Secure Multi-Party Quantum Computation with a Dishonest Majority

Yfke Dulek, Alex Grilo, Stacey Jeffery, Christian Majenz, Christian Schaffner

arXiv: 1909.13770, @EuroCrypt 2020

seminar talk @Simons, Tuesday, March 17, 2020

Secure Multi-Party Quantum Computation with a Dishonest Majority

Yfke Dulek, Alex Grilo, Stacey Jeffery, Christian Majenz, Christian Schaffner

ArXiv: 1909.13770

Secure Multi-Party Quantum Computation with a Dishonest Majority

Yfke Dulek, Alex Grilo, Stacey Jeffery, Christian Majenz, Christian Schaffner

ArXiv: 1909.13770

Input (player i): xi

Input (player i): xi

Input (player i): xi

Output: $f(x_1, ..., x_k)$

Input (player i): xi

Output: $f(x_1, ..., x_k)$

Input (player i): xi

Output: f(x₁, ..., x_k)

Output (player i): $f_i(x_1, ..., x_k)$

Input (player i): xi

Output: f(x₁, ..., x_k)

Output (player i): $f_i(x_1, ..., x_k)$

This is the **ideal** situation.

What if there is no

?

We want:

input privacy

We want:

input privacy

We want:

- input privacy
- correctness

We want:

- input privacy
- correctness

We cannot prevent:

55

We want:

- input privacy
- correctness

We cannot prevent:

lying about inputs

55

We want:

- input privacy
- correctness

We cannot prevent:

- lying about inputs
- unfairness

This talk: protocol for MPQC

• Up to k-1

- Up to k-1
- Computationally secure

- Up to k-1
- Computationally secure
- gate-by-gate, using $O(k(d + \log(n)))$ quant rounds for d the {CNOT,T}-depth of the q computation

- Up to k-1
- Computationally secure
- gate-by-gate, using $O(k(d+\log(n)))$ quant rounds for d the {CNOT,T}-depth of the q computation
- subroutine: classical MPC

Previous Approaches

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs
- up to <k/2 dishonest

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs
- up to <k/2 dishonest
- 2. Authentication [DNS12]

[CGS02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002) [BCGHS06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs
- up to <k/2 dishonest
- 2. Authentication [DNS12]
- protect inputs

[CGS02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002) [BCGHS06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs
- up to <k/2 dishonest
- 2. Authentication [DNS12]
- protect inputs

[CGS02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002) [BCGHS06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs
- up to <k/2 dishonest
- 2. Authentication [DNS12]
- protect inputs

[CGS02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002) [BCGHS06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs
- up to <k/2 dishonest
- 2. Authentication [DNS12]
- protect inputs

[CGS02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002) [BCGHS06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs
- up to <k/2 dishonest
- 2. Authentication [DNS12]
- protect inputs

[CGS02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002) [BCGHS06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs
- up to <k/2 dishonest
- 2. Authentication [DNS12]
- protect inputs

[CGS02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002) [BCGHS06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

- 1. Secret sharing [CGS02, BCGHS06]
- distribute inputs
- up to <k/2 dishonest
- 2. Authentication [DNS12]
- protect inputs
- hope: up to k-1 dishonest

[CGS02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002) [BCGHS06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

Introduction

Authentication

Computation
Magic-state generation
Summary

Remember Yfke's tutorial: https://www.youtube.com/watch?v=yEjh8qJQqsM

Remember Yfke's tutorial: https://www.youtube.com/watch?v=yEjh8qJQqsM

Key:
$$C \in_R \operatorname{Clifford}_{n+1}$$

Remember Yfke's tutorial: https://www.youtube.com/watch?v=yEjh8qJQqsM

SUBGROUP OF UNITARIES

Key: $C \in_R \operatorname{Clifford}_{n+1}$

Remember Yfke's tutorial: https://www.youtube.com/watch?v=yEjh8qJQqsM

Key: $C \in_R \operatorname{Clifford}_{n+1}$

SUBGROUP OF UNITARIES GENERATED BY H, \sqrt{Z} , CNOT

Remember Yfke's tutorial: https://www.youtube.com/watch?v=yEjh8qJQqsM

Key: $C \in_R \operatorname{Clifford}_{n+1}$

SUBGROUP OF UNITARIES
GENERATED BY H, \(\sqrt{Z}, \text{CNOT} \)
LOOKS "RANDOM"

Remember Yfke's tutorial: https://www.youtube.com/watch?v=yEjh8qJQqsM

Key: $C \in_R \operatorname{Clifford}_{n+1}$

Encoding: $|\psi\rangle \mapsto C\left(|\psi\rangle \otimes |0\rangle^{\otimes n}\right)$

SUBGROUP OF UNITARIES
GENERATED BY H, \(\sqrt{Z}, \text{CNOT} \)
LOOKS "RANDOM"

Remember Yfke's tutorial: https://www.youtube.com/watch?v=yEjh8qJQqsM

Key: $C \in_R \operatorname{Clifford}_{n+1}$

Encoding: $|\psi\rangle\mapsto C\left(|\psi\rangle\otimes|0\rangle^{\otimes n}\right)$

SUBGROUP OF UNITARIES GENERATED BY H, \sqrt{Z} , CNOT LOOKS "RANDOM"

TRAPS

Remember Yfke's tutorial: https://www.youtube.com/watch?v=yEjh8qJQqsM

Key: $C \in_R \operatorname{Clifford}_{n+1}$

Encoding: $|\psi\rangle\mapsto C\left(|\psi\rangle\otimes|0\rangle^{\otimes n}\right)$

Decoding: apply C^{\dagger} , measure traps

SUBGROUP OF UNITARIES GENERATED BY H, \sqrt{Z} , CNOT LOOKS "RANDOM"

TRAPS

Remember Yfke's tutorial: https://www.youtube.com/watch?v=yEjh8qJQqsM

Key: $C \in_R \operatorname{Clifford}_{n+1}$

SUBGROUP OF UNITARIES
GENERATED BY H, \(\sqrt{Z}, \text{CNOT} \)
LOOKS "RANDOM"

Encoding: $|\psi\rangle\mapsto C\left(|\psi\rangle\otimes|0\rangle^{\otimes n}\right)$

TRAPS

Decoding: apply C^{\dagger} , measure traps

Theorem (informal): for any A on n+1 qubits, the probability that A changes $|\psi\rangle$, but is not detected at decoding is very small (2^{-n}).

Remember Yfke's tutorial: https://www.youtube.com/watch?v=yEjh8qJQqsM

Key: $C \in_R \operatorname{Clifford}_{n+1}$

SUBGROUP OF UNITARIES
GENERATED BY H, \(\sqrt{Z}, \text{CNOT} \)
LOOKS "RANDOM"

Encoding: $|\psi\rangle\mapsto C\left(|\psi\rangle\otimes|0\rangle^{\otimes n}\right)$

TRAPS

Decoding: apply C^{\dagger} , measure traps

Theorem (informal): for any A on n+1 qubits, the probability that A changes $|\psi\rangle$, but is not detected at decoding is very small (2^{-n}).

Bonus: the Clifford code also provides privacy.

What if the encoding player is dishonest?

- What if the encoding player is dishonest?
- How to do computation?
 Data is unalterable!

 R_4

- What if the encoding player is dishonest?
- How to do computation?
 Data is unalterable!

Answers: use classical multiparty computation!

- What if the encoding player is dishonest?
- How to do computation?
 Data is unalterable!

Answers: use classical multiparty computation!

$$C_1(|\psi\rangle\otimes|0^n\rangle)$$

$$C_1(|\psi\rangle\otimes|0^n\rangle)$$

$$\downarrow$$

$$C_2(C_1(|\psi\rangle\otimes|0^n\rangle)\otimes|0^n\rangle)$$

$$C_1(|\psi\rangle\otimes|0^n
angle)$$
 $C_2(C_1(|\psi\rangle\otimes|0^n
angle)\otimes|0^n
angle)$
 $C_2(C_1(|\psi\rangle\otimes|0^n
angle)\otimes|0^n
angle)$
PLAYER 2'S
TRAPS
ACCESSIBLE

From [DNS12]:

$$C_1(|\psi\rangle\otimes|0^n\rangle)$$

$$\downarrow$$
 $C_2(C_1(|\psi\rangle\otimes|0^n\rangle)\otimes|0^n\rangle)$

PLAYER I'S TRAPS INACCESSIBLE

PLAYER 2'S
TRAPS
ACCESSIBLE

$$C_1(|\psi\rangle\otimes|0^n\rangle)$$

$$\downarrow$$

$$C_2(C_1(|\psi\rangle\otimes|0^n\rangle)\otimes|0^n\rangle)$$

R4

Drawback: very large ciphertexts (nk + 1)

Public authentication test

$$C_1(|\psi\rangle\otimes|0^{2n}\rangle)$$

$$C_2C_1(|\psi\rangle\otimes|0^{2n}\rangle)$$

$$C_3C_2C_1(|\psi\rangle\otimes|0^{2n}\rangle)$$

$$C_4C_3C_2C_1(|\psi\rangle\otimes|0^{2n}\rangle)$$

$$C_5C_4C_3C_2C_1(|\psi\rangle\otimes|0^{2n}\rangle)$$

$$C_6C_5C_4C_3C_2C_1(|\psi\rangle\otimes|0^{2n}\rangle)$$

$$\underbrace{C_6C_5C_4C_3C_2C_1}_{C}(|\psi\rangle\otimes|0^{2n}\rangle)$$

$$\underbrace{C_6C_5C_4C_3C_2C_1}_{\text{UNKNOWN TO ALL}}(|\psi\rangle\otimes|0^{2n}\rangle)$$

$$\underbrace{C_6C_5C_4C_3C_2C_1(|\psi\rangle\otimes|0^{2n}\rangle)}_{C \text{ UNKNOWN TO ALL}} \text{ PLAYER I CREATED THESE}$$

$$\underbrace{C_6C_5C_4C_3C_2C_1}_{\text{UNKNOWN TO ALL}}(|\psi\rangle\otimes|0^{2n}\rangle)$$

Using classical MPC:

$$\underbrace{C_6C_5C_4C_3C_2C_1(|\psi\rangle\otimes|0^{2n}\rangle)}_{C \text{ UNKNOWN TO ALL}} \text{ PLAYER I CREATED THESE}$$

Using classical MPC:

• Select $g \in_R GL(2n,\mathbb{F}_2)$. Note: $g(y) = 0^{2n}$ iff $y = 0^{2n}$ Lemma: apply random g and measure n traps \approx measure 2n traps

$$\underbrace{C_6C_5C_4C_3C_2C_1(|\psi\rangle\otimes|0^{2n}\rangle)}_{C \text{ UNKNOWN TO ALL}} \text{ PLAYER I CREATED THESE}$$

Using classical MPC:

- Select $g \in_R GL(2n, \mathbb{F}_2)$. Note: $g(y) = 0^{2n}$ iff $y = 0^{2n}$ **Lemma**: apply random g and measure n traps \approx measure 2n traps
- Let player 1 apply $(C' \otimes X^r)(I \otimes g)C^{\dagger}$ for random C', r

$$\underbrace{C_6C_5C_4C_3C_2C_1}_{C_1}(|\psi\rangle\otimes|0^{2n}\rangle)$$

Using classical MPC:

- Select $g \in_R GL(2n, \mathbb{F}_2)$. Note: $g(y) = 0^{2n}$ iff $y = 0^{2n}$ **Lemma**: apply random g and measure n traps \approx measure 2n traps
- Let player 1 apply $(C' \otimes X^r)(I \otimes g)C^{\dagger}$ for random C', r
- Let player 1 measure last n qubits (check if outcome is r)

$$\underbrace{C_6C_5C_4C_3C_2C_1}_{C_1}(|\psi\rangle\otimes|0^{2n}\rangle)$$

Using classical MPC:

- Select $g \in_R GL(2n, \mathbb{F}_2)$. Note: $g(y) = 0^{2n}$ iff $y = 0^{2n}$ **Lemma**: apply random g and measure n traps \approx measure 2n traps
- Let player 1 apply $(C' \otimes X^r)(I \otimes g)C^{\dagger}$ for random C', r
- Let player 1 measure last n qubits (check if outcome is r)

Result: authenticated state $C'(|\psi\rangle \otimes |0^n\rangle)$

One player **performs** the test: applies Clifford, measures, ...

One player performs the test: applies Clifford, measures, ...

All players verify the test through classical MPC

One player performs the test: applies Clifford, measures, ...

All players verify the test through classical MPC

The test can be used:

to test encodings (as in previous slide);

One player performs the test: applies Clifford, measures, ...

All players verify the test through classical MPC

The test can be used:

- to test encodings (as in previous slide);
- to test whether a computation step was executed honestly

Introduction Authentication

Computation

Magic-state generation Summary

Computation

Protocols ($C(|\psi\rangle \otimes |0^n\rangle) \mapsto C'(G|\psi\rangle \otimes |0^n\rangle)$) for these G:

- 1-qubit Cliffords
- CNOT (2-qubit Clifford)
- T (non-Clifford)
- Computational-basis measurement

$$= C(|\psi\rangle \otimes |0\rangle^{\otimes n})$$

Using classical MPC: update classical key

$$C \mapsto C' := C(G^{\dagger} \otimes I^{\otimes n})$$

Using classical MPC: update classical key

$$C \mapsto C' := C(G^{\dagger} \otimes I^{\otimes n})$$

Then (6) will decode to

$$(C')^{\dagger}C(|\psi\rangle\otimes|0\rangle^{\otimes n})$$
$$=G|\psi\rangle\otimes|0\rangle^{\otimes n}$$

$$\otimes$$

Same strategy does not work:

 $(C_1\otimes C_2)(CNOT^{\dagger}\otimes I^{\otimes 2n})$ is not in product form.

Same strategy does not work:

 $(C_1\otimes C_2)(CNOT^{\dagger}\otimes I^{\otimes 2n})$ is not in product form.

Instead:

$$\otimes$$

Same strategy does not work:

 $(C_1 \otimes C_2)(CNOT^{\dagger} \otimes I^{\otimes 2n})$ is not in product form.

Instead:

• Player 1 applies $(C_1'\otimes C_2')CNOT(C_1^{\dagger}\otimes C_2^{\dagger})$ for freshly random C_1', C_2' .

$$\otimes$$

Same strategy does not work:

 $(C_1 \otimes C_2)(CNOT^{\dagger} \otimes I^{\otimes 2n})$ is not in product form.

Instead:

- Player 1 applies $(C_1'\otimes C_2')CNOT(C_1^{\dagger}\otimes C_2^{\dagger})$ for freshly random C_1', C_2' .
- Player 1 executes public authentication test.

$$C_1(|\psi\rangle\otimes|0^n\rangle)\otimes C_2(T|+\rangle\otimes|0^n\rangle)$$

$$C_1(|\psi\rangle\otimes|0^n\rangle)\otimes C_2(T|+\rangle\otimes|0^n\rangle) \mapsto C_3(T|\psi\rangle\otimes|0^n\rangle)$$

Magic-state computation:

$$C_1(|\psi\rangle\otimes|0^n\rangle)\otimes C_2(T|+\rangle\otimes|0^n\rangle) \mapsto C_3(T|\psi\rangle\otimes|0^n\rangle)$$

Nobody can be trusted to create encoded magic states!

Introduction Authentication Computation

Magic-state generation

Summary

1. "cut-and-choose":

1. "cut-and-choose":

1. "cut-and-choose":

- - 1. "cut-and-choose":
 - every player tests nrandom states

- - 1. "cut-and-choose":
 - every player tests nrandom states

- - 1. "cut-and-choose":
 - every player tests nrandom states

- - 1. "cut-and-choose":
 - ◆ every player tests n random states

- - 1. "cut-and-choose":
 - every player tests nrandom states

- - 1. "cut-and-choose":
 - every player tests nrandom states

- - 1. "cut-and-choose":
 - every player tests nrandom states

- 1. "cut-and-choose":
 - every player tests nrandom states

- - 1. "cut-and-choose":
 - ◆ every player tests n random states

- - 1. "cut-and-choose":
 - every player tests nrandom states

- 1. "cut-and-choose":
 - every player tests n random states

remaining n copies are "pretty good"

- - 1. "cut-and-choose":
 - every player tests n
 random states

- → remaining n copies are
 "pretty good"
- 2. magic-state distillation:

- - 1. "cut-and-choose":
 - every player tests n
 random states

- remaining n copies are "pretty good"
- 2. magic-state distillation:
 - ◆ a Clifford circuit

- 1. "cut-and-choose":
 - every player tests n
 random states

- remaining n copies are "pretty good"
- 2. magic-state distillation:
 - → a Clifford circuit

remaining copy is "very good"

Computation $\theta(G|\psi)$

Protocols ($C(|\psi\rangle\otimes|0^n\rangle)\mapsto C'(G|\psi\rangle\otimes|0^n\rangle)$) for these G:

Protocols ($C(|\psi\rangle\otimes|0^n\rangle)\mapsto C'(G|\psi\rangle\otimes|0^n\rangle)$) for these G:

• 1-qubit Cliffords $C \mapsto C' := C(G^\dagger \otimes I^{\otimes n})$

Protocols ($C(|\psi\rangle\otimes|0^n\rangle)\mapsto C'(G|\psi\rangle\otimes|0^n\rangle)$) for these G:

• 1-qubit Cliffords $C \mapsto C' := C(G^\dagger \otimes I^{\otimes n})$

• CNOT (2-qubit Clifford): apply $(C_1'\otimes C_2')CNOT(C_1^\dagger\otimes C_2^\dagger)$ & perform public authentication test

Protocols ($C(|\psi\rangle\otimes|0^n\rangle)\mapsto C'(G|\psi\rangle\otimes|0^n\rangle)$) for these G:

• 1-qubit Cliffords $C \mapsto C' := C(G^\dagger \otimes I^{\otimes n})$

- CNOT (2-qubit Clifford): apply $(C_1'\otimes C_2')CNOT(C_1^\dagger\otimes C_2^\dagger)$ & perform public authentication test
- T (non-Clifford): generate encoded magic states and perform encoded magic-state computation $|\psi\rangle$ — \bigcirc — \bigcirc — \bigcirc —] c

Protocols ($C(|\psi\rangle \otimes |0^n\rangle) \mapsto C'(G|\psi\rangle \otimes |0^n\rangle)$) for these G:

• 1-qubit Cliffords $C \mapsto C' := C(G^\dagger \otimes I^{\otimes n})$

- CNOT (2-qubit Clifford): apply $(C_1'\otimes C_2')CNOT(C_1^\dagger\otimes C_2^\dagger)$ & perform public authentication test
- T (non-Clifford): generate encoded magic states and perform encoded magic-state computation $|\psi\rangle$ — \bigcirc — \bigcirc — \bigcirc —] c
- Computational-basis measurement

$$C(|\psi\rangle \otimes |0\rangle^{\otimes n}) = C\left(\sum_{m \in \{0,1\}} \alpha_m |m\rangle \otimes |0\rangle^{\otimes n}\right)$$

$$C(|\psi\rangle \otimes |0\rangle^{\otimes n}) = C\left(\sum_{m \in \{0,1\}} \alpha_m |m\rangle \otimes |0\rangle^{\otimes n}\right)$$

$$C(|\psi\rangle \otimes |0\rangle^{\otimes n}) = C\left(\sum_{m \in \{0,1\}} \alpha_m |m\rangle \otimes |0\rangle^{\otimes n}\right)$$

• MPC samples $r, s \leftarrow \{0, 1\}^{n+1}, c \leftarrow \{0, 1\}^n$

$$C(|\psi\rangle \otimes |0\rangle^{\otimes n}) = C\left(\sum_{m \in \{0,1\}} \alpha_m |m\rangle \otimes |0\rangle^{\otimes n}\right)$$

- MPC samples $r,s \leftarrow \{0,1\}^{n+1}, c \leftarrow \{0,1\}^n$
- MPC instructs player to apply $\,V:=\mathsf{X}^r\mathsf{Z}^s\prod_{i\in[n]}\mathsf{CNOT}_{1,i}^{c_i}\;\mathsf{C}^\dagger$

Comp-Basis Measurement

$$C(|\psi\rangle \otimes |0\rangle^{\otimes n}) = C\left(\sum_{m \in \{0,1\}} \alpha_m |m\rangle \otimes |0\rangle^{\otimes n}\right)$$

- MPC samples $r,s \leftarrow \{0,1\}^{n+1}, c \leftarrow \{0,1\}^n$
- MPC instructs player to apply $\,V:=\mathsf{X}^r\mathsf{Z}^s\prod_{i\in[n]}\mathsf{CNOT}_{1,i}^{c_i}\;\mathsf{C}^\dagger$
- ullet player measures in computational basis, outcome r^\prime

Comp-Basis Measurement

- MPC samples $r, s \leftarrow \{0,1\}^{n+1}, c \leftarrow \{0,1\}^n$
- MPC instructs player to apply $\,V:={\mathsf X}^r{\mathsf Z}^s\,\prod\,\mathsf{CNOT}_{1,i}^{c_i}\;\mathsf{C}^\dagger$
- ullet player measures in computational basis, outcome r^\prime
- MPC checks whether $\ r' = r \oplus (m, m \cdot c)$ for some $m \in \{0, 1\}$

A protocol for multiparty computation of any quantum circuit:

ullet Computationally secure against $\leq k-1$ cheaters (out of k)

- Computationally secure against $\leq k-1$ cheaters (out of k)
- Encoded states of size 2n + 1 (vs. kn + 1 in [DNS12])

- Computationally secure against $\leq k-1$ cheaters (out of k)
- Encoded states of size 2n + 1 (vs. kn + 1 in [DNS12])
- T gate: requires kn magic states (vs. n^k from naive extension of [DNS12])

- Computationally secure against $\leq k-1$ cheaters (out of k)
- Encoded states of size 2n + 1 (vs. kn + 1 in [DNS12])
- T gate: requires kn magic states (vs. n^k from naive extension of [DNS12])
- Rounds of q communication: $O(k(d + \log(n)))$ for d the {CNOT, T}-depth of the quantum computation

 Post-quantum secure classical MPC protocol for dishonest majority?

- Post-quantum secure classical MPC protocol for dishonest majority?
- CNOT operation without a round of q communication?

- Post-quantum secure classical MPC protocol for dishonest majority?
- CNOT operation without a round of q communication?
- More efficient protocols for more specific functionalities?

- Post-quantum secure classical MPC protocol for dishonest majority?
- CNOT operation without a round of q communication?
- More efficient protocols for more specific functionalities?
- Classical MPC is a versatile tool (e.g. for zeroknowledge proofs or digital signature). Are there such use cases for MPQC?

- Post-quantum secure classical MPC protocol for dishonest majority?
- CNOT operation without a round of q communication?
- More efficient protocols for more specific functionalities?
- Classical MPC is a versatile tool (e.g. for zeroknowledge proofs or digital signature). Are there such use cases for MPQC?

