Quantum Coupon Collector

Ronald de Wolf

UNIVERSITEIT VAN AMSTERDAM

Joint with Srinivasan Arunachalam (IBM), Aleksandrs Belovs (Riga), Andrew Childs (Maryland), Robin Kothari (Microsoft), Ansis Rosmanis (Nagoya)

Collecting coupons

 Every year Albert Heijn hands out cards of soccer players ("voetbalplaatjes").
 You get a random one for each 2.50€ you spend on groceries

- ▶ There are 18 teams, 11 players per team: 198 different cards
- Your nephew really wants to have a complete set. How much money do you need to spend to get each card?
- ▶ Obviously, at least $198 \times 2.5 = 495 \in$
- But it's worse: if you already have a copy of most of the cards, then your next 2.5€ spending will likely give you a card that you already have

Analysis of coupon collector

Suppose you already have i out of k coupons, and you get another, uniformly random coupon.

$$\Pr[\text{see new coupon}] = \frac{k-i}{k}$$

Total expected number of samples:

$$\sum_{i=0}^{k-1} \frac{k}{k-i} = k \sum_{j=1}^{k} \frac{1}{j} = k \ln(k) + \Theta(k)$$

▶ With k = 198, that's 1162 samples. Need to spend 2905€!

You're unlikely to finish much earlier. Variance in number of samples is Θ(k²), so typically you need k ln(k) ± O(k) samples

Can quantum help somehow?

Suppose get "quantum samples" instead of random samples. You want to learn unknown set S ⊆ [n] of size k from states

$$|S
angle = rac{1}{\sqrt{k}}\sum_{i\in S}|i
angle$$

- If you measure, you get a uniformly random sample from S, and we know k ln(k) random samples needed to learn S
- Maybe there's something smarter, using fewer copies of $|S\rangle$?
 - ▶ yes if the number of "missing items" (m = n k) is small
 - no otherwise

Learning S by sampling the missing elements

•
$$|S\rangle = \sqrt{\frac{k}{n}} |[n]\rangle + \sqrt{\frac{m}{n}} |\psi\rangle$$

where $|\psi\rangle = \sqrt{\frac{m}{n}} |S\rangle - \sqrt{\frac{k}{n}} |\overline{S}\rangle \approx -|\overline{S}\rangle$ if $m \ll n$

- If we measure one copy of $|S\rangle$ with 2-outcome measurement $|[n]\rangle\langle[n]|$ vs $I |[n]\rangle\langle[n]|$, then with prob $\frac{m}{n}$ we obtain $|\psi\rangle$
- ► Thus we can convert an expected number of n/m copies of |S⟩ into one copy of |S⟩ (up to small error)
- Now we can sample uniformly from the *complement* of S!
 S has *m* elements, so O(mlog(m + 1)) copies of |*S*⟩ suffice.
 Hence O(nlog(m + 1)) copies of |S⟩ suffice for a "quantum coupon collector". For m = O(1) and k = n O(1), this beats classical coupon collector by a log-factor

Matching lower bound on number of copies of |S angle

- Claim: you need T = Ω(k log(m + 1)) copies of |S⟩ to learn the k-set S ⊆ [n] (assume m ≤ n/2)
- ► Approach: Use the adversary lower bound (without queries!) A learner should do state transformation: $|S\rangle^{\otimes T} \mapsto S$ Consider Gram matrix $M_{SS'} = (\langle S|S'\rangle)^T$; and $F_{SS'} = 1 - \delta_{SS'}$ State transformation problem can be solved iff $\gamma_2(M \circ F)$ is small
- Can witness $\gamma_2(M \circ F) \ge 1/2$ via an adversary matrix:

$$\gamma_2(M \circ F) = \max_{\|\Gamma\| \le 1} \|\Gamma \circ M \circ F\|$$

How to construct such Γ ? Note that M, F-entries only depend on $|S \cap S'|$, so we need math that respects this symmetry.

Using the Johnson association scheme

- ▶ Define Boolean matrices $A_0, ..., A_m$ of dimension $N = \binom{n}{k}$, with $(A_j)_{SS'} = 1$ iff $|S \cap S'| = k j$
- ► ∃ pairwise-orthogonal projectors $E_0, ..., E_m$ spanning the same space: $A_i = \sum_{j=0}^{m} \underbrace{p_i(j)}_{\text{eigenvalues}} E_j = \frac{1}{N} \sum_{i=0}^{m} \underbrace{q_j(i)}_{\text{dual eigenvalues}} A_i,$ $E_i \circ E_j = \frac{1}{N} \sum_{\ell=0}^{m} \underbrace{q_{i,j}(\ell)}_{\text{Krein parameters}} E_\ell.$ These parameters are known.
- M_{SS'} entries only depend on |S ∩ S'|, so we can write M as linear combination of A_is and hence of E_js
- Adversary matrix $\Gamma = \sum_{j=0}^{m} \gamma_j E_j$, with $\gamma_0 = \cdots = \gamma_{m-1} = 1$, $\gamma_m \in [-1, 0]$. Ensures $\|\Gamma\| \le 1$, and diag $(\Gamma) = 0$ (so $\Gamma \circ F = \Gamma$)
- Complicated calculation involving Krein parameters (similar to classical coupon!): if T ≪ k log(m + 1) then ||Γ ∘ M ||≥ 1/2

Relevance for proper vs improper PAC learning

PAC learner A for a concept class C = {f : [n] → {0,1}}: given samples (x, f(x)), x ~ D, for unknown target concept f ∈ C, find hypothesis h : [n] → {0,1} that is close to f:

 $\forall f \in \mathcal{C} \ \forall D : \Pr_{x \sim D}[f(x) \neq h(x)] \leq \varepsilon \text{ w.h.p.}$

- ► Fundamental Thm: Required # of samples is $\Theta(VCdim(C)/\varepsilon)$
- \mathcal{A} is called a proper learner if $h \in \mathcal{C}$
- Requiring A to be proper can increase sample complexity:
 ∃C where proper learner needs Θ(VCdim(C) log(1/ε)/ε) examples.
 Related to coupon collector with m = 1, ε = 1/n:
 C = {f_S : [n] → {0,1} is indicator of S}
- ► $O(VCdim(C)/\varepsilon)$ quantum examples suffice for proper learner

What if you can also **reflect** through $|S\rangle$?

- ▶ If you can get copies of $|S\rangle$, then maybe you actually have a quantum machine to produce such copies? $U : |0\rangle \mapsto |S\rangle$
- ▶ Doing *U* and *U*⁻¹ would allow you to reflect through $|S\rangle$! *R_S* : $|S\rangle \mapsto |S\rangle$, *R_S* : $|\psi\rangle \mapsto -|\psi\rangle$ whenever $\langle \psi|S\rangle = 0$
- ► Finding *S* more quickly, using amplitude amplification:
 - 1. Start from $|[n]\rangle$, rotate to $|\overline{S}\rangle$. Measure, get $i_1 \in \overline{S}$
 - 2. Start from $|[n]\rangle$, rotate to $|\overline{S} \setminus \{i_1\}\rangle$. Measure, get $i_2 \in \overline{S}$

Cost of finding all elements of \overline{S} : $\sum_{j=0}^{m-1} \sqrt{\frac{n-j}{m-j}} = O(\sqrt{km})$

We show that this is tight for m ≤ n/2, and also get tight bound Θ(k) for case m ≥ n/2

Summary

Classical coupon collector:

learn k-set $S \subseteq [n]$ from $\Theta(k \log k)$ uniform samples

Quantum coupon collector:

learn k-set $S \subseteq [n]$ from $\Theta(k \log(m+1))$ uniform superpositions (m = n - k is number of missing items)

- \blacktriangleright We also gave tight bounds for learning S from copies of $|S\rangle$ and reflections through $|S\rangle$
- Open problem: are the quantum sample complexities of proper and improper learning the same for all C?