The robust polynomial method and a subvolume law for locally gapped frustration-free 2D spin systems

Anurag Anshu
Joint work with Itai Arad (Technion, Israel) and David Gosset (IQC, Canada)

Institute for Quantum Computing and Perimeter Institute for Theoretical Physics, Waterloo

April 14, 2020

Upcoming section

Introduction

Bounding entanglement entropy

Polynomials

Sub-volume law

Discussion

Square lattice

Square lattice

Square lattice

- Suppose $0 \preceq h \preceq \mathrm{I}$.

Square lattice

Square lattice

- $H=\sum_{i=1}^{n-1} \sum_{j=1}^{L-1}\left(\mathrm{I} \otimes \mathrm{I} \otimes \ldots h_{i, j} \otimes \ldots \mathrm{I}\right)$.

Ground state and frustration-free assumption

- Ground state $|\Omega\rangle$.
- Eigenstate of H with smallest energy. We assume its unique.

Ground state and frustration-free assumption

- Ground state $|\Omega\rangle$.
- Eigenstate of H with smallest energy. We assume its unique.
- Spectral gap γ.
- Difference between smallest and second smallest eigen-energies.

Ground state and frustration-free assumption

- Ground state $|\Omega\rangle$.
- Eigenstate of H with smallest energy. We assume its unique.
- Spectral gap γ.
- Difference between smallest and second smallest eigen-energies.
- Frustation-free (FF).
- $h_{i, j}|\Omega\rangle=0, \quad \forall i, j$.

Ground state and frustration-free assumption

- Ground state $|\Omega\rangle$.
- Eigenstate of H with smallest energy. We assume its unique.
- Spectral gap γ.
- Difference between smallest and second smallest eigen-energies.
- Frustation-free (FF).
- $h_{i, j}|\Omega\rangle=0, \quad \forall i, j$.
- FF allows us to choose $h_{i, j}^{2}=h_{i, j}$.
- Mapping $h_{i, j} \rightarrow \operatorname{span}\left(h_{i, j}\right)$ does not change $|\Omega\rangle$ and changes γ by a constant.

Entanglement entropy

Bound on $S\left(\Omega_{A}\right)$?

Entanglement entropy

- Area law: $\mathrm{S}\left(\Omega_{A}\right)=\mathcal{O}(|\partial A|)$.
- Trivial volume law: $\mathrm{S}\left(\Omega_{A}\right)=\mathcal{O}\left(|\partial A|^{2}\right)$.
- Sub-volume law: $\mathrm{S}\left(\Omega_{A}\right)=\mathcal{O}\left(|\partial A|^{c}\right)$ for some $1<c<2$.

Entanglement entropy

- Area law: $\mathrm{S}\left(\Omega_{A}\right)=\mathcal{O}(|\partial A|)$.
- Trivial volume law: $\mathrm{S}\left(\Omega_{A}\right)=\mathcal{O}\left(|\partial A|^{2}\right)$.
- Sub-volume law: $\mathrm{S}\left(\Omega_{A}\right)=\mathcal{O}\left(|\partial A|^{c}\right)$ for some $1<c<2$.

Conjecture

Area law conjecture: Unique ground state of a gapped hamiltonian ($\gamma=$ some constant) satisfies an area law across every bi-partition ∂A.

Entanglement entropy

- Area law: $\mathrm{S}\left(\Omega_{A}\right)=\mathcal{O}(|\partial A|)$.
- Trivial volume law: $\mathrm{S}\left(\Omega_{A}\right)=\mathcal{O}\left(|\partial A|^{2}\right)$.
- Sub-volume law: $\mathrm{S}\left(\Omega_{A}\right)=\mathcal{O}\left(|\partial A|^{c}\right)$ for some $1<c<2$.

Conjecture

Area law conjecture: Unique ground state of a gapped hamiltonian ($\gamma=$ some constant) satisfies an area law across every bi-partition ∂A.

Most quantum states satisfy volume law. Thus area/sub-volume laws show that ground states are 'simpler' than most quantum states.

Results in 1D

Hastings [2007]	$\exp (\mathcal{O}(1 / \gamma))$
Aharonov, Arad, Landau, Vazirani [2011] (FF)	$\exp (\mathcal{O}(1 / \gamma))$
Arad, Landau, Vazirani [2012] (FF)	$\mathcal{O}\left(1 / \gamma^{3}\right)$
Arad, Kitaev, Landau, Vazirani [2013]	$\mathcal{O}(1 / \gamma)$

Conjecture of Gosset, Huang [2016]: Scaling for FF is $\mathcal{O}\left(\frac{1}{\sqrt{\gamma}}\right)$.

Implications of 1D area law

- 1D area law implies gapped ground state can be approximated by a Matrix-Product State of 'small' bond dimension.
- Supports the success of Density Matrix Renormalization Group algorithm (White [1992]).
- Polynomial time algorithm for ground states (Landau, Vidick, Vazirani [2013]; Arad, Landau, Vidick, Vazirani [2016]).

Prior work in 2D

Area law for ground states of local Hamiltonian shown under several assumptions:

Prior work in 2D

Area law for ground states of local Hamiltonian shown under several assumptions:

- Subexponential number of low energy eigenstates. Hastings [2007], Masanes [2009]

Prior work in 2D

Area law for ground states of local Hamiltonian shown under several assumptions:

- Subexponential number of low energy eigenstates. Hastings [2007], Masanes [2009]
- Spin $1 / 2$ lattice with nearest neighbour interaction Beaudrap, Osborne, Eisert [2010]

Prior work in 2D

Area law for ground states of local Hamiltonian shown under several assumptions:

- Subexponential number of low energy eigenstates. Hastings [2007], Masanes [2009]
- Spin $1 / 2$ lattice with nearest neighbour interaction Beaudrap, Osborne, Eisert [2010]
- Adiabatic assumption. Cho [2014].

Prior work in 2D

Area law for ground states of local Hamiltonian shown under several assumptions:

- Subexponential number of low energy eigenstates. Hastings [2007], Masanes [2009]
- Spin 1/2 lattice with nearest neighbour interaction Beaudrap, Osborne, Eisert [2010]
- Adiabatic assumption. Cho [2014].
- Assumptions on specific heat. Brandão, Cramer [2015].

For commuting hamiltonian: $\left[h_{i, j}, h_{i^{\prime}, j^{\prime}}\right]=0$, area law holds in all dimensions.

Upcoming section

Introduction

Bounding entanglement entropy

Polynomials

Sub-volume law

Discussion

Approximation to ground space

- Schmidt rank of an operator K : smallest D such that

$$
K=\sum_{i=1}^{D} K_{A}^{i} \otimes K_{A^{c}}^{i}
$$

- We denote it by $\operatorname{SR}(K)$.

Approximation to ground space

- Schmidt rank of an operator K : smallest D such that

$$
K=\sum_{i=1}^{D} K_{A}^{i} \otimes K_{A^{c}}^{i}
$$

- We denote it by $\operatorname{SR}(K)$.
- Suppose there were a PSD operator $K_{\text {imaginary }}$ such that
- $\| K_{\text {imaginary }}-|\Omega\rangle\langle\Omega| \|_{1} \leq \varepsilon$.
- $\operatorname{SR}\left(K_{\text {imaginary }}\right)=$ small.

Approximation to ground space

- Schmidt rank of an operator K : smallest D such that

$$
K=\sum_{i=1}^{D} K_{A}^{i} \otimes K_{A^{c}}^{i}
$$

- We denote it by $\operatorname{SR}(K)$.
- Suppose there were a PSD operator $K_{\text {imaginary }}$ such that
- $\| K_{\text {imaginary }}-|\Omega\rangle\langle\Omega| \|_{1} \leq \varepsilon$.
- $\operatorname{SR}\left(K_{\text {imaginary }}\right)=$ small.
- $\mathrm{S}\left(\Omega_{A}\right) \leq$ log small +

Approximation to ground space

- Schmidt rank of an operator K : smallest D such that

$$
K=\sum_{i=1}^{D} K_{A}^{i} \otimes K_{A^{c}}^{i}
$$

- We denote it by $\operatorname{SR}(K)$.
- Suppose there were a PSD operator $K_{\text {imaginary }}$ such that
- $\| K_{\text {imaginary }}-|\Omega\rangle\langle\Omega| \|_{1} \leq \varepsilon$.
- $\operatorname{SR}\left(K_{\text {imaginary }}\right)=$ small.
- $\mathrm{S}\left(\Omega_{A}\right) \leq \log$ small $+\underbrace{\varepsilon|A|}_{\text {(Alicki-Fannes) }}$.
- But imaginary \neq real.
- True situation: $\| K-|\Omega\rangle\langle\Omega| \|_{\infty} \leq \varepsilon$.

Approximation to ground space

- Hastings [2007]; Aharonov, Arad, Landau, Vazirani [2011]; Arad, Landau, Vazirani [2012].

Approximation to ground space

- Hastings [2007]; Aharonov, Arad, Landau, Vazirani [2011]; Arad, Landau, Vazirani [2012].
- $\| K-|\Omega\rangle\langle\Omega| \|_{\infty} \leq \Delta$ and $\operatorname{SR}(K)=D$.
- For FF systems, we also have $K|\Omega\rangle=|\Omega\rangle$.

Approximation to ground space

Theorem (Hastings 2007; Arad, Landau, Vazirani 2012)

$$
\underbrace{S_{\text {min }}\left(\Omega_{A}\right) \leq}_{\text {obvious }} \mathrm{S}\left(\Omega_{A}\right) \leq \frac{\log D}{\log \frac{1}{\Delta}} \mathrm{~S}_{\text {min }}\left(\Omega_{A}\right)+\log D
$$

Approximation to ground space

Theorem (Hastings 2007; Arad, Landau, Vazirani 2012)

- Hastings [2007]: In 1D, it holds that $\mathrm{S}_{\text {min }}\left(\Omega_{A}\right) \leq e^{\mathcal{O}\left(\frac{1}{\gamma}\right)}$.

Approximation to ground space

Theorem (Hastings 2007; Arad, Landau, Vazirani 2012)

- Hastings [2007]: In 1D, it holds that $\mathrm{S}_{\text {min }}\left(\Omega_{A}\right) \leq e^{\mathcal{O}\left(\frac{1}{\gamma}\right)}$.
- What happens if $\frac{\log D}{\log \frac{1}{\Delta}}<1$?

Approximation to ground space

Theorem (Hastings 2007; Arad, Landau, Vazirani 2012)

- Hastings [2007]: In 1D, it holds that $\mathrm{S}_{\text {min }}\left(\Omega_{A}\right) \leq e^{\mathcal{O}\left(\frac{1}{\gamma}\right)}$.
- What happens if $\frac{\log D}{\log \frac{1}{\Delta}}<1$?

Theorem (Arad, Landau, Vazirani 2012)
If $D \Delta<\frac{1}{2}$ (the AGSP condition), then

$$
\mathrm{S}\left(\Omega_{A}\right) \leq 2 \log D .
$$

Polynomial approximation to ground space

- Arad, Landau, Vazirani [2012] and Arad, Kitaev, Landau, Vazirani [2013] viewed K as polynomials of H.
- Ground state is a function of H.

Polynomial approximation to ground space

- Arad, Landau, Vazirani [2012] and Arad, Kitaev, Landau, Vazirani [2013] viewed K as polynomials of H.
- Ground state is a function of H.
- $f_{\text {ground }}(x)=1$ if $x=0$ and 0 otherwise.

Polynomial approximation to ground space

- Arad, Landau, Vazirani [2012] and Arad, Kitaev, Landau, Vazirani [2013] viewed K as polynomials of H.
- Ground state is a function of H.
- $f_{\text {ground }}(x)=1$ if $x=0$ and 0 otherwise.
- Then $f_{\text {ground }}(H)=|\Omega\rangle\langle\Omega|$.

Polynomial approximation to ground space

- Arad, Landau, Vazirani [2012] and Arad, Kitaev, Landau, Vazirani [2013] viewed K as polynomials of H.
- Ground state is a function of H.
- $f_{\text {ground }}(x)=1$ if $x=0$ and 0 otherwise.
- Then $f_{\text {ground }}(H)=|\Omega\rangle\langle\Omega|$.
- Approximate $f_{\text {ground }}$ using tools from approximation theory.

Polynomial approximation to ground space

- Suppose $K(H)$ has degree d and $\Delta=e^{-s}$.

Polynomial approximation to ground space

- Suppose $K(H)$ has degree d and $\Delta=e^{-s}$.
- Expectation: $D=\operatorname{SR}(K) \leq e^{d}$
- Think of a multinomial $h_{7,1} h_{7,3} \underbrace{\ldots}_{d \text { times }} h_{7,21}$.

Polynomial approximation to ground space

- Suppose $K(H)$ has degree d and $\Delta=e^{-s}$.
- Expectation: $D=\operatorname{SR}(K) \leq e^{d}$
- Think of a multinomial $h_{7,1} h_{7,3} \underbrace{\ldots}_{d \text { times }} h_{7,21}$.
- If $d<s$, then AGSP condition is satisfied.
- Unfortunately, a stringent condition in practise.

Polynomial approximation to ground space

- A family of AGSPs: K_{t} with degree d_{t} (in dark blue region) and $\Delta=e^{-s_{t}}$.

Polynomial approximation to ground space

- A family of AGSPs: K_{t} with degree d_{t} (in dark blue region) and $\Delta=e^{-s_{t}}$.

Theorem (Arad, Landau, Vazirani (2012); Arad, Kitaev, Landau, Vazirani (2013))
If $d_{t} \leq t \cdot s_{t}$, then AGSP condition is satisfied and $\mathrm{S}\left(\Omega_{A}\right) \leq t|\partial A|$.

Upcoming section

Introduction

Bounding entanglement entropy

Polynomials

Sub-volume law

Discussion

Approximations to $f_{\text {ground }}$

- $f_{\text {ground }}(x)=1$ if $x=0$ and 0 otherwise.

- Chebyshev polynomials, for a given degree, achieve the smallest approximation.

Approximations to $f_{g r o u n d ~}$

- $f_{\text {ground }}(x)=1$ if $x=0$ and 0 otherwise.

- Chebyshev polynomials, for a given degree, achieve the smallest approximation.
- Let us assume $\gamma=$ constant, till penultimate slide.

Chebyshev approximation

- Chebyshev polynomial achieves $d_{t}=\sqrt{t|\partial A|}$ and $\Delta=e^{-s_{t}}=\frac{1}{3}$.
- Grover's search solves AND_{n} with \sqrt{n} queries.
- The resulting polynomial is, via symmetrization, polynomial of a "hamming-weight hamiltonian".

Chebyshev approximation

- Chebyshev polynomial achieves $d_{t}=\sqrt{t|\partial A|}$ and $\Delta=e^{-s_{t}}=\frac{1}{3}$.
- Grover's search solves AND_{n} with \sqrt{n} queries.
- The resulting polynomial is, via symmetrization, polynomial of a "hamming-weight hamiltonian".
- Recall: If $d_{t} \leq t \cdot s_{t}$, then $S\left(\Omega_{A}\right) \leq t|\partial A|$.

Chebyshev approximation

- Chebyshev polynomial achieves $d_{t}=\sqrt{t|\partial A|}$ and $\Delta=e^{-s_{t}}=\frac{1}{3}$.
- Grover's search solves AND_{n} with \sqrt{n} queries.
- The resulting polynomial is, via symmetrization, polynomial of a "hamming-weight hamiltonian".
- Recall: If $d_{t} \leq t \cdot s_{t}$, then $S\left(\Omega_{A}\right) \leq t|\partial A|$.
- Evaluating $d_{t} \leq t s_{t}$, we get $t>|\partial A|$.
- Still a volume law. Note: any improvement would give subvolume law.

Chebyshev approximation

- Chebyshev polynomial achieves $d_{t}=\sqrt{t|\partial A|}$ and $\Delta=e^{-s_{t}}=\frac{1}{3}$.
- Grover's search solves AND_{n} with \sqrt{n} queries.
- The resulting polynomial is, via symmetrization, polynomial of a "hamming-weight hamiltonian".
- Recall: If $d_{t} \leq t \cdot s_{t}$, then $S\left(\Omega_{A}\right) \leq t|\partial A|$.
- Evaluating $d_{t} \leq t s_{t}$, we get $t>|\partial A|$.
- Still a volume law. Note: any improvement would give subvolume law.
- But what about commuting case?

Improved Chebyshev approximations for integer points

Inclusion-exclusion: Exact and approximate

Jeff Kahn Nathan Linial \& Alex Samorodnitsky
Combinatorica 16,465-477(1996) | Cite this article
329 Accesses | $\mathbf{3 5}$ Citations \mid Metrics

Improved Chebyshev approximations for integer points

- Commuting FF hamiltonians have integer spectrum.

Improved Chebyshev approximations for integer points

- Commuting FF hamiltonians have integer spectrum.
- Approximation to $f_{\text {ground }}$ only on integer spectrum is better (Kahn, Linial, Samorodnitsky [1996]). One has $s_{t}=\frac{d_{t}^{2}}{t|\partial A|}$ for all $\sqrt{t|\partial A|} \leq d_{t} \leq t|\partial A|$.

Improved Chebyshev approximations for integer points

- Commuting FF hamiltonians have integer spectrum.
- Approximation to $f_{\text {ground }}$ only on integer spectrum is better (Kahn, Linial, Samorodnitsky [1996]). One has $s_{t}=\frac{d_{t}^{2}}{t|\partial A|}$ for all $\sqrt{t|\partial A|} \leq d_{t} \leq t|\partial A|$.
- This polynomial was discovered independently in (Buhrman, Cleve, de Wolf, Zalka [1999]), who showed that quantum query complexity for AND_{n} with error ε requires $\sqrt{n \log \frac{1}{\varepsilon}}$ queries, instead of $\sqrt{n} \log \frac{1}{\varepsilon}$ queries.
- $\log \frac{1}{\varepsilon} \equiv s_{t}$ and queries $\equiv d_{t}$.

Improved Chebyshev approximations for integer points

- Analysis: setting $d_{t}=t|\partial A|$, we get $s_{t}=t|\partial A|$. Thus, $d_{t} \leq t s_{t}$ can be satisfied with $t=1$ (constant). Hence, $\mathrm{S}\left(\Omega_{A}\right) \leq t|\partial A|=|\partial A|$.

Improved Chebyshev approximations for integer points

- Analysis: setting $d_{t}=t|\partial A|$, we get $s_{t}=t|\partial A|$. Thus, $d_{t} \leq t s_{t}$ can be satisfied with $t=1$ (constant). Hence, $\mathrm{S}\left(\Omega_{A}\right) \leq t|\partial A|=|\partial A|$.
- Unfortunately, the construction heavily uses the integer spectrum and can't be generalized to continuous spectrum of a non-commuting Hamiltonian.

Upcoming section

Introduction

Bounding entanglement entropy

Polynomials

Sub-volume law

Discussion

Approach

- Make the improved Chebyshev approximation more friendly for non-commuting case, using robust polynomials.
- Use it, battling non-commutativity, to get improved approximation in 2D (requires local gap assumption).

Robust polynomials

- Let $p:\{0,1\}^{m} \rightarrow\{0,1\}$ be a boolean function of degree d.

Robust polynomials

- Let $p:\{0,1\}^{m} \rightarrow\{0,1\}$ be a boolean function of degree d.
- Sherstov [2012]: there is a polynomial $\operatorname{Rob}_{p}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ of degree $2 d$ which is robust:

Robust polynomials

- Let $p:\{0,1\}^{m} \rightarrow\{0,1\}$ be a boolean function of degree d.
- Sherstov [2012]: there is a polynomial $\operatorname{Rob}_{p}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ of degree $2 d$ which is robust:
- Take a binary string $\left(x_{1}, x_{2}, \ldots x_{m}\right)$ and corrupt its values to $\left(x_{1}+e_{1}, x_{2}+e_{2}, \ldots x_{m}+e_{m}\right) \in \mathbb{R}^{m}$. Here $e_{i} \in\left(-\frac{1}{10}, \frac{1}{10}\right)$.

Robust polynomials

- Let $p:\{0,1\}^{m} \rightarrow\{0,1\}$ be a boolean function of degree d.
- Sherstov [2012]: there is a polynomial $\operatorname{Rob}_{p}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ of degree $2 d$ which is robust:
- Take a binary string $\left(x_{1}, x_{2}, \ldots x_{m}\right)$ and corrupt its values to $\left(x_{1}+e_{1}, x_{2}+e_{2}, \ldots x_{m}+e_{m}\right) \in \mathbb{R}^{m}$. Here $e_{i} \in\left(-\frac{1}{10}, \frac{1}{10}\right)$.
- Feed in corrupted input to Rob ${ }_{p}$. It holds that

$$
\operatorname{Rob}_{p}\left(x_{1}+e_{1}, x_{2}+e_{2}, \ldots x_{m}+e_{m}\right)=p\left(x_{1}, x_{2}, \ldots x_{m}\right) \pm 2^{-d}
$$

Improved approximation for AND

- Note that $\mathrm{AND}_{t|\partial A|}=\mathrm{AND}_{\frac{t}{m}} \circ\left(\operatorname{AND}_{m|\partial A|}\right)^{\times \frac{t}{m}}$.

Improved approximation for AND

- Note that $\mathrm{AND}_{t|\partial A|}=\mathrm{AND}_{\frac{t}{m}} \circ\left(\operatorname{AND}_{m|\partial A|}\right)^{\times \frac{t}{m}}$.
- Approximate $\mathrm{AND}_{m|\partial A|}$ by Chebyshev polynomial q with error $\frac{1}{10}$ and degree $\approx \sqrt{m|\partial A|}$.

Improved approximation for AND

- Note that $\mathrm{AND}_{t|\partial A|}=\mathrm{AND}_{\frac{t}{m}} \circ\left(\operatorname{AND}_{m|\partial A|}\right)^{\times \frac{t}{m}}$.
- Approximate $\mathrm{AND}_{m|\partial A|}$ by Chebyshev polynomial q with error $\frac{1}{10}$ and degree $\approx \sqrt{m|\partial A|}$.
- Approximate $\operatorname{AND}_{t|\partial A|}$ by $\operatorname{Rob}_{\operatorname{AND}_{\frac{t}{m}}} \circ(q)^{\times \frac{t}{m}}$.

Improved approximation for AND

- Degree is $d_{t}=\frac{2 t}{m} \times \sqrt{m|\partial A|}=\frac{2 t \sqrt{|\partial A|}}{\sqrt{m}}$.
- Error is $e^{-s_{t}}=2^{-\frac{t}{m}}$.
- Since $m=\frac{4 t^{2}|\partial A|}{d_{t}^{2}}$, we recover

$$
s_{t}=\frac{d_{t}^{2}}{4 t|\partial A|}
$$

- Since $1 \leq m \leq t$, we also recover the constraint $2 \sqrt{t|\partial A|} \leq d_{t} \leq 2 t|\partial A|$.

Lifting to local hamiltonian setting

- Assume that the hamiltonian on the blue blocks is also gapped: local gap assumption.

Lifting to local hamiltonian setting

- Assume that the hamiltonian on the blue blocks is also gapped: local gap assumption.
- Quantum friendly: Approximate $\mathrm{AND}_{m|\partial A|}$ by Chebyshev polynomial q with error $\frac{1}{10}$ and degree $\approx \sqrt{m|\partial A|}$.
- Robust polynomial is also quantum friendly.

Lifting to local hamiltonian setting

- Assume that the hamiltonian on the blue blocks is also gapped: local gap assumption.
- Quantum friendly: Approximate $\mathrm{AND}_{m|\partial A|}$ by Chebyshev polynomial q with error $\frac{1}{10}$ and degree $\approx \sqrt{m|\partial A|}$.
- Robust polynomial is also quantum friendly.
- But we are missing out the ground space of H.

Coarse-grained detectability lemma

- Coarse-grained detectability lemma (A., Arad, Vidick [2016]; Aharonov, Arad, Landau, Vazirani [2011]): The 'AND' of blue and red projectors, that is,

$$
\text { Blue }_{1} \cdot \text { Blue }_{2} \cdot \text { Blue }_{3} \cdot \operatorname{Red}_{1} \cdot \operatorname{Red}_{2}
$$

is e^{-m} close to the ground space on $t|\partial A|$ qudits.

Subvolume law of $5 / 3$

- Repeat the analysis for the improved approximation to AND, but including the additional error of e^{-m} due to detectability lemma.

Subvolume law of $5 / 3$

- Repeat the analysis for the improved approximation to AND, but including the additional error of e^{-m} due to detectability lemma.

Theorem (A., Arad, Gosset, 2019)
For locally gapped FF spin systems (local gap constant), we have

$$
\mathrm{S}\left(\Omega_{A}\right)=\tilde{\mathcal{O}}\left(|\partial A|^{5 / 3}\right)
$$

How far can this go?

- Due to non-commutativity, a degree d_{t} polynomial can only be expected to achieve

$$
e^{-s_{t}}=\underbrace{e^{-\frac{d_{t}^{2}}{t|\partial A|}}}_{\text {Improved Chebyshev }}+\underbrace{e^{-t}}_{\text {Detectability lemma }}
$$

- If this were the correct behaviour, we would get $\mathrm{S}\left(\Omega_{A}\right) \approx|\partial A|^{3 / 2}$ (Work in progress).

Upcoming section

Introduction

Bounding entanglement entropy

Polynomials

Sub-volume law

Discussion

Local gap assumption

- Present in some prior works such as Michalakis, Zwolak (2011); Sattath, Gilyen (2016);

Local gap assumption

- Present in some prior works such as Michalakis, Zwolak (2011); Sattath, Gilyen (2016);
- If spectral gap is $\mathcal{O}(1)$, then is local gap $\mathcal{O}(1)$ too?

Local gap assumption

- Present in some prior works such as Michalakis, Zwolak (2011); Sattath, Gilyen (2016);
- If spectral gap is $\mathcal{O}(1)$, then is local gap $\mathcal{O}(1)$ too?
- Helpful FF example from Michalakis, Zwolak (2011):

$$
H=\sum_{i=1}^{N-1}\left(|00\rangle\left\langle\left. 00\right|_{i, i+1}+\mid 11\right\rangle\left\langle\left.\left. 11\right|_{i, i+1}+\frac{\delta_{i=\text { even }}}{3 N} \right\rvert\, 01\right\rangle\left\langle\left. 01\right|_{i, i+1}\right),\right.
$$

- Ground state is $|010101 \ldots\rangle$, spectral gap is $\frac{2}{3}$, but local gap is $\frac{1}{3 N}$.

Local gap assumption

- Present in some prior works such as Michalakis, Zwolak (2011); Sattath, Gilyen (2016);
- If spectral gap is $\mathcal{O}(1)$, then is local gap $\mathcal{O}(1)$ too?
- Helpful FF example from Michalakis, Zwolak (2011):

$$
H=\sum_{i=1}^{N-1}\left(|00\rangle\left\langle\left. 00\right|_{i, i+1}+\mid 11\right\rangle\left\langle\left.\left. 11\right|_{i, i+1}+\frac{\delta_{i=e v e n}}{3 N} \right\rvert\, 01\right\rangle\left\langle\left. 01\right|_{i, i+1}\right),\right.
$$

- Ground state is $|010101 \ldots\rangle$, spectral gap is $\frac{2}{3}$, but local gap is $\frac{1}{3 N}$.
- But mapping $h_{i, j} \rightarrow \operatorname{span}\left(h_{i, j}\right)$, new H has local gap 1 .

Local gap assumption

- For every FF hamiltonian H, is there a transformation to H^{\prime} that is a sum of projectors, such that $\gamma_{\text {loc }} \geq \gamma^{c}$, for some constant c ?

Local gap assumption

- For every FF hamiltonian H, is there a transformation to H^{\prime} that is a sum of projectors, such that $\gamma_{l o c} \geq \gamma^{c}$, for some constant c ?
- Are constructions from Cubitt, Perez-Garcia-Wolf (2015); Bausch, Cubitt, Lucia, Perez-Garcia (2018) counter examples?

Local gap assumption

- For every FF hamiltonian H, is there a transformation to H^{\prime} that is a sum of projectors, such that $\gamma_{l o c} \geq \gamma^{c}$, for some constant c ?
- Are constructions from Cubitt, Perez-Garcia-Wolf (2015); Bausch, Cubitt, Lucia, Perez-Garcia (2018) counter examples?
- Note that γ can be lower bounded in terms of $\gamma_{\text {loc }}$ due to Knabe's theorem (1988) and its generalizations: Gosset, Mozgunov [2015]; Kastoryano, Lucia [2017]; Lemm, Mozgunov [2018]; etc.

Representation of 2D ground state

- Recent work of Abrahamsen [2020] shows subexponential algorithms for preparing locally gapped FF ground states.
- It is possible to show that there exist PEPS representations with better scaling for such ground states?
- Can AGSPs circumvent the information theoretic limitation of "area law doesn't imply PEPS with polynomial bond dimension" (Ge, Eisert 204)?

Scaling with gap, and a coincidence (?)

- Prior works: $\frac{|\partial A|^{2}}{\gamma}$.
- Our result: $\frac{|\partial A|^{5 / 3}}{\gamma^{5 / 6}}$.
- Hopeful conjecture: $\frac{|\partial A|^{3 / 2}}{\gamma^{3 / 4}}$.
- Gosset-Huang conjecture: 1D scaling of FF systems is $\frac{1}{\sqrt{\gamma}}$ (the correlation length).

Thank you for your attention!

