Quantum Coupon Collector

Ronald de Wolf

CWI

(l)uSoft

Joint with Srinivasan Arunachalam (IBM), Aleksandrs Belovs (Riga), Andrew Childs (Maryland), Robin Kothari (Microsoft), Ansis Rosmanis (Nagoya)

Collecting coupons

- Every year Albert Heijn hands out cards of soccer players ("voetbalplaatjes"). You get a random one for each $2.50 €$ you spend on groceries

- There are 18 teams, 11 players per team: 198 different cards
- Your nephew really wants to have a complete set. How much money do you need to spend to get each card?
- Obviously, at least $198 \times 2.5=495 €$
- But it's worse: if you already have a copy of most of the cards, then your next $2.5 €$ spending will likely give you a card that you already have

Analysis of coupon collector

- Suppose you already have i out of k coupons, and you get another, uniformly random coupon.

$$
\operatorname{Pr}[\text { see new coupon }]=\frac{k-i}{k}
$$

- Total expected number of samples:

$$
\sum_{i=0}^{k-1} \frac{k}{k-i}=k \sum_{j=1}^{k} \frac{1}{j}=k \ln (k)+\Theta(k)
$$

- With $k=198$, that's 1162 samples. Need to spend $2905 €$!
- You're unlikely to finish much earlier. Variance in number of samples is $\Theta\left(k^{2}\right)$, so typically you need $k \ln (k) \pm O(k)$ samples

Can quantum help somehow?

- Suppose get "quantum samples" instead of random samples. You want to learn unknown set $S \subseteq[n]$ of size k from states

$$
|S\rangle=\frac{1}{\sqrt{k}} \sum_{i \in S}|i\rangle
$$

- If you measure, you get a uniformly random sample from S, and we know $k \ln (k)$ random samples needed to learn S
- Maybe there's something smarter, using fewer copies of $|S\rangle$?
- yes if the number of "missing items" $(m=n-k)$ is small
- no otherwise

Learning S by sampling the missing elements

- $|S\rangle=\sqrt{\frac{k}{n}}|[n]\rangle+\sqrt{\frac{m}{n}}|\psi\rangle$
where $|\psi\rangle=\sqrt{\frac{m}{n}}|S\rangle-\sqrt{\frac{k}{n}}|\bar{S}\rangle \approx-|\bar{S}\rangle$ if $m \ll n$
- If we measure one copy of $|S\rangle$ with 2-outcome measurement $|[n]\rangle\langle[n]|$ vs $I-|[n]\rangle\langle[n]|$, then with prob $\frac{m}{n}$ we obtain $|\psi\rangle$
- Thus we can convert an expected number of $\frac{n}{m}$ copies of $|S\rangle$ into one copy of $|\bar{S}\rangle$ (up to small errror)
- Now we can sample uniformly from the complement of S ! \bar{S} has m elements, so $O(m \log (m+1))$ copies of $|\bar{S}\rangle$ suffice. Hence $O(n \log (m+1))$ copies of $|S\rangle$ suffice for a "quantum coupon collector". For $m=O(1)$ and $k=n-O(1)$, this beats classical coupon collector by a log-factor

Matching lower bound on number of copies of $|S\rangle$

- Claim: you need $T=\Omega(k \log (m+1))$ copies of $|S\rangle$ to learn the k-set $S \subseteq[n]$ (assume $m \leq n / 2$)
- Approach: Use the adversary lower bound (without queries!)

A learner should do state transformation: $|S\rangle^{\otimes T} \mapsto S$
Consider Gram matrix $M_{S S^{\prime}}=\left(\left\langle S \mid S^{\prime}\right\rangle\right)^{T}$; and $F_{S S^{\prime}}=1-\delta_{S S^{\prime}}$
State transformation problem can be solved iff $\gamma_{2}(M \circ F)$ is small

- Can witness $\gamma_{2}(M \circ F) \geq 1 / 2$ via an adversary matrix:

$$
\gamma_{2}(M \circ F)=\max _{\|\Pi\| \leq 1}\|\Gamma \circ M \circ F\|
$$

How to construct such Γ ? Note that M, F-entries only depend on $\left|S \cap S^{\prime}\right|$, so we need math that respects this symmetry.

Using the Johnson association scheme

- Define Boolean matrices A_{0}, \ldots, A_{m} of dimension $N=\binom{n}{k}$, with $\left(A_{j}\right)_{S S^{\prime}}=1$ iff $\left|S \cap S^{\prime}\right|=k-j$
- \exists pairwise-orthogonal projectors E_{0}, \ldots, E_{m} spanning the same space: $A_{i}=\sum_{j=0}^{m} \underbrace{p_{i}(j)}_{\text {eigenvalues }} E_{j}, \quad E_{j}=\frac{1}{N} \sum_{i=0}^{m} \underbrace{q_{j}(i)}_{\text {dual eigenvalues }} A_{i}$, $E_{i} \circ E_{j}=\frac{1}{N} \sum_{\ell=0}^{m} \underbrace{q_{i, j}(\ell)}_{\text {Krein parameters }} E_{\ell}$. These parameters are known.
- $M_{S S^{\prime}}$ entries only depend on $\left|S \cap S^{\prime}\right|$, so we can write M as linear combination of $A_{i} \mathrm{~s}$ and hence of $E_{j} \mathrm{~s}$
- Adversary matrix $\Gamma=\sum_{j=0}^{m} \gamma_{j} E_{j}$, with $\gamma_{0}=\cdots=\gamma_{m-1}=1$, $\gamma_{m} \in[-1,0]$. Ensures $\|\Gamma\| \leq 1$, and $\operatorname{diag}(\Gamma)=0$ (so $\Gamma \circ F=\Gamma$)
- Complicated calculation involving Krein parameters (similar to classical coupon!): if $T \ll k \log (m+1)$ then $\|\Gamma \circ M\| \geq 1 / 2$

Relevance for proper vs improper PAC learning

- PAC learner \mathcal{A} for a concept class $\mathcal{C}=\{f:[n] \rightarrow\{0,1\}\}$: given samples $(x, f(x)), x \sim D$, for unknown target concept $f \in \mathcal{C}$, find hypothesis $h:[n] \rightarrow\{0,1\}$ that is close to $f:$

$$
\forall f \in \mathcal{C} \quad \forall D: \underset{x \sim D}{\operatorname{Pr}}[f(x) \neq h(x)] \leq \varepsilon \text { w.h.p. }
$$

- Fundamental Thm: Required \# of samples is $\Theta(\operatorname{VCdim}(\mathcal{C}) / \varepsilon)$
- \mathcal{A} is called a proper learner if $h \in \mathcal{C}$
- Requiring \mathcal{A} to be proper can increase sample complexity: $\exists \mathcal{C}$ where proper learner needs $\Theta(\operatorname{VCdim}(\mathcal{C}) \log (1 / \varepsilon) / \varepsilon)$ examples. Related to coupon collector with $m=1, \varepsilon=1 / n$: $\mathcal{C}=\left\{f_{S}:[n] \rightarrow\{0,1\}\right.$ is indicator of $\left.S\right\}$
- $O(\operatorname{VCdim}(\mathcal{C}) / \varepsilon)$ quantum examples suffice for proper learner

What if you can also reflect through $|S\rangle$?

- If you can get copies of $|S\rangle$, then maybe you actually have a quantum machine to produce such copies? $U:|0\rangle \mapsto|S\rangle$
- Doing U and U^{-1} would allow you to reflect through $|S\rangle$! $R_{S}:|S\rangle \mapsto|S\rangle, R_{S}:|\psi\rangle \mapsto-|\psi\rangle$ whenever $\langle\psi \mid S\rangle=0$
- Finding S more quickly, using amplitude amplification:

1. Start from $|[n]\rangle$, rotate to $|\bar{S}\rangle$. Measure, get $i_{1} \in \bar{S}$
2. Start from $|[n]\rangle$, rotate to $\left|\bar{S} \backslash\left\{i_{1}\right\}\right\rangle$. Measure, get $i_{2} \in \bar{S}$

Cost of finding all elements of $\bar{S}: \sum_{j=0}^{m-1} \sqrt{\frac{n-j}{m-j}}=O(\sqrt{k m})$

- We show that this is tight for $m \leq n / 2$, and also get tight bound $\Theta(k)$ for case $m \geq n / 2$

Summary

- Classical coupon collector:
learn k-set $S \subseteq[n]$ from $\Theta(k \log k)$ uniform samples
- Quantum coupon collector:
learn k-set $S \subseteq[n]$ from $\Theta(k \log (m+1))$ uniform superpositions ($m=n-k$ is number of missing items)
- We also gave tight bounds for learning S from copies of $|S\rangle$ and reflections through $|S\rangle$
- Open problem: are the quantum sample complexities of proper and improper learning the same for all \mathcal{C} ?

