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Collecting coupons

I Every year Albert Heijn hands out cards
of soccer players (“voetbalplaatjes”).
You get a random one for each 2.50e
you spend on groceries

I There are 18 teams, 11 players per team: 198 different cards

I Your nephew really wants to have a complete set.
How much money do you need to spend to get each card?

I Obviously, at least 198× 2.5 = 495e

I But it’s worse: if you already have a copy of most of the
cards, then your next 2.5e spending will likely give you
a card that you already have
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Analysis of coupon collector

I Suppose you already have i out of k coupons, and you get
another, uniformly random coupon.

Pr[see new coupon] =
k − i

k

I Total expected number of samples:

k−1∑
i=0

k

k − i
= k

k∑
j=1

1

j
= k ln(k) + Θ(k)

I With k = 198, that’s 1162 samples. Need to spend 2905e!

I You’re unlikely to finish much earlier. Variance in number of
samples is Θ(k2), so typically you need k ln(k)±O(k) samples
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Can quantum help somehow?

I Suppose get “quantum samples” instead of random samples.
You want to learn unknown set S ⊆ [n] of size k from states

|S〉 =
1√
k

∑
i∈S
|i〉

I If you measure, you get a uniformly random sample from S ,
and we know k ln(k) random samples needed to learn S

I Maybe there’s something smarter, using fewer copies of |S〉?
I yes if the number of “missing items” (m = n − k) is small

I no otherwise
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Learning S by sampling the missing elements

I |S〉 =

√
k

n
|[n]〉+

√
m

n
|ψ〉

where |ψ〉 =

√
m

n
|S〉 −

√
k

n
|S〉 ≈ −|S〉 if m� n

I If we measure one copy of |S〉 with 2-outcome measurement
|[n]〉〈[n]| vs I − |[n]〉〈[n]|, then with prob m

n we obtain |ψ〉
I Thus we can convert an expected number of n

m copies of |S〉
into one copy of |S〉 (up to small errror)

I Now we can sample uniformly from the complement of S!

S has m elements, so O(m log(m + 1)) copies of |S〉 suffice.

Hence O(n log(m + 1)) copies of |S〉 suffice for a “quantum
coupon collector”. For m = O(1) and k = n − O(1), this
beats classical coupon collector by a log-factor
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Matching lower bound on number of copies of |S〉

I Claim: you need T = Ω(k log(m + 1)) copies of |S〉
to learn the k-set S ⊆ [n] (assume m ≤ n/2)

I Approach: Use the adversary lower bound (without queries!)

A learner should do state transformation: |S〉⊗T 7→ S

Consider Gram matrix MSS ′ = (〈S |S ′〉)T ; and F SS ′ = 1− δSS ′

State transformation problem can be solved iff γ2(M ◦ F ) is small

I Can witness γ2(M ◦ F ) ≥ 1/2 via an adversary matrix:

γ2(M ◦ F ) = max
‖Γ‖≤1

‖Γ ◦M ◦ F ‖

How to construct such Γ? Note that M,F -entries only depend
on |S ∩ S ′|, so we need math that respects this symmetry.
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Using the Johnson association scheme

I Define Boolean matrices A0, . . . ,Am of dimension N =
(n
k

)
,

with (Aj)SS ′ = 1 iff |S ∩ S ′| = k − j

I ∃ pairwise-orthogonal projectors E0, . . . ,Em spanning the

same space: Ai =
m∑
j=0

pi (j)︸︷︷︸
eigenvalues

Ej , Ej =
1

N

m∑
i=0

qj(i)︸︷︷︸
dual eigenvalues

Ai ,

Ei ◦ Ej =
1

N

m∑
`=0

qi ,j(`)︸ ︷︷ ︸
Krein parameters

E`. These parameters are known.

I MSS ′ entries only depend on |S ∩ S ′|, so we can
write M as linear combination of Ai s and hence of Ejs

I Adversary matrix Γ =
∑m

j=0 γjEj , with γ0 = · · · = γm−1 = 1,

γm ∈ [−1, 0]. Ensures ‖Γ‖≤ 1, and diag(Γ)=0 (so Γ ◦ F = Γ)

I Complicated calculation involving Krein parameters (similar to
classical coupon!): if T � k log(m + 1) then ‖Γ ◦M ‖≥ 1/2
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Relevance for proper vs improper PAC learning

I PAC learner A for a concept class C = {f : [n]→ {0, 1}}:
given samples (x , f (x)), x ∼ D, for unknown target concept
f ∈ C, find hypothesis h : [n]→ {0, 1} that is close to f :

∀f ∈ C ∀D : Pr
x∼D

[f (x) 6= h(x)] ≤ ε w.h.p.

I Fundamental Thm: Required # of samples is Θ(VCdim(C)/ε)

I A is called a proper learner if h ∈ C

I Requiring A to be proper can increase sample complexity:

∃C where proper learner needs Θ(VCdim(C) log(1/ε)/ε) examples.

Related to coupon collector with m = 1, ε = 1/n:
C = {fS : [n]→ {0, 1} is indicator of S}

I O(VCdim(C)/ε) quantum examples suffice for proper learner
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What if you can also reflect through |S〉?

I If you can get copies of |S〉, then maybe you actually have a
quantum machine to produce such copies? U : |0〉 7→ |S〉

I Doing U and U−1 would allow you to reflect through |S〉!
RS : |S〉 7→ |S〉, RS : |ψ〉 7→ −|ψ〉 whenever 〈ψ|S〉 = 0

I Finding S more quickly, using amplitude amplification:

1. Start from |[n]〉, rotate to |S〉. Measure, get i1 ∈ S
2. Start from |[n]〉, rotate to |S\{i1}〉. Measure, get i2 ∈ S

...

Cost of finding all elements of S :
m−1∑
j=0

√
n − j

m − j
= O(

√
km)

I We show that this is tight for m ≤ n/2,
and also get tight bound Θ(k) for case m ≥ n/2
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Summary

I Classical coupon collector:

learn k-set S ⊆ [n] from Θ(k log k) uniform samples

I Quantum coupon collector:

learn k-set S ⊆ [n] from Θ(k log(m + 1)) uniform
superpositions (m = n − k is number of missing items)

I We also gave tight bounds for learning S from copies of |S〉
and reflections through |S〉

I Open problem: are the quantum sample complexities of
proper and improper learning the same for all C?


