Secure Multi-Party
Quantum Computation
with a Dishonest Majority

Yfke Dulek, Alex Grilo, Stacey Jeffery,
Christian Majenz, Christian Schaffner

X
©Cl QuSoft &

arXiv: 1909.13770 , @EuroCrypt 2020

seminar talk @Simons, Tuesday, March 17, 2020

https://arxiv.org/abs/1909.13770

Secure Multi-Party
Quantum Computation
with a Dishonest Majority

Yfke Dulek, Alex Grilo, Stacey Jeffery,
Christian Majenz, Christian Schaffner

X
G QuSoft Q¥

ArXiv: 1909.13770

https://arxiv.org/abs/1909.13770

Secure Multi-Party
Quantum Computation

with a Dishonest Majority

N Yfke Dulek, Alex Grilo, Stacey Jeffery,
Thanks!

Christian Majenz, Christian Schaffner

X
G QuSoft Q¥

ArXiv: 1909.13770

https://arxiv.org/abs/1909.13770

Multi-party computation
(MPC)

Multi-party computation
(MPC)
©

https://www.flaticon.com/authors/pixel-perfect

Multi-party computation

(MPC)
C;\:? Input (player i): X
© ©

© ©
©

95

https://www.flaticon.com/authors/pixel-perfect

Multi-party computation

(MPC)
@ C;\:? @ Input (player i): X
102 \ / 100

https://www.flaticon.com/authors/pixel-perfect

Multi-party computation
(MPC)
©

83 Input (player i): X

@ ’ @ Output: f(x

102 \\\\\‘ \ 100
&S
TN
© ©
©

95

https://www.flaticon.com/authors/pixel-perfect

Multi-party computation

e (MPC)

83 Input (player i): X
@ @ Output: f(x1, ..., Xk)
102 \ v / 100

©
o | e
©

95

https://www.flaticon.com/authors/pixel-perfect

Multi-party computation
(MPC)
©

83 Input (player i): X

@QJ
/\
O I ©
©

95

Output (player i): fi(x1, ..., Xx)

https://www.flaticon.com/authors/pixel-perfect

Multi-party computation
(MPC)
©

83 Input (player i): X

100

@ / Output (player i): fi(x1, ..., Xk
TN

@4 F ©
! This Is the ideal situation.
10
B @ What if there is no @ ?

https://www.flaticon.com/authors/pixel-perfect

Multi-party computation

(MPC)
©
AN
© ©
! Xi o fiX1, ., X)) |
© ©

Multi-party computation
(MPC)

/ g\? \ We want:

Multi-party computation
(MPC)

/ g\? \ We. want: |
@ @ e |nput privacy

Multi-party computation
(MPC)

/ (:/3) \ We. want: |
@ @ e |nput privacy

Multi-party computation
(MPC)

/ (:/3) \ We. want: |
@ @ e |nput privacy

102 100 * correctness
A A

Multi-party computation
(MPC)

/ (:/3) \ We. want: |
@ @ e |nput privacy

102 100 * correctness
A A

We cannot prevent:

Multi-party computation
(MPC)

\ We want:

@ e nput privacy

100 e correctness
A

We cannot prevent:

é e |lying about inputs
/

Multi-party computation

©

(MPC)
\ We want:

G e nput privacy

100 e correctness
A

We cannot prevent:

G lying about inputs

/ e unfairness

40—
Q001

Goal: Quantum MPC
(MPQCQC)

Goal: Quantum MPC
(MPQCQC)

/ ~ \ This talk: protocol for MPQC

Goal: Quantum MPC
(MPQCQC)

/ ~ \ This talk: protocol for MPQC

@ @ o Uptok—1g
6

Goal: Quantum MPC
(MPQCQC)

/ ~ \ This talk: protocol for MPQC

@ @ . Uptok—1g

Re R, * Computationally secure
A A

Goal: Quantum MPC
(MPQCQC)

/ ~ \ This talk: protocol for MPQC

@ @ . Uptok—1g

Re R, * Computationally secure
A A

e gate-by-gate, using
O (k(d + log(n))) quant

@ G rounds for d the {CNOT, T}-
depth of the g computation

Goal: Quantum MPC
(MPQCQC)

/ ~ \ This talk: protocol for MPQC

@ @ . Uptok—1g

Re R, * Computationally secure
A A

e gate-by-gate, using
O (k(d + log(n))) quant

@ G rounds for d the {CNOT, T}-
depth of the g computation
e subroutine: classical MPC

©

Previous Approaches

MPQC: two approaches

®
7 RN
© 4

Rs\e/

MPQC: two approaches

© | Socret s
©/ RN\ @ [Ceg%;e, écacgngoes]

Rs R-

A A

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

MPQC: two approaches
© .
/ R \ Eégg%;e,t S’?:Zrﬂgoa]

@ @ e distribute inputs

Rs R>
A

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

MPQC: two approaches

1. Secret sharing

[CGS02, BCGHSO0O6]
@ e distribute inputs

R2
A

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

MPQC: two approaches
© .
/ R \ Eégg%;e,t S’?:Zrﬁgog]

@ @ e distribute inputs

Rs R>
A

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

MPQC: two approaches
© .
/ n \ Eégg%;e,t S’?:Zrﬁgog]

o
@o 0@ e distribute inputs

Rs R>
A

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

MPQC: two approaches
© .
/ n \ Eégg%;e,t S’?:Zrﬁgog]

o
@o 0@ e distribute inputs

Rs R>
A

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

MPQC: two approaches
@ 1. Secret sharing

/ TN [CGS02, BCGHS06]

o
@o 0@ e distribute inputs

Rs R>
A

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

MPQC: two approaches
@ 1. Secret sharing

/ R N [CGS02, BCGHSO06]

® @ e distribute inputs

Re R2
1| e upto <k/2 dishonest

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)

MPQC: two approaches
© »
/ R \ Eégg%;e,t écacgngoes]

@ @ e distribute inputs

Re R2
1| e upto <k/2 dishonest

<

2. Authentication [DNS12]

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)
[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)

MPQC: two approaches
© »
/ it \ Eégg%;e,t écacgngoes]

© ©
e distribute inputs

Re R2
1| e upto <k/2 dishonest

<

2. Authentication [DNS12]

G e protect inputs

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)
[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)

MPQC: two approaches
@ 1. Secret sharing

/ RN\ [CGS02, BCGHS06]
QR";) @ e distribute inputs

R>
A A

e up to <k/2 dishonest

<

2. Authentication [DNS12]

G e protect inputs
e

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)
[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)

MPQC: two approaches
© »
/ R \ Eégg%;e,t écacgngoes]

@ @ e distribute inputs

Re R2
1| e upto <k/2 dishonest

<

2. Authentication [DNS12]

G e protect inputs

[CGSO02] Crépeau, Gottesman, ar‘lld Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)
[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)

MPQC: two approaches
@ 1. Secret sharing

TN [CGS02, BCGHS06]

@ @ e distribute inputs

Rs R-
A

4
v
Rs g Rs
[CGSO02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002)

[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)
[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)

e up to <k/2 dishonest

2. Authentication [DNS12]

G<

e protect inputs

MPQC: two approaches
@ 1. Secret sharing

TN [CGS02, BCGHS06]

@ @ e distribute inputs

Rs R-
A

4
v
Rs E Rs
[CGSO02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002)

[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)
[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)

e up to <k/2 dishonest

2. Authentication [DNS12]

G<

e protect inputs

MPQC: two approaches
@ 1. Secret sharing

TN [CGS02, BCGHS06]

@ @ e distribute inputs

Rs R-
A

4
v
Rs E Rs
[CGSO02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002)

[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)
[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)

e up to <k/2 dishonest

2. Authentication [DNS12]

G<

e protect inputs

MPQC: two approaches
@ 1. Secret sharing

N [CGS02, BCGHS06]

@ @ e distribute inputs

Rs R>

>
>

e up to <k/2 dishonest

v 2. Authentication [DNS12]

G e protect inputs

Rs

* hope: up to k-1 dishonest

[CGSO02] Crépeau, Gottesman, and Smith. Secure multi-party quantum computation. (STOC 2002)
[BCGHSO06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith. (FOCS 2006)
[DNS12] Dupuis, Nielsen, and Salvail. Actively secure two-party evaluation of any quantum operation. (CRYPTO 2012)

Authentication

Clifford code

Remember Yfke’s tutorial: https://www.youtube.com/watch?v=yEjh8gJQgsM

https://www.youtube.com/watch?v=yEjh8qJQqsM

Clifford code

Remember Yfke’s tutorial: https://www.youtube.com/watch?v=yEjh8gJQgsM

Key: C eg Clifford,, 11

https://www.youtube.com/watch?v=yEjh8qJQqsM

Clifford code

Remember Yfke’s tutorial: https://www.youtube.com/watch?v=yEjh8gJQgsM

Key: C e Clifford,, 11

https://www.youtube.com/watch?v=yEjh8qJQqsM

Clifford code

Remember Yfke’s tutorial: https://www.youtube.com/watch?v=yEjh8gJQgsM

Key: C e Clifford,, 11

https://www.youtube.com/watch?v=yEjh8qJQqsM

Clifford code

Remember Yfke’s tutorial: https://www.youtube.com/watch?v=yEjh8gJQgsM

Key: C e Clifford,, 11

https://www.youtube.com/watch?v=yEjh8qJQqsM

Clifford code

Remember Yfke’s tutorial: https://www.youtube.com/watch?v=yEjh8gJQgsM

Key: C e Clifford,, 11

Encoding: 1) — C (|¢) ® [0)©")

https://www.youtube.com/watch?v=yEjh8qJQqsM

Clifford code

Remember Yfke’s tutorial: https://www.youtube.com/watch?v=yEjh8gJQgsM

Key: C e Clifford,, 11

Encoding: 1) — C (|¢) ® [0)©")

https://www.youtube.com/watch?v=yEjh8qJQqsM

Clifford code

Remember Yfke’s tutorial: https://www.youtube.com/watch?v=yEjh8gJQgsM

Key: C e Clifford,, 11
Encoding: 1) — C (|¢) ® [0)©")

Decoding: apply C'T measure traps

https://www.youtube.com/watch?v=yEjh8qJQqsM

Clifford code

Remember Yfke’s tutorial: https://www.youtube.com/watch?v=yEjh8gJQgsM

Key: C e Clifford,, 11
Encoding: 1) — C (|¢) ® [0)©")

Decoding: apply C'T measure traps

Theorem (informal): for any A on n 4+ 1 qubits, the
probability that A changes |v), but is not detected at
decoding is very small (27 ™).

https://www.youtube.com/watch?v=yEjh8qJQqsM

Clifford code

Remember Yfke’s tutorial: https://www.youtube.com/watch?v=yEjh8gJQgsM

Key: C e Clifford,, 11
Encoding: 1) — C (|¢) ® [0)©")

Decoding: apply C'T measure traps

Theorem (informal): for any A on n + 1 qubits, the

probability that A changes |v), but is not detected at
decoding is very small (27 ™).

Bonus: the Clifford code also provides privacy.

https://www.youtube.com/watch?v=yEjh8qJQqsM

Clifford code in MPQC

®
7 RN
© 4

Rs\e/

Clifford code in MPQC

Clifford code in MPQC

 What if the encoding player
is dishonest?
6

Clifford code in MPQC

 What if the encoding player
is dishonest?

* How to do computation?
Data is unalterable!

Clifford code in MPQC

 What if the encoding player
is dishonest?

Re R2 _
4 e How to do computation?
Data is unalterable!

Answers: use classical multi-
party computation! @

Clifford code in MPQC

* What if the encoding player
IS dishonest?

* How to do computation?
Data is unalterable!

Answers: use classical multi-
party computation! @

First idea: stack encodings

O

7R\
Op ° 09

R2
A

v v
C::?\/?

R4

First idea: stack encodings

First idea: stack encodings

@ From [DNS12]:

First idea: stack encodings

@ From [DNS12]:

N Cr (| ® [07)

First idea: stack encodings

From [DNS12]:

Ci(jy) @10%))

\
Ca2(Cr () ®10™)) @ [0™))

First idea: stack encodings

From [DNS12]:

Ci(jy) @10%))

\
Ca2(Cr () ®10™)) @ [0™))

First idea: stack encodings

From [DNS12]:

Ci(jy) @10%))

\
Ca2(Ch () ®10™)) @ [0™))

First idea: stack encodings

From [DNS12]:

Ci(jy) @10%))

\
Ca2(Ch () ®10™)) @ [0™))

First idea: stack encodings

From [DNS12]:

Ci(jy) @10%))

\
Ca2(Cr () ®10™)) @ [0™))

First idea: stack encodings

@ From [DNS12]:

/ N\ Ci(jy) @10%))

@ © ’

R C2Ci(jy) ®1[07) ©]07))

R6
‘ |
C5(Ca(Ca([4) ® [07) © [07) ©[0™)
|
Ca(C3(Co(Cr(|) ®[0™)) @ |07)) @ [07)) @ [0™))
\/

C5(Ca(C(Ca(Ci(l9) ©|07)) ® 107)) @ [07)) © |0™)) @ |07))
v
Co(C5(Ca(C3(Ca(Ci(l9) @0™)) @]0)) @ |07)) @ [07)) @ [0™)) @]0™))

First idea: stack encodings

@ From [DNS12]:

/ N\ Ci(jy) @10%))

@ © ’

R C2Ci(jy) ®1[07) ©]07))

R6
A A ¢
Cs(C2(Ch(|v) ® [07)) ® [0)) @ [0™))
v v l

@ G Ca(C3(C2(Ch () @ |0™)) @]0™)) @ [0™)) @ [0™))
v

/ Cs5(Ca(C3(Co(Cr(J1) @ 10™)) @ [0™)) @ |0™)) ® [0™)) ® |0™))
R5 \ e R3 v

Co(Cs(Ca(C3(C2(Co(y) ®@107)) @ |07)) @ [07)) @ 10™)) @ |0™)) @[0™))

R4 Drawback: very large ciphertexts (nk + 1)

Public authentication test

v v
@\/?

R4

Public authentication test

Public authentication test

@ Ci(|v) ® [0°™))

Public authentication test

@ CoCh () ® [0°™))

| Ion test
| ntication
PUbléaUthe C3C2C1 ([¢) ® [0°™))
/ 1

' &
N

R4

Public authentication test
@ C1C3CCy (|v) ® 0°™))

Public authentication test

@ C5C4C5CoCr ([1h) @ 10™))
7 "\

o " e
v)
© &
m\e/m

R4

Public authentication test

@ CsCsC4C3C Ch () ® 0°7))
R1 \

y
S ©

R2
A

Public authentication test
/ @ CoC5C1C3C2Cy (1) @ |0°™))

Public authentication test

CsC5C4C5C C (1) @ [0%™))

Public authentication test

CsC5C4C5C C (1) @ [0%™))
C

Public authentication test

CsC5C4C5C C (1) @ [0%™))
C

Public authentication test

CsC5C4C5C C1 (1) @ [0%7))
C

Public authentication test

CsC5C4C5C C1 (1) @ [0%7))
C

Using classical MPC: @

Public authentication test

CsC5C4C5C C1 (1) @ [0%7))
C

Using classical MPC: @

e Select g €gr GL(2n,F3). Note: g(y) = 0°™ iff y = 04"
Lemma: apply random g and measure n traps
X~ measure 2n traps

Public authentication test

CsC5C4C5C C1 (1) @ [0%7))
C

Using classical MPC: @

e Select g €gr GL(2n,F3). Note: g(y) = 0°™ iff y = 04"
Lemma: apply random g and measure n traps
X~ measure 2n traps

e Let player 1 apply (C' ® X")(I ® ¢)C" for random C’,

Public authentication test

CsC5C4C5C C1 (1) @ [0%7))
C

Using classical MPC: @

e Select g €gr GL(2n,F3). Note: g(y) = 0°™ iff y = 04"
Lemma: apply random g and measure n traps
X~ measure 2n traps

e Let player 1 apply (C' ® X")(I ® ¢)C" for random C’,

e et player 1 measure last n qubits (check if outcome is r)

Public authentication test

CsC5C4C5C C1 (1) @ [0%7))
C

Using classical MPC: @

e Select g €gr GL(2n,F3). Note: g(y) = 0°™ iff y = 04"
Lemma: apply random g and measure n traps
X~ measure 2n traps

e Let player 1 apply (C' ® X")(I ® ¢)C" for random C’,
e et player 1 measure last n qubits (check if outcome is r)

Result: authenticated state C'(|1) ® |0™))

Public authentication test

Public authentication test

One player performs the test: applies Clifford, measures, ...

Public authentication test

One player performs the test: applies Clifford, measures, ...

All players verify the test through classical MPC @

Public authentication test

One player performs the test: applies Clifford, measures, ...
All players verify the test through classical MPC @
The test can be used:

» to test encodings (as in previous slide);

Public authentication test

One player performs the test: applies Clifford, measures, ...
All players verify the test through classical MPC @

The test can be used:

» to test encodings (as in previous slide);

» to test whether a computation step was executed honestly

Computation

Computation

& 1) ety
Protocols (C(|y) ® [0™)) — C'(Gly) @ |0™))) for these G-

e 1-qubit Cliffords
e CNOT (2-qubit Clifford)
e T (non-Clifford)

e Computational-basis measurement

Single-qubit Cliffords

Single-qubit Cliffords

/ @ AN = C(|) ® [0)*")

© ©

R6 R
4 A

Single-qubit Cliffords

/ @ AN = C(|) ® [0)*")
@ @ Using classical MPC:

R6 R2 ypdate classical key @
C — C':=C(G"®I®)

Single-qubit Cliffords

/ @ AN = C(|) ® [0)*")
@ @ Using classical MPC:

R6 R2 ypdate classical key @
C — C':=C(G"®I®)

@ G Then (©) will decode to
Z m (@) C() 0

Single-qubit Cliffords

/ @ AN = C(|) ® [0)*")
@ @ Using classical MPC:

R6 R2 ypdate classical key @
C — C':=C(G"®I®)

@ G Then (©) will decode to
Z m (@) C() 0

= Gly) ®10)*"

CNOT
& — (C1 ® Co)([h1) @ |0™) @ [1h2) @ |07))

CNOT
8 EX 6 EIGEIAEISEISEI)

Same strategy does not work:
(C1 ® Co)(CNOTT @ I®?™)is not in product form.

CNOT
8 EX 6 EIGEIAEISEISEI)

Same strategy does not work:
(C1 ® Co)(CNOTT @ I®?™)is not in product form.

Instead:

CNOT
8 EX 6 EIGEIAEISEISEI)

Same strategy does not work:
(C1 ® Co)(CNOTT @ I®?™)is not in product form.

Instead:

* Player 1 applies (C] @ C5)CNOT(CT @ CI) for freshly
random C7, C5 . @

CNOT
O = ©O) - e 0 o) e 0)

Same strategy does not work:
(C1 ® Co)(CNOTT @ I®?™)is not in product form.

Instead:

* Player 1 applies (C] @ C5)CNOT(CT @ CI) for freshly
random C7, C5 . @

e Player 1 executes public authentication test. @

Non-Clifford gate 7-|

677@/4

Non-Clifford gate - |,

Magic-state computation:

¥)

f> /7(

XC

PC

Non-Clifford gate - |,

Magic-state computation:

¥)

7"

T|+)—

XC

_J‘magic state”

PC

Non-Clifford gate - |,

Magic-state computation:

8 ‘¢> O—1 72 » C
T |+)—e XeHPet—T |¢)
_J‘magic state”

Ci1(jy) ®10%)) ®

Non-Clifford gate 7-

Magic-state computation:

8 1) —o—7——

T|+)—s X¢
p‘magic state”

1 0

0 6772'/4

Ci1(jy) ®10%)) ® — C3(T) ©107))

Non-Clifford gate - | ..

Magic-state computation:

8 [¥)

N
Y

7"

T|+)

XC

_J‘magic state”

Ci1(jy) ®10%)) ®

PC

—T1y) 8

—

Cs(T|y) ®[0™))

Nobody can be trusted to create encoded magic states!

Magic-state generation

Magic-state generation

©/©\©

\e/

Magic-state generation

) — O(T]+) 210™))
N
© ©

\e/

Magic-state generation

= C(T]+) ®@10%))

/ @ \ 1. “cut-and-choose”:
© ©

\e/

Magic-state generation

= C(T]+) ®@10%))

/ @ \ 1. “cut-and-choose”:
© ©

\e/

Magic-state generation

= C(T]+) ®@10%))

/ @ \ 1. “cut-and-choose”:
© O

\e/

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose”:
@ @ + every player tests n @

random states

\e/

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

\e//

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

\e//

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

\G/

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

\G/

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

\e/

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

\e/

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

\e/

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

\e/

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

+ remaining n copies are
“pretty good”

\e/g

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

+ remaining n copies are
“pretty good”

@ G 2. magic-state distillation:
i

Magic-state generation

— O(T|+) @ |0))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

+ remaining n copies are
“pretty good”

2. magic-state distillation:

\ e / G + aClifford circuit (&)

Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

A A

+ remaining n copies are
v v “pretty good”

@ G 2. magic-state distillation:
\ g / + a Clifford circuit ()

+ remaining copy is “very
good”

Computation
8 I¥) Gl)

Computation

8 I¥) G|v)
Protocols (C'(|¢) ® |0™)) — C'(G|y) ® |0™))) for these G :

Computation

8 I¥) G|v)
Protocols (C'(|¢) ® |0™)) — C'(G|y) ® |0™))) for these G :

e 1-qubit Cliffords C +— C':= C(GT@)I@n) @

Computation

8 1)) G|v)
Protocols (C'(|¢) ® |0™)) — C'(G|y) & |0™))) for these G :

e 1-qubit Cliffords C +— C':= C(GT@)I@n) @

e CNOT (2-qubit Clifford): apply (C! ® C5)CNOT(C! & CI)
& perform public authentication test

Computation

8 I¥) G|v)
Protocols (C'(|¢) ® |0™)) — C'(G|y) ® |0™))) for these G :

e 1-qubit Cliffords C +— C':=C(G' @ I®") @

e CNOT (2-qubit Clifford): apply (C! ® C5)CNOT(C! & CI)
& perform public authentication test

* T (non-Clifford): generate encoded magic states and perform
encoded magic-state computation wTd H H c

T|+) XeHPe—T |¢)

Computation

& 1)

Protocols (

e 1-qubit Cliffords C — C' :=

Gl)

C(|Y) @ |0™) — C'(G|) @]0™))) for these G :
oGt 1t ©

e CNOT (2-qubit Clifford): apply (C! ® C5)CNOT(C! & CI)
& perform public authentication test

* T (non-Clifford): generate encoded magic states and perform

encoded magic-state computation

e Computational-basis measurement

¥)

T|+)

7

C

B

[]

XC

PC

—TY)

Comp-Basis Measurement

©) -ciw =02 = (Z i |m) @ |0)E)

Comp-Basis Measurement

©) -ciw =02 = (Z i |m) @ |0)E)

Comp-Basis Measurement
— C(h@ 2y ‘O>®n) =C (Z Ozm\m> R O>®n)

mé&{0,1}

© -MPCsamples 7,5 + (0,1} ¢+ {0,1)"

Comp-Basis Measurement
— C(h@ 2y ‘O>®n) =C (Z Ozm\m> R O>®n)

mé&{0,1}
© -MPCsamples 1.5 ¢ (0,11 c ¢ {0,1)"

@ - MPC instructs player to apply V := X"Z* H CNOT?;Z- CT

1€ [n]

Comp-Basis Measurement

©) -ciw =02 = (Z i |m) @ |0)E)

@ + MPC samples 7,5 + {0,1}"", ¢« {0,1}"

@ - MPC instructs player to apply V := X"Z* H CNOTifi CT
1€[n]
- player measures in computational basis, outcome 7’

Comp-Basis Measurement
— C(h@ 2y ‘O>®n) =C Z Ozm\m> R |O>®n

me{0,1}

@ + MPC samples r,s « {0,1}"*! ¢ < {0,1}"

- MPC instructs player to apply V := X"Z* H CNOTifi CT
1€[n]
- player measures in computational basis, outcome 7’

@ » MPC checks whether ' =r @ (m,m - ¢)
for some m € {0, 1}

Summary

Summary

A protocol for multiparty computation of any quantum circuit:

Summary

A protocol for multiparty computation of any quantum circuit:

e Computationally secure against < k — 1 cheaters (out of k)

Summary

A protocol for multiparty computation of any quantum circuit:
e Computationally secure against < k — 1 cheaters (out of k)

e Encoded states of size 2n + 1 (vs. kn + 1 in [DNS12])

Summary

A protocol for multiparty computation of any quantum circuit:
e Computationally secure against < k — 1 cheaters (out of k)
e Encoded states of size 2n + 1 (vs. kn + 1 in [DNS12])

o T gate: requires kn magic states (vs. 7" from naive
extension of [DNS12])

Summary

A protocol for multiparty computation of any quantum circuit:
e Computationally secure against < k — 1 cheaters (out of k)
e Encoded states of size 2n + 1 (vs. kn + 1 in [DNS12])

o T gate: requires kn magic states (vs. 7" from naive
extension of [DNS12])

* Rounds of g communication: O(k(d + log(n)))
ford the {CNOT, T }-depth of the quantum computation

Open Questions

Open Questions

 Post-quantum secure classical MPC protocol for
@ dishonest majority?

Open Questions

 Post-quantum secure classical MPC protocol for
@ dishonest majority?

e CNOT operation without a round of g communication?

Open Questions

 Post-quantum secure classical MPC protocol for
@ dishonest majority?

e CNOT operation without a round of g communication?

* More efficient protocols for more specific
functionalities?

Open Questions

Post-guantum secure classical MPC protocol for
dishonest majority?

CNOT operation without a round of g communication?

More efficient protocols for more specific
functionalities?

Classical MPC is a versatile tool (e.g. for zero-
knowledge proofs or digital signature). Are there such
use cases for MPQC?

Open Questions

 Post-quantum secure classical MPC protocol for
@ dishonest majority?

e CNOT operation without a round of g communication?

* More efficient protocols for more specific
functionalities?

e Classical MPC is a versatile tool (e.g. for zero-
knowledge proofs or digital signature). Are there such
use cases for MPQC?

AT DIMONS Thank you! &

~— for the Theory of Computing

e ——

