian $\mathscr{H}(t)$ according to the Schrödinger equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathscr{U}(t)=-i \mathscr{H}(t) \mathscr{U}(t), \quad \mathscr{U}(0)=l
$$

- We formally write the solution $\mathscr{U}(t)=\exp _{\mathcal{T}}\left(-i \int_{0}^{t} \mathrm{~d} \tau \mathscr{H}(\tau)\right)$. When $\mathscr{H}(t) \equiv H$ is time-independent, we have closed-form solution $\mathscr{U}(t)=e^{-i t H}$.

Quantum simulation problem

Given a description of the Hamiltonian H and evolution time t, perform $e^{-i t H}$ up to some error ϵ (in spectral norm):

$$
\left\|U-e^{-i t H}\right\| \leq \epsilon
$$

Reasons to study quantum simulation

"...nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

- Richard Feynman

Product formulas

- Also known as Trotterization or the splitting method.
- Target system: $H=\sum_{\gamma=1}^{\Gamma} H_{\gamma}$, where each H_{γ} is Hermitian and can be exponentiated with cost $\mathcal{O}(1)$.
- Can use the first-order Lie-Trotter formula ${ }^{1}$

$$
\mathscr{S}_{1}(t):=e^{-i t H_{\Gamma}} \cdots e^{-i t H_{1}}=e^{-i t H}+O\left(t^{2}\right)
$$

with Trotter error $O\left(t^{2}\right)$.

- To simulate for a large t, divide the evolution into r Trotter steps and simulate each step with error at most ϵ / r.
- Choose the Trotter number r to be sufficiently large so that the entire simulation has error at most ϵ.
${ }^{1}$ [Lloyd 96]

Higher-order product formulas

- A general p th-order product formula takes the form

$$
\mathscr{S}_{p}(t):=\prod_{v=1}^{\Upsilon} \prod_{\gamma=1}^{\Gamma} e^{-i t a_{(v, \gamma)} H_{\pi_{v}(\gamma)}}=e^{-i t H}+O\left(t^{p+1}\right) .
$$

Higher-order Suzuki formulas ${ }^{2}$

The $(2 k)$ th-order Suzuki formula $\mathscr{S}_{2 k}(t)=e^{-i t H}+O\left(t^{2 k+1}\right)$ is defined recursively by

$$
\begin{aligned}
\mathscr{S}_{2}(t) & :=e^{-i \frac{t}{2} H_{1}} \cdots e^{-i \frac{t}{2} H_{\Gamma}} e^{-i \frac{t}{2} H_{\Gamma}} \cdots e^{-i \frac{t}{2} H_{1}} \\
\mathscr{S}_{2 k}(t) & :=\mathscr{S}_{2 k-2}\left(u_{k} t\right)^{2} \mathscr{S}_{2 k-2}\left(\left(1-4 u_{k}\right) t\right) \mathscr{S}_{2 k-2}\left(u_{k} t\right)^{2}
\end{aligned}
$$

where $u_{k}:=1 /\left(4-4^{1 /(2 k-1)}\right)$.
${ }^{2}$ [Suzuki 92]

Other simulation algorithms

- Recent algorithms have improved asymptotic performance as a function of t and ϵ over the product-formula approach...

Other simulation algorithms

- Recent algorithms have improved asymptotic performance as a function of t and ϵ over the product-formula approach...
- ... but the empirical performance of product formulas can be significantly better. ${ }^{3}$

[^0]
Reasons to study product formulas

- The product-formula algorithm is ancilla-free and is arguably the simplest approach to quantum simulation.
- Product formulas can use Hamiltonian commutativity to give surprisingly efficient simulation in practice.
- Product formulas can preserve locality of the simulated system, which can be used to reduce the simulation cost.

- Other applications: classical simulation of quantum systems, numerical analysis...

Reasons to study product formulas

- The product-formula algorithm is ancilla-free and is arguably the simplest approach to quantum simulation.
- Product formulas can use Hamiltonian commutativity to give surprisingly efficient simulation in practice.
- Product formulas can preserve locality of the simulated system, which can be used to reduce the simulation cost.

- Other applications: classical simulation of quantum systems, numerical analysis...

Previous analyses of Trotter error

- For sufficiently small t, Trotter error can be represented exactly by the Baker-Campbell-Hausdorff formula:

$$
e^{-i t B} e^{-i t A}=e^{-i t(A+B)-\frac{t^{2}}{2}[B, A]+i \frac{i 3}{12}[B,[B, A]]-i \frac{t_{12}}{}[A,[B, A]]+\cdots}
$$

- Truncating the BCH expansion ignores significant, potentially dominant contributions of Trotter error. ${ }^{4}$
- Using tail bounds does not exploit the commutativity of Hamiltonian summands. ${ }^{5}$
- Infinite-series expansion is only advantageous for systems with Lie-algebraic structure. ${ }^{6}$

${ }^{4}$ [Wecker, Bauer, Clark, Hastings, Troyer 14]
${ }^{5}$ [Berry, Ahokas, Cleve, Sanders 07], [Bravyi, Gosset 17]
${ }^{6}$ [Somma 16]

Analysis of the first-order formula

- For Hamiltonian $H=A+B$ and $t \geq 0$, the first-order formula $\mathscr{S}_{1}(t)=e^{-i t B} e^{-i t A}$ satisfies the differential equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathscr{S}_{1}(t)=-i H \mathscr{S}_{1}(t)+e^{-i t B}\left(e^{i t B} i A e^{-i t B}-i A\right) e^{-i t A}
$$

with initial condition $\mathscr{S}_{1}(0)=I$.

- Using the variation-of-parameters formula,

$$
\mathscr{S}_{1}(t)=e^{-i t H}+\int_{0}^{t} \mathrm{~d} \tau_{1} e^{-i\left(t-\tau_{1}\right) H} e^{-i \tau_{1} B}\left(e^{i \tau_{1} B} i A e^{-i \tau_{1} B}-i A\right) e^{-i \tau_{1} A}
$$

- We further have

$$
e^{i \tau_{1} B} i A e^{-i \tau_{1} B}-i A=\int_{0}^{\tau_{1}} \mathrm{~d} \tau_{2} e^{i \tau_{2} B}[i B, i A] e^{-i \tau_{2} B}
$$

Analysis of the first-order formula

- Altogether, we have the integral representation

$$
\mathscr{S}_{1}(t)-e^{-i t H}=\int_{0}^{t} \mathrm{~d} \tau_{1} \int_{0}^{\tau_{1}} \mathrm{~d} \tau_{2} e^{-i\left(t-\tau_{1}\right) H} e^{-i \tau_{1} B} e^{i \tau_{2} B}[i B, i A] e^{-i \tau_{2} B} e^{-i \tau_{1} A}
$$

and the error bound

$$
\left\|\mathscr{S}_{1}(t)-e^{-i t H}\right\| \leq \frac{t^{2}}{2}\|[B, A]\| .
$$

A multi-term Hamiltonian $H=\sum_{\gamma=1}^{\Gamma} H_{\gamma}$ can be handled by bootstrapping the above bound.

- A similar bound holds for the second-order formula.
- Generalization to arbitrary higher-order formulas was previously unknown.

Trotter error with commutator scaling

Trotter error with commutator scaling

A p th-order product formula $\mathscr{S}_{p}(t)$ can approximate the evolution of Hermitian $H=\sum_{\gamma=1}^{\Gamma} H_{\gamma}$ for $t \geq 0$ with Trotter error

$$
\left\|\mathscr{S}_{p}(t)-e^{-i t H}\right\|=\mathcal{O}\left(\tilde{\alpha}_{\text {comm }} t^{p+1}\right),
$$

where $\widetilde{\alpha}_{\text {comm }}:=\sum_{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p+1}}\left\|\left[H_{\gamma_{p+1}}, \cdots\left[H_{\gamma_{2}}, H_{\gamma_{1}}\right]\right]\right\|$.

- Need $\mathcal{O}\left(\Gamma \widetilde{\alpha}_{\text {comm }}^{1 / p} t^{1+1 / p}\right)$ gates to achieve constant accuracy.
- Asymptotic complexity is independent of how the Hamiltonian summands are ordered.
- Related bounds exist for multiplicative error and imaginary-time evolution.

Nearest-neighbor lattice Hamiltonian

1D Nearest-neighbor lattice Hamiltonian

$H=\sum_{j=1}^{n-1} H_{j, j+1}$, where $H_{j, j+1}$ acts only on qubits j and $j+1$.

- Models many important physical systems in condensed matter physics, nuclear physics, and quantum field theory.
- Previously claimed without rigorous justification that product formulas have gate complexity $(n t)^{1+o(1)} .^{7}$

${ }^{7}$ [Jordan, Lee, Preskill 12]

Nearest-neighbor lattice Hamiltonian

- For nearest-neighbor interactions, we can use locality to simplify $\widetilde{\alpha}_{\text {comm }}$, giving

$$
\widetilde{\alpha}_{\text {comm }}=\sum_{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p+1}}\left\|\left[H_{\gamma_{p+1}}, \cdots\left[H_{\gamma_{2}}, H_{\gamma_{1}}\right]\right]\right\|=\mathcal{O}(n) .
$$

- We thus proved the Jordan-Lee-Preskill claim, giving a simple lattice simulation with nearly optimal gate complexity. ${ }^{8}$
${ }^{8}$ [Haah, Hastings, Kothari, Low 18]

Electronic structure Hamiltonian

Second-quantized plane-wave electronic structure

$$
H=\underbrace{\frac{1}{2 n} \sum_{j, k, \nu} \kappa_{\nu}^{2} \cos \left[\kappa_{\nu} \cdot r_{k-j}\right] A_{j}^{\dagger} A_{k}}_{T}-\underbrace{\frac{4 \pi}{\omega} \sum_{j,, \nu \neq 0} \frac{\zeta_{c} \cos \left[\kappa_{\nu} \cdot\left(\widetilde{r}_{\iota}-r_{j}\right)\right]}{\kappa_{\nu}^{2}} N_{j}}_{U}+\underbrace{\frac{2 \pi}{\omega} \sum_{\substack{j \neq k \\ \nu \neq 0}}^{\frac{\cos \left[\kappa_{\nu} \cdot r_{j-k}\right]}{\kappa_{\nu}^{2}} N_{j} N_{k}} .}_{V}
$$

- An efficient simulation can help design and engineer new pharmaceuticals, catalysts and materials.
- To simulate n spin orbitals for time t, the best previous approach is the interaction-picture method ${ }^{9}$ with complexity $\widetilde{\mathcal{O}}\left(n^{2} t\right)$ (and a likely large prefactor).

- Using fermionic Fourier transform, we can diagonalize the kinetic term in the plane-wave basis

$$
\frac{1}{2 n} \sum_{j, k, \nu} \kappa_{\nu}^{2} \cos \left[\kappa_{\nu} \cdot r_{k-j}\right] A_{j}^{\dagger} A_{k}=\mathrm{FFFT}^{\dagger}\left(\frac{1}{2} \sum_{\nu} \kappa_{\nu}^{2} N_{\nu}\right) \mathrm{FFFT} .
$$

- Using the commutation rules of second-quantized operators, we estimate

$$
\widetilde{\alpha}_{\text {comm }}=\sum_{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p+1}}\left\|\left[H_{\gamma_{p+1}}, \cdots\left[H_{\gamma_{2}}, H_{\gamma_{1}}\right]\right]\right\|=\mathcal{O}\left(n^{p+1}\right) .
$$

- We thus showed that product formulas have gate complexity $n^{2+o(1)} t^{1+o(1)}$, confirming a recent numerical study. ${ }^{10}$
${ }^{10}$ [Kivlichan, Gidney, Berry et al. 19]

k-local Hamiltonian

k-local Hamiltonian

$H=\sum_{j_{1}, \ldots, j_{k}} H_{j_{1}, \ldots, j_{k}}$, where each $H_{j_{1}, \ldots, j_{k}}$ acts only on $k=\mathcal{O}(1)$ qubits j_{1}, \ldots, j_{k}.

- Ubiquitous in physics.
- The best previous algorithm is the qubitization approach ${ }^{11}$ with complexity $\widetilde{\mathcal{O}}\left(n^{k}\|H\|_{1} t\right)$, scaling with the 1 -norm

$$
\|H\|_{1}:=\sum_{j_{1}, \ldots, j_{k}}\left\|H_{j_{1}, \ldots, j_{k}}\right\| .
$$

k-local Hamiltonian

- Using locality to simplify $\widetilde{\alpha}_{\text {comm }}$, we obtain

$$
\widetilde{\alpha}_{\text {comm }}=\sum_{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p+1}}\left\|\left[H_{\gamma_{p+1}}, \cdots\left[H_{\gamma_{2}}, H_{\gamma_{1}}\right]\right]\right\|=\mathcal{O}\left(\|H\|_{1}^{p}\|H\|_{1}\right)
$$

where

$$
\|H\|_{1}:=\max _{l} \max _{j_{l}} \sum_{j_{1}, \ldots, j_{l-1}, j_{l+1}, \ldots, j_{k}}\left\|H_{j_{1}, \ldots, j_{k}}\right\| .
$$

- We thus gave a simulation algorithm with complexity $n^{k}\| \|\left\|_{1}\right\| H \|_{1}^{o(1)} t^{1+o(1)}$ scaling with the induced 1-norm.
- We have the norm inequality
$\|H\|_{1}:=\max _{l} \max _{j_{l}} \sum_{j_{1}, \ldots, j_{l-1}, j_{l+1}, \ldots, j_{k}}\left\|H_{j_{1}, \ldots, j_{k}}\right\| \leq\|H\|_{1}:=\sum_{j_{1}, \ldots, j_{k}}\left\|H_{j_{1}, \ldots, j_{k}}\right\|$
and the gap can be significant for many k-local Hamiltonians.

Rapidly decaying power-law Hamiltonian

Rapidly decaying power-law Hamiltonian

$H=\sum_{i, j} H_{i, \vec{j}}$, where $H_{i, \vec{j}}$ acts only on qubits $\vec{i}, \vec{j} \in \Lambda \subset \mathbb{R}^{d}$ and

$$
\left\|H_{\vec{i}, j}\right\| \leq \begin{cases}1, & \text { if } \vec{i}=\vec{j}, \\ \|\vec{i}-\vec{j}\|_{2}^{\alpha}, & \text { if } \vec{i} \neq \vec{j},\end{cases}
$$

with dimension d and exponent $\alpha>2 d$.

- Examples include the dipole-dipole interactions $(\alpha=3)$ and the Van der Waals interactions ($\alpha=6$).
- The best previous approach is an algorithm based on LiebRobinson bounds ${ }^{12}$ using $\widetilde{\mathcal{O}}\left((n t)^{1+2 d /(\alpha-d)}\right)$ gates.

Rapidly decaying power-law Hamiltonian

- We truncate terms with distance larger than a cut-off $\ell=$ $\Theta\left((n t / \epsilon)^{1 /(\alpha-d)}\right)$.
- For the truncated Hamiltonian, we estimate

$$
\widetilde{\alpha}_{\text {comm }}=\sum_{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p+1}}\left\|\left[H_{\gamma_{p+1}}, \cdots\left[H_{\gamma_{2}}, H_{\gamma_{1}}\right]\right]\right\|=\mathcal{O}(n) .
$$

- We gave a product-formula algorithm with complexity $(n t)^{1+d /(\alpha-d)+o(1)}$, outperforming the best previous approach based on Lieb-Robinson bounds.

Clustered Hamiltonian

Clustered Hamiltonian

$H=A+B=\sum_{l} H_{l}^{(1)}+\sum_{l} H_{l}^{(2)}$, where terms in A act on qubits within a single party and terms in B act between different parties.

- Appears naturally in classical fragmentation and Quantum Mechanics/Molecular Mechanics methods for large molecules.
- Group the terms within each party in A and simulate the resulting Hamiltonian using product formulas. ${ }^{13}$
- Our new result implies a hybrid simulator with runtime $2^{\mathcal{O}\left(h_{B}^{o(1)} t^{1+o(1)} c c(g) / \epsilon^{(1)}\right)}$ with interaction strength h_{B} and contraction complexity $\mathrm{cc}(g)$, improving the original result $2^{\mathcal{O}\left(h_{B}^{2} t^{2} c c(g) / \epsilon\right)}$.
${ }^{13}$ [Peng, Harrow, Ozols, Wu 19]

Transverse field Ising model

Transverse field Ising model

$H=-\sum_{1 \leq u<v \leq n} j_{u, v} Z_{u} Z_{v}-\sum_{1 \leq u \leq n} h_{u} X_{u}$, where X_{u}, Z_{u} are Pauli operators acting on the u th qubit and $j_{u, v} \geq 0, h_{u} \geq 0$.

- The goal is to approximate the partition function $\operatorname{Tr}\left(e^{-H}\right)$ up to a multiplicative error.
- We gave a Monte Carlo simulation of the transverse field Ising model with runtime $\widetilde{\mathcal{O}}\left(n^{45} j^{14} \epsilon^{-2}+n^{38} j^{21} \epsilon^{-9}\right)$, tightening the previous result $\widetilde{\mathcal{O}}\left(n^{59} j^{21} \epsilon^{-9}\right)$ of Bravyi. ${ }^{14}$
- Similar improvement holds for the ferromagnetic quantum spin systems. ${ }^{15}$

```
\({ }^{14}\) [Bravyi 15]
\({ }^{15}\) [Bravyi, Gosset 17]
```


Simulating local observables

- We show that local observables can be simulated with complexity independent of the system size for power-law Hamiltonians, implying a Lieb-Robinson bound as a byproduct.

Tight prefactor

${ }^{16}$ [Childs, Maslov, Nam, Ross, Su 18]

A theory of Trotter error

Application	System	Best previous result	New result						
Simulating quantum dynamics	Nearest-neighbor lattice	$(n t)^{1+o(1)}$ (Conjecture), $\widetilde{\mathcal{O}}(n t)$ (Lieb-Robinson bound)	$(n t)^{1+o(1)}$						
	Electronic structure	$\widetilde{\mathcal{O}}\left(n^{2} t\right)$ (Interaction picture)	$n^{2+o(1)} t^{1+o(1)}$						
	k-local Hamiltonians	$\widetilde{\mathcal{O}}\left(n^{k}\\|H\\|_{1} t\right)$ (Qubitization)	$n^{k}\\|H\\|_{1}\\|H\\|_{1}^{o(1)} t^{1+o(1)}$						
	$1 / x^{\alpha}(\alpha>2 d)$	$\widetilde{\mathcal{O}}\left((n t)^{1+2 d /(\alpha-d)}\right)$ (Lieb-Robinson bound)	$(n t)^{1+d /(\alpha-d)+o(1)}$						
	Clustered Hamiltonians	$2^{\mathcal{O}}{\left(n_{s}^{2} t^{2} \mathrm{cc}(\mathrm{g}) / \epsilon\right)}^{\text {c }}$	$2^{\mathcal{O}\left(h_{B}^{(1)} t^{1+o(1)} \mathrm{cc}(\mathrm{g}) \epsilon^{(\text {(1) }}\right)}$						
Simulating local observables	$1 / x^{\alpha}(\alpha>2 d)$	-	$t^{\left(1+d \frac{\alpha-d}{\alpha-2 d}\right)\left(1+\frac{d}{\alpha-d}\right)+o(1)}$						
Monte Carlo simulation	Transverse field Ising model	$\widetilde{\mathcal{O}}\left(n^{59} j^{21} \epsilon^{-9}\right)$	$\widetilde{\mathcal{O}}\left(n^{45} j^{14} \epsilon^{-2}+n^{38} j^{21} \epsilon^{-9}\right)$						
	Quantum ferromagnets	$\widetilde{\mathcal{O}}\left(n^{115}\left(1+\beta^{46}\right) / \epsilon^{25}\right)$	$\widetilde{\mathcal{O}}\left(n^{92}\left(1+\beta^{46}\right) / \epsilon^{25}\right)$						

- Underpinning these improvements is a theory concerning the types, order conditions, and representations of Trotter error.

Error types

- Suppose that we use product formula $\mathscr{S}(t)$ to approximate the evolution of H for time $t \geq 0$.
- We consider the additive, exponentiated, and multiplicative type of Trotter error

$$
\begin{aligned}
& \mathscr{S}(t)=e^{-i t H}+\int_{0}^{t} \mathrm{~d} \tau e^{-i(t-\tau) H} \mathscr{S}(\tau) \mathscr{T}(\tau) \\
& \mathscr{S}(t)=\exp _{\mathcal{T}}\left(-i \int_{0}^{t} \mathrm{~d} \tau(H+\mathscr{E}(\tau))\right) \\
& \mathscr{S}(t)=e^{-i t H} \exp _{\mathcal{T}}\left(-i \int_{0}^{t} \mathrm{~d} \tau e^{i \tau H} \mathscr{E}(\tau) e^{-i \tau H}\right)
\end{aligned}
$$

where $\mathscr{T}(\tau), \mathscr{E}(\tau)$ consist of unitary conjugations of the form

$$
e^{i \tau A_{s}} \cdots e^{i \tau A_{2}} e^{i \tau A_{1}} B e^{-i \tau A_{1}} e^{-i \tau A_{2}} \cdots e^{-i \tau A_{s}}
$$

Order conditions

- For a p th-order formula $\mathscr{S}_{p}(t)$, we have the following equivalent order conditions:
- $\mathscr{S}_{p}(t)=e^{-i t H}+O\left(t^{p+1}\right)$;
- $\mathscr{T}_{p}(\tau)=O\left(\tau^{p}\right)$; and
- $\mathscr{E}_{p}(\tau)=O\left(\tau^{p}\right)$.
- Order conditions can be used to cancel lower-order terms in the Taylor expansion:

$$
\mathscr{F}(\tau)=O\left(\tau^{p}\right) \Longleftrightarrow \mathscr{F}(0)=\mathscr{F}^{\prime}(0)=\cdots=\mathscr{F}^{(p-1)}(0)=0
$$

Error representations

- A unitary conjugation $e^{i \tau A_{s}} \cdots e^{i \tau A_{2}} e^{i \tau A_{1}} B e^{-i \tau A_{1}} e^{-i \tau A_{2}} \cdots e^{-i \tau A_{s}}$ has the expansion

$$
C_{0}+C_{1} \tau+\cdots+C_{p-1} \tau^{p-1}+\mathscr{C}(\tau)
$$

- Time-independent operators $C_{0}, C_{1}, \ldots, C_{p-1}$ can be canceled by order conditions.
- Operator-valued function $\mathscr{C}(\tau)$ is given by

$$
\begin{aligned}
& \mathscr{C}(\tau):=\sum_{j=1}^{s} \sum_{\substack{q_{1}+\cdots+q_{j}=p \\
q_{j} \neq 0}} e^{i \tau A_{s}} \cdots e^{i \tau A_{j+1}} \\
& \cdot \int_{0}^{\tau} \mathrm{d} \tau_{2} e^{i \tau_{2} A_{j}} \operatorname{ad}_{i A_{j}}^{q_{j}} \cdots \operatorname{ad}_{i A_{1}}^{q_{1}}(B) e^{-i \tau_{2} A_{j}} \cdot \frac{\left(\tau-\tau_{2}\right)^{q_{j}-1} \tau^{q_{1}+\cdots+q_{j-1}}}{\left(q_{j}-1\right)!q_{j-1}!\cdots q_{1}!} \\
& \cdot e^{-i \tau A_{j+1}} \cdots e^{-i \tau A_{s}},
\end{aligned}
$$

where $\operatorname{ad}_{i A_{1}}(B):=\left[i A_{1}, B\right]$.

Outlook

- simulating time-dependent Hamiltonian $\sum_{\gamma=1}^{\Gamma} \mathscr{H}_{\gamma}(\tau)$;
- analysis of generalized product formulas (divide-and-conquer, randomized, LCU);
- improved circuit implementation for concrete systems;
- faster numerical computation of Trotter error bounds;
- different cost metric (e.g., sub-circuit model);
- simulating low-energy state;
- simulation in the presence of noise;
- other applications...

Analysis of the second-order formula

- For Hamiltonian $H=A+B$ and $t \geq 0$, the second-order formula $\mathscr{S}_{2}(t)=e^{-i \frac{t}{2} A} e^{-i t B} e^{-i \frac{t}{2} A}$ can be represented as

$$
\begin{aligned}
& \mathscr{S}_{2}(t)=e^{-i t H}+\int_{0}^{t} \mathrm{~d} \tau_{1} e^{-i\left(t-\tau_{1}\right) H} e^{-i \frac{\tau_{1}}{2} A} \mathscr{T}_{2}\left(\tau_{1}\right) e^{-\tau_{1} B} e^{-i \frac{\tau_{1}}{2} A}, \\
& \mathscr{T}_{2}\left(\tau_{1}\right)=e^{-i \tau_{1} B}\left(-i \frac{A}{2}\right) e^{i \tau_{1} B}+i \frac{A}{2}+e^{i \frac{\tau_{1}}{2} A}(i B) e^{-i \frac{\tau_{1}}{2} A}-i B .
\end{aligned}
$$

- We expand $\mathscr{T}_{2}\left(\tau_{1}\right)$ to second-order, obtaining

$$
\begin{aligned}
e^{-i \tau_{1} B}\left(-i \frac{A}{2}\right) e^{i \tau_{1} B}+i \frac{A}{2} & =\left[-i B,-i \frac{A}{2}\right] \tau_{1}+\int_{0}^{\tau_{1}} \mathrm{~d} \tau_{2} \int_{0}^{\tau_{2}} \mathrm{~d} \tau_{3} e^{-i \tau_{3} B}\left[-i B,\left[-i B,-i \frac{A}{2}\right]\right] e^{i \tau_{3} B}, \\
e^{i \frac{\tau_{1}}{2} A}(i B) e^{-i \frac{\tau_{1}}{2} A}-i B & =\left[i \frac{A}{2}, i B\right] \tau_{1}+\int_{0}^{\tau_{1}} \mathrm{~d} \tau_{2} \int_{0}^{\tau_{2}} \mathrm{~d} \tau_{3} e^{i \frac{\tau_{3}}{2} A}\left[i \frac{A}{2},\left[i \frac{A}{2}, i B\right]\right] e^{-i \frac{\tau_{3}}{2} A}
\end{aligned}
$$

Analysis of the second-order formula

- Altogether, we have the integral representation

$$
\begin{aligned}
& \mathscr{S}_{2}(t)-e^{-i t H} \\
=\int_{0}^{t} \mathrm{~d} \tau_{1} \int_{0}^{\tau_{1}} \mathrm{~d} \tau_{2} \int_{0}^{\tau_{2}} \mathrm{~d} \tau_{3} & e^{-i\left(t-\tau_{1}\right) H} e^{-i \frac{i \tau_{1} A}{2}} \\
& \cdot\left(e^{-i \tau_{3} B}\left[-i B,\left[-i B,-i \frac{A}{2}\right]\right] e^{i \tau_{3} B}+e^{i \frac{\tau_{3}^{2} A}{2} A}\left[i \frac{A}{2},\left[i \frac{A}{2}, i B\right]\right] e^{-i \frac{\tau_{3}}{2} A}\right) \\
& \cdot e^{-\tau_{1} B} e^{-i \frac{\tau_{1}}{2} A},
\end{aligned}
$$

and the error bound

$$
\left\|\mathscr{S}_{2}(t)-e^{-i t H}\right\| \leq \frac{t^{3}}{12}\|[B,[B, A]]\|+\frac{t^{3}}{24}\|[A,[A, B]]\|
$$

- The general case follows by bootstrapping the above bound.

Trotter error with commutator scaling

- Consider a general pth-order product formula

$$
\mathscr{S}_{p}(t):=\prod_{v=1}^{\Upsilon} \prod_{\gamma=1}^{\Gamma} e^{-i t a(v, \gamma)} H_{\pi_{v}(\gamma)}=e^{-i t H}+O\left(t^{p+1}\right)
$$

where $a_{(v, \gamma)}$ are real numbers with $\left|a_{(v, \gamma)}\right| \leq 1$.

Trotter error with commutator scaling

A pth-order formula $\mathscr{S}_{p}(t)$ can approximate the evolution of $H=$ $\sum_{\gamma=1}^{\Gamma} H_{\gamma}$ for time $t \geq 0$ with Trotter error
$\left\|\mathscr{S}_{p}(t)-e^{t H}\right\|,\left\|e^{-t H} \mathscr{S}_{p}(t)-I\right\|=\mathcal{O}\left(\widetilde{\alpha}_{c o m m} t^{p+1} e^{2 t \Upsilon \sum_{\gamma=1}^{\ulcorner }\left\|H_{\gamma}\right\|}\right)$,
where $\widetilde{\alpha}_{\text {comm }}:=\sum_{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p+1}}\left\|\left[H_{\gamma_{p+1}}, \cdots\left[H_{\gamma_{2}}, H_{\gamma_{1}}\right]\right]\right\|$.

[^0]: ${ }^{3}$ [Childs, Maslov, Nam, Ross, Su 18]

