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Square lattice

• H =
∑n−1

i=1

∑L−1
j=1 (I⊗ I⊗ . . . hi ,j ⊗ . . . I).
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Introduction Bounding entanglement entropy Polynomials Sub-volume law Discussion

Ground state and frustration-free assumption

• Ground state |Ω〉.
• Eigenstate of H with smallest energy. We assume its unique.

• Spectral gap γ.
• Difference between smallest and second smallest

eigen-energies.

• Frustation-free (FF).
• hi,j |Ω〉 = 0, ∀ i,j.

• FF allows us to choose h2
i ,j = hi ,j .

• Mapping hi,j → span(hi,j) does not change |Ω〉 and changes γ
by a constant.
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Entanglement entropy

A ∂A

Bound on S (ΩA)?
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Entanglement entropy

• Area law: S (ΩA) = O(|∂A|).

• Trivial volume law: S (ΩA) = O(|∂A|2).

• Sub-volume law: S (ΩA) = O(|∂A|c) for some 1 < c < 2.

Conjecture

Area law conjecture: Unique ground state of a gapped hamiltonian
(γ = some constant) satisfies an area law across every bi-partition
∂A.

Most quantum states satisfy volume law. Thus area/sub-volume
laws show that ground states are ‘simpler’ than most quantum
states.
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Results in 1D

Hastings [2007] exp (O(1/γ))

Aharonov, Arad, Landau, Vazirani
[2011] (FF)

exp (O(1/γ))

Arad, Landau, Vazirani [2012] (FF) O(1/γ3)

Arad, Kitaev, Landau, Vazirani [2013] O(1/γ)

Conjecture of Gosset, Huang [2016]: Scaling for FF is O
(

1√
γ

)
.
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Implications of 1D area law

• 1D area law implies gapped ground state can be approximated
by a Matrix-Product State of ‘small’ bond dimension.

• Supports the success of Density Matrix Renormalization
Group algorithm (White [1992]).

• Polynomial time algorithm for ground states (Landau, Vidick,
Vazirani [2013]; Arad, Landau, Vidick, Vazirani [2016]).

11 / 40



Introduction Bounding entanglement entropy Polynomials Sub-volume law Discussion

Prior work in 2D

Area law for ground states of local Hamiltonian shown under
several assumptions:

• Subexponential number of low energy eigenstates. Hastings
[2007], Masanes [2009]

• Spin 1/2 lattice with nearest neighbour interaction Beaudrap,
Osborne, Eisert [2010]

• Adiabatic assumption. Cho [2014].

• Assumptions on specific heat. Brandão, Cramer [2015].

For commuting hamiltonian: [hi ,j , hi ′,j ′ ] = 0, area law holds in all
dimensions.
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Approximation to ground space

• Schmidt rank of an operator K : smallest D such that

K =
D∑
i=1

K i
A ⊗ K i

Ac .

• We denote it by SR (K ).

• Suppose there were a PSD operator Kimaginary such that
• ‖Kimaginary − |Ω〉〈Ω| ‖1 ≤ ε.
• SR (Kimaginary ) = small.
• S (ΩA) ≤ log small + ε|A|︸︷︷︸

(Alicki-Fannes)

.

• But imaginary 6= real.

• True situation: ‖K − |Ω〉〈Ω| ‖∞ ≤ ε.
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Approximation to ground space

• Hastings [2007]; Aharonov, Arad, Landau, Vazirani [2011];
Arad, Landau, Vazirani [2012].

• ‖K − |Ω〉〈Ω| ‖∞ ≤ ∆ and SR (K ) = D.

• For FF systems, we also have K |Ω〉 = |Ω〉.
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Approximation to ground space

Theorem (Hastings 2007; Arad, Landau, Vazirani 2012)

Smin (ΩA) ≤︸ ︷︷ ︸
obvious

S (ΩA) ≤ logD

log 1
∆

Smin (ΩA) + logD.

• Hastings [2007]: In 1D, it holds that Smin (ΩA) ≤ e
O
(

1
γ

)
.

• What happens if log D
log 1

∆

< 1?

Theorem (Arad, Landau, Vazirani 2012)

If D∆ < 1
2 (the AGSP condition), then

S (ΩA) ≤ 2 logD.
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Polynomial approximation to ground space

• Arad, Landau, Vazirani [2012] and Arad, Kitaev, Landau,
Vazirani [2013] viewed K as polynomials of H.

• Ground state is a function of H.

• fground(x) = 1 if x = 0 and 0 otherwise.
• Then fground(H) = |Ω〉〈Ω|.
• Approximate fground using tools from approximation theory.
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Polynomial approximation to ground space

• Suppose K (H) has degree d and ∆ = e−s .

• Expectation: D = SR (K ) ≤ ed

• Think of a multinomial h7,1h7,3 . . .︸︷︷︸
d times

h7,21.

• If d < s, then AGSP condition is satisfied.

• Unfortunately, a stringent condition in practise.
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Polynomial approximation to ground space

t

|∂A|

• A family of AGSPs: Kt with degree dt (in dark blue region)
and ∆ = e−st .

Theorem (Arad, Landau, Vazirani (2012); Arad, Kitaev,
Landau, Vazirani (2013))

If dt ≤ t · st , then AGSP condition is satisfied and S (ΩA) ≤ t|∂A|.
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Approximations to fground

• fground(x) = 1 if x = 0 and 0 otherwise.

0 γ t|∂A|
∆

• Chebyshev polynomials, for a given degree, achieve the
smallest approximation.

• Let us assume γ = constant, till penultimate slide.
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Chebyshev approximation

• Chebyshev polynomial achieves dt =
√
t|∂A| and

∆ = e−st = 1
3 .

• Grover’s search solves ANDn with
√
n queries.

• The resulting polynomial is, via symmetrization, polynomial of
a “hamming-weight hamiltonian”.

• Recall: If dt ≤ t · st , then S (ΩA) ≤ t|∂A|.
• Evaluating dt ≤ tst , we get t > |∂A|.
• Still a volume law. Note: any improvement would give

subvolume law.

• But what about commuting case?
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Improved Chebyshev approximations for integer points

;
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Improved Chebyshev approximations for integer points

• Commuting FF hamiltonians have integer spectrum.

• Approximation to fground only on integer spectrum is better

(Kahn, Linial, Samorodnitsky [1996]). One has st = d2
t

t|∂A| for

all
√
t|∂A| ≤ dt ≤ t|∂A|.

• This polynomial was discovered independently in (Buhrman,
Cleve, de Wolf, Zalka [1999]), who showed that quantum

query complexity for ANDn with error ε requires
√
n log 1

ε

queries, instead of
√
n log 1

ε queries.

• log 1
ε ≡ st and queries ≡ dt .
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Improved Chebyshev approximations for integer points

• Analysis: setting dt = t|∂A|, we get st = t|∂A|. Thus,
dt ≤ tst can be satisfied with t = 1 (constant). Hence,
S (ΩA) ≤ t|∂A| = |∂A|.

• Unfortunately, the construction heavily uses the integer
spectrum and can’t be generalized to continuous spectrum of
a non-commuting Hamiltonian.
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Approach

• Make the improved Chebyshev approximation more friendly for
non-commuting case, using robust polynomials.

• Use it, battling non-commutativity, to get improved
approximation in 2D (requires local gap assumption).
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Robust polynomials

• Let p : {0, 1}m → {0, 1} be a boolean function of degree d .

• Sherstov [2012]: there is a polynomial Robp : Rm → R of
degree 2d which is robust:

• Take a binary string (x1, x2, . . . xm) and corrupt its values to
(x1 + e1, x2 + e2, . . . xm + em) ∈ Rm. Here ei ∈ (− 1

10 ,
1

10 ).
• Feed in corrupted input to Robp. It holds that

Robp(x1 + e1, x2 + e2, . . . xm + em) = p(x1, x2, . . . xm)± 2−d .

28 / 40
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Improved approximation for AND

t

m

|∂A|

• Note that ANDt|∂A| = AND t
m
◦
(
ANDm|∂A|

)× t
m .

• Approximate ANDm|∂A| by Chebyshev polynomial q with error
1

10 and degree ≈
√

m|∂A|.

• Approximate ANDt|∂A| by RobAND t
m
◦ (q)×

t
m .
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Improved approximation for AND

• Degree is dt = 2t
m ×

√
m|∂A| =

2t
√
|∂A|√
m

.

• Error is e−st = 2−
t
m .

• Since m = 4t2|∂A|
d2
t

, we recover

st =
d2
t

4t|∂A|
.

• Since 1 ≤ m ≤ t, we also recover the constraint
2
√

t|∂A| ≤ dt ≤ 2t|∂A|.

30 / 40



Introduction Bounding entanglement entropy Polynomials Sub-volume law Discussion

Lifting to local hamiltonian setting

t

m

|∂A|

?
?
?
?
?
?
?

?
?
?
?
?
?
?

• Assume that the hamiltonian on the blue blocks is also
gapped: local gap assumption.

• Quantum friendly: Approximate ANDm|∂A| by Chebyshev

polynomial q with error 1
10 and degree ≈

√
m|∂A|.

• Robust polynomial is also quantum friendly.

• But we are missing out the ground space of H.
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Coarse-grained detectability lemma

m

• Coarse-grained detectability lemma (A., Arad, Vidick [2016];
Aharonov, Arad, Landau, Vazirani [2011]): The ‘AND’ of
blue and red projectors, that is,

Blue1 · Blue2 · Blue3 · Red1 · Red2

is e−m close to the ground space on t|∂A| qudits.
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Subvolume law of 5/3

• Repeat the analysis for the improved approximation to AND,
but including the additional error of e−m due to detectability
lemma.

Theorem (A., Arad, Gosset, 2019)

For locally gapped FF spin systems (local gap constant), we have

S (ΩA) = Õ
(
|∂A|5/3

)
.
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How far can this go?

• Due to non-commutativity, a degree dt polynomial can only
be expected to achieve

e−st = e
− d2

t
t|∂A|︸ ︷︷ ︸

Improved Chebyshev

+ e−t︸︷︷︸
Detectability lemma

.

• If this were the correct behaviour, we would get
S (ΩA) ≈ |∂A|3/2 (Work in progress).
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Local gap assumption

• Present in some prior works such as Michalakis, Zwolak
(2011); Sattath, Gilyen (2016);

• If spectral gap is O(1), then is local gap O(1) too?

• Helpful FF example from Michalakis, Zwolak (2011):

H =
N−1∑
i=1

(
|00〉〈00|i ,i+1 + |11〉〈11|i ,i+1 +

δi=even

3N
|01〉〈01|i ,i+1

)
,

• Ground state is |010101 . . .〉, spectral gap is 2
3 , but local gap

is 1
3N .

• But mapping hi ,j → span(hi ,j), new H has local gap 1.
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Local gap assumption

• For every FF hamiltonian H, is there a transformation to H ′

that is a sum of projectors, such that γloc ≥ γc , for some
constant c?

• Are constructions from Cubitt, Perez-Garcia-Wolf (2015);
Bausch, Cubitt, Lucia, Perez-Garcia (2018) counter examples?

• Note that γ can be lower bounded in terms of γloc due to
Knabe’s theorem (1988) and its generalizations: Gosset,
Mozgunov [2015]; Kastoryano, Lucia [2017]; Lemm,
Mozgunov [2018]; etc.
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Representation of 2D ground state

• Recent work of Abrahamsen [2020] shows subexponential
algorithms for preparing locally gapped FF ground states.

• It is possible to show that there exist PEPS representations
with better scaling for such ground states?

• Can AGSPs circumvent the information theoretic limitation of
“area law doesn’t imply PEPS with polynomial bond
dimension” (Ge, Eisert 204)?
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Scaling with gap, and a coincidence (?)

• Prior works: |∂A|
2

γ .

• Our result: |∂A|
5/3

γ5/6 .

• Hopeful conjecture: |∂A|
3/2

γ3/4 .

• Gosset-Huang conjecture: 1D scaling of FF systems is 1√
γ

(the correlation length).
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Thank you for your attention!
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