イロト 不同下 イヨト イヨト

1/40

The robust polynomial method and a subvolume law for locally gapped frustration-free 2D spin systems

Anurag Anshu Joint work with Itai Arad (Technion, Israel) and David Gosset (IQC, Canada)

Institute for Quantum Computing and Perimeter Institute for Theoretical Physics, Waterloo

April 14, 2020

Polynomial

Sub-volume lav

Discussion

Upcoming section

Introduction

Bounding entanglement entropy

Polynomials

Sub-volume law

Discussion

Introduction

Bounding entanglement entropy

Polynomials

ub-volume la

Discussion

Discussion

Square lattice

Discussion

Square lattice

イロト イポト イヨト イヨト

Discussion

5/40

Square lattice

• Suppose $0 \leq h \leq I$.

ub-volume law

Discussion

Square lattice

Discussion

Square lattice

•
$$H = \sum_{i=1}^{n-1} \sum_{j=1}^{L-1} (\mathbf{I} \otimes \mathbf{I} \otimes \dots h_{i,j} \otimes \dots \mathbf{I}).$$

- Ground state $|\Omega\rangle$.
 - Eigenstate of *H* with smallest energy. We assume its unique.

- Ground state $|\Omega\rangle$.
 - Eigenstate of *H* with smallest energy. We assume its unique.
- Spectral gap γ .
 - Difference between smallest and second smallest eigen-energies.

イロト 不得下 イヨト イヨト 二日

7 / 40

- Ground state $|\Omega\rangle$.
 - Eigenstate of *H* with smallest energy. We assume its unique.
- Spectral gap γ .
 - Difference between smallest and second smallest eigen-energies.
- Frustation-free (FF).

•
$$h_{i,j} | \Omega
angle = 0, \quad \forall i,j.$$

- Ground state $|\Omega\rangle$.
 - Eigenstate of *H* with smallest energy. We assume its unique.
- Spectral gap γ .
 - Difference between smallest and second smallest eigen-energies.
- Frustation-free (FF).
 - $h_{i,j} |\Omega\rangle = 0, \quad \forall i,j.$
- FF allows us to choose $h_{i,j}^2 = h_{i,j}$.
 - Mapping $h_{i,j} \rightarrow \text{span}(h_{i,j})$ does not change $|\Omega\rangle$ and changes γ by a constant.

Discussion

Entanglement entropy

Bound on $S(\Omega_A)$?

Entanglement entropy

- Area law: $S(\Omega_A) = O(|\partial A|)$.
- Trivial volume law: $S(\Omega_A) = O(|\partial A|^2)$.
- Sub-volume law: $S(\Omega_A) = O(|\partial A|^c)$ for some 1 < c < 2.

Introduction

Entanglement entropy

- Area law: $S(\Omega_A) = O(|\partial A|).$
- Trivial volume law: $S(\Omega_A) = O(|\partial A|^2)$.
- Sub-volume law: $S(\Omega_A) = O(|\partial A|^c)$ for some 1 < c < 2.

Conjecture

Area law conjecture: Unique ground state of a gapped hamiltonian $(\gamma = \text{some constant})$ satisfies an area law across every bi-partition ∂A .

Entanglement entropy

- Area law: $S(\Omega_A) = O(|\partial A|).$
- Trivial volume law: $S(\Omega_A) = O(|\partial A|^2)$.
- Sub-volume law: $S(\Omega_A) = O(|\partial A|^c)$ for some 1 < c < 2.

Conjecture

Area law conjecture: Unique ground state of a gapped hamiltonian $(\gamma = \text{some constant})$ satisfies an area law across every bi-partition ∂A .

Most quantum states satisfy volume law. Thus area/sub-volume laws show that ground states are 'simpler' than most quantum states.

Discussion

Results in 1D

Hastings [2007]	$exp\left(\mathcal{O}(1/\gamma) ight)$
Aharonov, Arad, Landau, Vazirani [2011] (FF)	$exp\left(\mathcal{O}(1/\gamma) ight)$
Arad, Landau, Vazirani [2012] (FF)	$\mathcal{O}(1/\gamma^3)$
Arad, Kitaev, Landau, Vazirani [2013]	$\mathcal{O}(1/\gamma)$

Conjecture of Gosset, Huang [2016]: Scaling for FF is $\mathcal{O}\left(\frac{1}{\sqrt{\gamma}}\right)$.

Implications of 1D area law

- 1D area law implies gapped ground state can be approximated by a Matrix-Product State of 'small' bond dimension.
- Supports the success of Density Matrix Renormalization Group algorithm (White [1992]).
- Polynomial time algorithm for ground states (Landau, Vidick, Vazirani [2013]; Arad, Landau, Vidick, Vazirani [2016]).

Prior work in 2D

Area law for ground states of local Hamiltonian shown under several assumptions:

(日) (同) (三) (三)

3

12 / 40

Prior work in 2D

Area law for ground states of local Hamiltonian shown under several assumptions:

• Subexponential number of low energy eigenstates. Hastings [2007], Masanes [2009]

Prior work in 2D

Area law for ground states of local Hamiltonian shown under several assumptions:

- Subexponential number of low energy eigenstates. Hastings [2007], Masanes [2009]
- Spin 1/2 lattice with nearest neighbour interaction Beaudrap, Osborne, Eisert [2010]

イロト 不同下 イヨト イヨト

12/40

Prior work in 2D

Area law for ground states of local Hamiltonian shown under several assumptions:

- Subexponential number of low energy eigenstates. Hastings [2007], Masanes [2009]
- Spin 1/2 lattice with nearest neighbour interaction Beaudrap, Osborne, Eisert [2010]
- Adiabatic assumption. Cho [2014].

Prior work in 2D

Area law for ground states of local Hamiltonian shown under several assumptions:

- Subexponential number of low energy eigenstates. Hastings [2007], Masanes [2009]
- Spin 1/2 lattice with nearest neighbour interaction Beaudrap, Osborne, Eisert [2010]
- Adiabatic assumption. Cho [2014].
- Assumptions on specific heat. Brandão, Cramer [2015].

For commuting hamiltonian: $[h_{i,j}, h_{i',j'}] = 0$, area law holds in all dimensions.

Upcoming section

Introduction

Bounding entanglement entropy

Polynomials

Sub-volume law

Discussion

・ロ ・ ・ 一 ・ ・ 注 ト ・ 注 ・ う へ で
13 / 40

Approximation to ground space

• Schmidt rank of an operator K: smallest D such that

$$\mathcal{K} = \sum_{i=1}^{D} \mathcal{K}_{\mathcal{A}}^{i} \otimes \mathcal{K}_{\mathcal{A}^{c}}^{i}.$$

• We denote it by SR(K).

イロン イヨン イヨン イヨン 三日

14 / 40

Approximation to ground space

• Schmidt rank of an operator K: smallest D such that

$$\mathcal{K} = \sum_{i=1}^{D} \mathcal{K}_{\mathcal{A}}^{i} \otimes \mathcal{K}_{\mathcal{A}^{c}}^{i}.$$

- We denote it by SR(K).
- Suppose there were a PSD operator K_{imaginary} such that

•
$$\|K_{imaginary} - |\Omega\rangle\langle\Omega\|\|_1 \le \varepsilon.$$

• $SR(K_{imaginary}) = small.$

・ロン ・四 と ・ ヨ と ・ ヨ と

14 / 40

Approximation to ground space

• Schmidt rank of an operator K: smallest D such that

$$\mathcal{K} = \sum_{i=1}^{D} \mathcal{K}_{\mathcal{A}}^{i} \otimes \mathcal{K}_{\mathcal{A}^{c}}^{i}.$$

- We denote it by SR(K).
- Suppose there were a PSD operator K_{imaginary} such that

•
$$||K_{imaginary} - |\Omega\rangle\langle\Omega|||_1 \le \varepsilon.$$

•
$$\operatorname{SR}(K_{imaginary}) = \operatorname{small}.$$

•
$$S(\Omega_A) \leq \log \text{ small} + \underbrace{\varepsilon|A|}_{(\text{Alicki-Fannes})}$$

Approximation to ground space

• Schmidt rank of an operator K: smallest D such that

$$\mathcal{K} = \sum_{i=1}^{D} \mathcal{K}_{\mathcal{A}}^{i} \otimes \mathcal{K}_{\mathcal{A}^{c}}^{i}.$$

- We denote it by SR(K).
- Suppose there were a PSD operator K_{imaginary} such that

•
$$||K_{imaginary} - |\Omega\rangle\langle\Omega|||_1 \le \varepsilon.$$

- $SR(K_{imaginary}) = small.$
- $S(\Omega_A) \leq \log \text{small} + \underbrace{\varepsilon|A|}_{(\text{Alicki-Fannes})}$.
- But imaginary \neq real.
- True situation: $\|K |\Omega\rangle\langle\Omega\|\|_{\infty} \le \varepsilon$.

イロン イヨン イヨン イヨン 三日

15 / 40

Approximation to ground space

• Hastings [2007]; Aharonov, Arad, Landau, Vazirani [2011]; Arad, Landau, Vazirani [2012].

15 / 40

Approximation to ground space

- Hastings [2007]; Aharonov, Arad, Landau, Vazirani [2011]; Arad, Landau, Vazirani [2012].
- $\|K |\Omega\rangle\langle\Omega\|\|_{\infty} \leq \Delta$ and $\mathrm{SR}(K) = D$.
- For FF systems, we also have $K |\Omega\rangle = |\Omega\rangle$.

・ロン ・四 と ・ ヨ と ・ ヨ と

3

16 / 40

Approximation to ground space

Theorem (Hastings 2007; Arad, Landau, Vazirani 2012)

$$\underbrace{\mathrm{S}_{\min}\left(\Omega_{A}\right)}_{obvious} \leq \mathrm{S}\left(\Omega_{A}\right) \leq \frac{\log D}{\log \frac{1}{\Delta}} \mathrm{S}_{\min}\left(\Omega_{A}\right) + \log D.$$

16/40

Approximation to ground space

Theorem (Hastings 2007; Arad, Landau, Vazirani 2012)

$$\underbrace{\operatorname{S}_{\textit{min}}\left(\Omega_{A}\right)}_{\textit{obvious}} \leq \operatorname{S}\left(\Omega_{A}\right) \leq \frac{\log D}{\log \frac{1}{\Delta}} \operatorname{S}_{\textit{min}}\left(\Omega_{A}\right) + \log D.$$

• Hastings [2007]: In 1D, it holds that $S_{min}(\Omega_A) \leq e^{\mathcal{O}\left(rac{1}{\gamma}
ight)}$.

16/40

Approximation to ground space

Theorem (Hastings 2007; Arad, Landau, Vazirani 2012)

$$\underbrace{\operatorname{S}_{\textit{min}}\left(\Omega_{A}\right)}_{\textit{obvious}} \leq \operatorname{S}\left(\Omega_{A}\right) \leq \frac{\log D}{\log \frac{1}{\Delta}} \operatorname{S}_{\textit{min}}\left(\Omega_{A}\right) + \log D.$$

- Hastings [2007]: In 1D, it holds that $S_{min}(\Omega_A) \leq e^{\mathcal{O}\left(rac{1}{\gamma}
 ight)}$.
- What happens if $\frac{\log D}{\log \frac{1}{\Lambda}} < 1$?

Approximation to ground space

Theorem (Hastings 2007; Arad, Landau, Vazirani 2012)

$$\underbrace{\operatorname{S}_{\textit{min}}\left(\Omega_{A}\right)}_{\textit{obvious}} \leq \operatorname{S}\left(\Omega_{A}\right) \leq \frac{\log D}{\log \frac{1}{\Delta}} \operatorname{S}_{\textit{min}}\left(\Omega_{A}\right) + \log D.$$

- Hastings [2007]: In 1D, it holds that $S_{min}(\Omega_A) \leq e^{\mathcal{O}\left(rac{1}{\gamma}
 ight)}$.
- What happens if $\frac{\log D}{\log \frac{1}{\Delta}} < 1$?

Theorem (Arad, Landau, Vazirani 2012) If $D\Delta < \frac{1}{2}$ (the AGSP condition), then

 $S(\Omega_A) \leq 2 \log D.$

イロト 不同下 イヨト イヨト

3

17 / 40

Polynomial approximation to ground space

- Arad, Landau, Vazirani [2012] and Arad, Kitaev, Landau, Vazirani [2013] viewed K as polynomials of H.
- Ground state is a function of *H*.

イロト 不得下 イヨト イヨト 二日

17 / 40

Polynomial approximation to ground space

- Arad, Landau, Vazirani [2012] and Arad, Kitaev, Landau, Vazirani [2013] viewed K as polynomials of H.
- Ground state is a function of *H*.
 - $f_{ground}(x) = 1$ if x = 0 and 0 otherwise.
イロト 不得下 イヨト イヨト 二日

17 / 40

Polynomial approximation to ground space

- Arad, Landau, Vazirani [2012] and Arad, Kitaev, Landau, Vazirani [2013] viewed K as polynomials of H.
- Ground state is a function of *H*.
 - $f_{ground}(x) = 1$ if x = 0 and 0 otherwise.
 - Then $f_{ground}(H) = |\Omega\rangle\langle\Omega|$.

Polynomial approximation to ground space

- Arad, Landau, Vazirani [2012] and Arad, Kitaev, Landau, Vazirani [2013] viewed *K* as polynomials of *H*.
- Ground state is a function of *H*.
 - $f_{ground}(x) = 1$ if x = 0 and 0 otherwise.
 - Then $f_{ground}(H) = |\Omega\rangle\langle\Omega|$.
 - Approximate f_{ground} using tools from approximation theory.

Discussion

Polynomial approximation to ground space

• Suppose K(H) has degree d and $\Delta = e^{-s}$.

18/40

Polynomial approximation to ground space

- Suppose K(H) has degree d and $\Delta = e^{-s}$.
- Expectation: $D = \operatorname{SR}(K) \le e^d$
 - Think of a multinomial $h_{7,1}h_{7,3}$ \cdots $h_{7,21}$.

d times

Polynomial approximation to ground space

- Suppose K(H) has degree d and $\Delta = e^{-s}$.
- Expectation: $D = \operatorname{SR}(K) \le e^d$
 - Think of a multinomial $h_{7,1}h_{7,3}$ \cdots $h_{7,21}$.

d times

- If d < s, then AGSP condition is satisfied.
- Unfortunately, a stringent condition in practise.

Discussion

Polynomial approximation to ground space

• A family of AGSPs: K_t with degree d_t (in dark blue region) and $\Delta = e^{-s_t}$.

Discussion

Polynomial approximation to ground space

 A family of AGSPs: K_t with degree d_t (in dark blue region) and Δ = e^{-s_t}.

Theorem (Arad, Landau, Vazirani (2012); Arad, Kitaev, Landau, Vazirani (2013))

If $d_t \leq t \cdot s_t$, then AGSP condition is satisfied and $S(\Omega_A) \leq t |\partial A|$.

Upcoming section

Introduction

Bounding entanglement entropy

Polynomials

Sub-volume law

Discussion

(ロ) (部) (注) (注) (注) (20 / 40
)

Approximations to f_{ground}

• $f_{ground}(x) = 1$ if x = 0 and 0 otherwise.

 Chebyshev polynomials, for a given degree, achieve the smallest approximation.

Approximations to f_{ground}

- Chebyshev polynomials, for a given degree, achieve the smallest approximation.
- Let us assume $\gamma = \text{constant}$, till penultimate slide.

イロト 不得下 イヨト イヨト 二日

22 / 40

- Chebyshev polynomial achieves $d_t = \sqrt{t|\partial A|}$ and $\Delta = e^{-s_t} = \frac{1}{3}$.
 - Grover's search solves AND_n with \sqrt{n} queries.
 - The resulting polynomial is, via symmetrization, polynomial of
 - a "hamming-weight hamiltonian".

イロト 不得下 イヨト イヨト 二日

22 / 40

- Chebyshev polynomial achieves $d_t = \sqrt{t|\partial A|}$ and $\Delta = e^{-s_t} = \frac{1}{3}$.
 - Grover's search solves AND_n with \sqrt{n} queries.
 - The resulting polynomial is, via symmetrization, polynomial of a "hamming-weight hamiltonian".
- Recall: If $d_t \leq t \cdot s_t$, then $S(\Omega_A) \leq t |\partial A|$.

イロト 不得 とくほと くほとう ほ

22 / 40

- Chebyshev polynomial achieves $d_t = \sqrt{t|\partial A|}$ and $\Delta = e^{-s_t} = \frac{1}{3}$.
 - Grover's search solves AND_n with \sqrt{n} queries.
 - The resulting polynomial is, via symmetrization, polynomial of a "hamming-weight hamiltonian".
- Recall: If $d_t \leq t \cdot s_t$, then $S(\Omega_A) \leq t |\partial A|$.
- Evaluating $d_t \leq ts_t$, we get $t > |\partial A|$.
- Still a volume law. Note: any improvement would give subvolume law.

・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ

22 / 40

- Chebyshev polynomial achieves $d_t = \sqrt{t|\partial A|}$ and $\Delta = e^{-s_t} = \frac{1}{3}$.
 - Grover's search solves AND_n with \sqrt{n} queries.
 - The resulting polynomial is, via symmetrization, polynomial of a "hamming-weight hamiltonian".
- Recall: If $d_t \leq t \cdot s_t$, then $S(\Omega_A) \leq t |\partial A|$.
- Evaluating $d_t \leq ts_t$, we get $t > |\partial A|$.
- Still a volume law. Note: any improvement would give subvolume law.
- But what about commuting case?

23 / 40

Improved Chebyshev approximations for integer points

Inclusion-exclusion: Exact and approximate

Jeff Kahn, Nathan Linial & Alex Samorodnitsky

<u>Combinatorica</u> 16, 465–477(1996) | <u>Cite this article</u> 329 Accesses | 35 Citations | <u>Metrics</u>

• Commuting FF hamiltonians have integer spectrum.

- Commuting FF hamiltonians have integer spectrum.
- Approximation to f_{ground} only on integer spectrum is better (Kahn, Linial, Samorodnitsky [1996]). One has $s_t = \frac{d_t^2}{t|\partial A|}$ for all $\sqrt{t|\partial A|} \le d_t \le t|\partial A|$.

- Commuting FF hamiltonians have integer spectrum.
- Approximation to f_{ground} only on integer spectrum is better (Kahn, Linial, Samorodnitsky [1996]). One has $s_t = \frac{d_t^2}{t|\partial A|}$ for all $\sqrt{t|\partial A|} \le d_t \le t|\partial A|$.
- This polynomial was discovered independently in (Buhrman, Cleve, de Wolf, Zalka [1999]), who showed that quantum query complexity for AND_n with error ε requires $\sqrt{n\log \frac{1}{\varepsilon}}$ queries, instead of $\sqrt{n}\log \frac{1}{\varepsilon}$ queries.

•
$$\log \frac{1}{\varepsilon} \equiv s_t$$
 and queries $\equiv d_t$.

イロト 不得下 イヨト イヨト 二日

25 / 40

Improved Chebyshev approximations for integer points

• Analysis: setting $d_t = t |\partial A|$, we get $s_t = t |\partial A|$. Thus, $d_t \leq ts_t$ can be satisfied with t = 1 (constant). Hence, $S(\Omega_A) \leq t |\partial A| = |\partial A|$.

- Analysis: setting $d_t = t |\partial A|$, we get $s_t = t |\partial A|$. Thus, $d_t \leq ts_t$ can be satisfied with t = 1 (constant). Hence, $S(\Omega_A) \leq t |\partial A| = |\partial A|$.
- Unfortunately, the construction heavily uses the integer spectrum and can't be generalized to continuous spectrum of a non-commuting Hamiltonian.

Polynomial

Sub-volume law

Discussion

Upcoming section

Introduction

Bounding entanglement entropy

Polynomials

Sub-volume law

Discussion

・ロ ・ ・ 一部 ・ く 注 ト く 注 ト 注 の Q (C)
26 / 40

Approach

- Make the improved Chebyshev approximation more friendly for non-commuting case, using robust polynomials.
- Use it, battling non-commutativity, to get improved approximation in 2D (requires local gap assumption).

Robust polynomials

• Let $p: \{0,1\}^m \to \{0,1\}$ be a boolean function of degree d.

イロト 不同下 イヨト イヨト

3

28 / 40

Robust polynomials

- Let $p: \{0,1\}^m \to \{0,1\}$ be a boolean function of degree d.
- Sherstov [2012]: there is a polynomial Rob_p : ℝ^m → ℝ of degree 2d which is robust:

イロト 不得下 イヨト イヨト 二日

28 / 40

Robust polynomials

- Let $p: \{0,1\}^m \to \{0,1\}$ be a boolean function of degree d.
- Sherstov [2012]: there is a polynomial Rob_p : ℝ^m → ℝ of degree 2d which is robust:
 - Take a binary string (x_1, x_2, \ldots, x_m) and corrupt its values to $(x_1 + e_1, x_2 + e_2, \ldots, x_m + e_m) \in \mathbb{R}^m$. Here $e_i \in (-\frac{1}{10}, \frac{1}{10})$.

・ロン ・四 と ・ ヨ と ・ ヨ

28 / 40

Robust polynomials

- Let $p: \{0,1\}^m \to \{0,1\}$ be a boolean function of degree d.
- Sherstov [2012]: there is a polynomial Rob_p : ℝ^m → ℝ of degree 2d which is robust:
 - Take a binary string (x_1, x_2, \ldots, x_m) and corrupt its values to $(x_1 + e_1, x_2 + e_2, \ldots, x_m + e_m) \in \mathbb{R}^m$. Here $e_i \in (-\frac{1}{10}, \frac{1}{10})$.
 - Feed in corrupted input to Rob_p . It holds that

 $\operatorname{Rob}_{p}(x_{1}+e_{1},x_{2}+e_{2},\ldots,x_{m}+e_{m})=p(x_{1},x_{2},\ldots,x_{m})\pm 2^{-d}.$

イロト イポト イヨト イヨト

Discussion

29 / 40

Improved approximation for AND

• Note that $\operatorname{AND}_{t|\partial A|} = \operatorname{AND}_{\frac{t}{m}} \circ \left(\operatorname{AND}_{m|\partial A|}\right)^{\times \frac{t}{m}}$.

Discussion

Improved approximation for AND

- Note that $\operatorname{AND}_{t|\partial A|} = \operatorname{AND}_{\frac{t}{m}} \circ \left(\operatorname{AND}_{m|\partial A|}\right)^{\times \frac{t}{m}}$.
- Approximate $AND_{m|\partial A|}$ by Chebyshev polynomial q with error $\frac{1}{10}$ and degree $\approx \sqrt{m|\partial A|}$.

Discussion

Improved approximation for AND

- Note that $\operatorname{AND}_{t|\partial A|} = \operatorname{AND}_{\frac{t}{m}} \circ \left(\operatorname{AND}_{m|\partial A|}\right)^{\times \frac{t}{m}}$.
- Approximate $AND_{m|\partial A|}$ by Chebyshev polynomial q with error $\frac{1}{10}$ and degree $\approx \sqrt{m|\partial A|}$.
- Approximate $\operatorname{AND}_{t|\partial A|}$ by $\operatorname{Rob}_{\operatorname{AND}\underline{t}} \circ (q)^{\times \frac{t}{m}}$.

29 / 40

Introduction

イロン イロン イヨン イヨン 三日

30 / 40

Improved approximation for AND

• Degree is
$$d_t = \frac{2t}{m} \times \sqrt{m|\partial A|} = \frac{2t\sqrt{|\partial A|}}{\sqrt{m}}.$$

• Error is
$$e^{-s_t} = 2^{-\frac{t}{m}}$$
.

• Since
$$m = \frac{4t^2 |\partial A|}{d_t^2}$$
, we recover

$$s_t = \frac{d_t^2}{4t|\partial A|}.$$

• Since $1 \le m \le t$, we also recover the constraint $2\sqrt{t|\partial A|} \le d_t \le 2t|\partial A|$.

Lifting to local hamiltonian setting

• Assume that the hamiltonian on the blue blocks is also gapped: local gap assumption.

Lifting to local hamiltonian setting

- Assume that the hamiltonian on the blue blocks is also gapped: local gap assumption.
- Quantum friendly: Approximate $AND_{m|\partial A|}$ by Chebyshev polynomial q with error $\frac{1}{10}$ and degree $\approx \sqrt{m|\partial A|}$.
- Robust polynomial is also quantum friendly.

Lifting to local hamiltonian setting

- Assume that the hamiltonian on the blue blocks is also gapped: local gap assumption.
- Quantum friendly: Approximate $AND_{m|\partial A|}$ by Chebyshev polynomial q with error $\frac{1}{10}$ and degree $\approx \sqrt{m|\partial A|}$.
- Robust polynomial is also quantum friendly.
- But we are missing out the ground space of H.

Coarse-grained detectability lemma

• Coarse-grained detectability lemma (A., Arad, Vidick [2016]; Aharonov, Arad, Landau, Vazirani [2011]): The 'AND' of blue and red projectors, that is,

 $Blue_1 \cdot Blue_2 \cdot Blue_3 \cdot Red_1 \cdot Red_2$

is e^{-m} close to the ground space on $t|\partial A|$ qudits.

Subvolume law of 5/3

• Repeat the analysis for the improved approximation to AND, but including the additional error of e^{-m} due to detectability lemma.

イロト 不同下 イヨト イヨト

33 / 40

Subvolume law of 5/3

 Repeat the analysis for the improved approximation to AND, but including the additional error of e^{-m} due to detectability lemma.

Theorem (A., Arad, Gosset, 2019)

For locally gapped FF spin systems (local gap constant), we have

$$\mathrm{S}\left(\Omega_{\mathcal{A}}
ight) = ilde{\mathcal{O}}\left(|\partial\mathcal{A}|^{5/3}
ight).$$
(日) (同) (三) (三)

34/40

How far can this go?

• Due to non-commutativity, a degree *d_t* polynomial can only be expected to achieve

• If this were the correct behaviour, we would get $S(\Omega_A) \approx |\partial A|^{3/2}$ (Work in progress).

Discussion

Upcoming section

Introduction

Bounding entanglement entropy

Polynomials

Sub-volume law

Discussion

・ロ ・ < 部 ・ < 注 ・ く 注 ・ 注 の Q (C)
35 / 40

• Present in some prior works such as Michalakis, Zwolak (2011); Sattath, Gilyen (2016);

- Present in some prior works such as Michalakis, Zwolak (2011); Sattath, Gilyen (2016);
- If spectral gap is $\mathcal{O}(1)$, then is local gap $\mathcal{O}(1)$ too?

- Present in some prior works such as Michalakis, Zwolak (2011); Sattath, Gilyen (2016);
- If spectral gap is $\mathcal{O}(1)$, then is local gap $\mathcal{O}(1)$ too?
- Helpful FF example from Michalakis, Zwolak (2011):

$$H = \sum_{i=1}^{N-1} \left(|00\rangle \langle 00|_{i,i+1} + |11\rangle \langle 11|_{i,i+1} + \frac{\delta_{i=even}}{3N} |01\rangle \langle 01|_{i,i+1} \right),$$

• Ground state is $|010101\ldots\rangle,$ spectral gap is $\frac{2}{3},$ but local gap is $\frac{1}{3N}.$

- Present in some prior works such as Michalakis, Zwolak (2011); Sattath, Gilyen (2016);
- If spectral gap is $\mathcal{O}(1)$, then is local gap $\mathcal{O}(1)$ too?
- Helpful FF example from Michalakis, Zwolak (2011):

$$H = \sum_{i=1}^{N-1} \left(|00\rangle \langle 00|_{i,i+1} + |11\rangle \langle 11|_{i,i+1} + \frac{\delta_{i=even}}{3N} |01\rangle \langle 01|_{i,i+1} \right),$$

- Ground state is $|010101\ldots\rangle,$ spectral gap is $\frac{2}{3},$ but local gap is $\frac{1}{3N}.$
- But mapping $h_{i,j} \rightarrow \operatorname{span}(h_{i,j})$, new *H* has local gap 1.

 For every FF hamiltonian H, is there a transformation to H' that is a sum of projectors, such that γ_{loc} ≥ γ^c, for some constant c?

- For every FF hamiltonian H, is there a transformation to H' that is a sum of projectors, such that γ_{loc} ≥ γ^c, for some constant c?
- Are constructions from Cubitt, Perez-Garcia-Wolf (2015); Bausch, Cubitt, Lucia, Perez-Garcia (2018) counter examples?

- For every FF hamiltonian H, is there a transformation to H' that is a sum of projectors, such that γ_{loc} ≥ γ^c, for some constant c?
- Are constructions from Cubitt, Perez-Garcia-Wolf (2015); Bausch, Cubitt, Lucia, Perez-Garcia (2018) counter examples?
- Note that γ can be lower bounded in terms of γ_{loc} due to Knabe's theorem (1988) and its generalizations: Gosset, Mozgunov [2015]; Kastoryano, Lucia [2017]; Lemm, Mozgunov [2018]; etc.

Representation of 2D ground state

- Recent work of Abrahamsen [2020] shows subexponential algorithms for preparing locally gapped FF ground states.
- It is possible to show that there exist PEPS representations with better scaling for such ground states?
- Can AGSPs circumvent the information theoretic limitation of "area law doesn't imply PEPS with polynomial bond dimension" (Ge, Eisert 204)?

Polynomial

ub-volume lav

(ロ) (四) (三) (三) (三)

Discussion

39/40

Scaling with gap, and a coincidence (?)

- Prior works: $\frac{|\partial A|^2}{\gamma}$.
- Our result: $\frac{|\partial A|^{5/3}}{\gamma^{5/6}}$.
- Hopeful conjecture: $\frac{|\partial A|^{3/2}}{\gamma^{3/4}}$.
- Gosset-Huang conjecture: 1D scaling of FF systems is $\frac{1}{\sqrt{\gamma}}$ (the correlation length).

Introduction

Discussion

Thank you for your attention!

・ロ ・ ・ (部 ・ く 注 ・ く 注 ・ 注 ・ の へ C
40 / 40