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Key: C e Clifford,, 11
Encoding: 1) — C (|¢) ® [0)©")

Decoding: apply C'T measure traps

Theorem (informal): for any A on n + 1 qubits, the

probability that A changes |v), but is not detected at
decoding is very small ( 27 ™).

Bonus: the Clifford code also provides privacy.
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e Select g €gr GL(2n,F3). Note: g(y) = 0°™ iff y = 04"
Lemma: apply random g and measure n traps
X~ measure 2n traps

e Let player 1 apply (C' ® X")(I ® ¢)C" for random C’,
e et player 1 measure last n qubits (check if outcome is r)

Result: authenticated state C'(|1) ® |0™))
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One player performs the test: applies Clifford, measures, ...
All players verify the test through classical MPC @

The test can be used:

» to test encodings (as in previous slide);

» to test whether a computation step was executed honestly
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Same strategy does not work:
(C1 ® Co)(CNOTT @ I®?™)is not in product form.

Instead:

* Player 1 applies (C] @ C5)CNOT(CT @ CI) for freshly
random C7, C5 . @

e Player 1 executes public authentication test. @
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Nobody can be trusted to create encoded magic states!
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Magic-state generation

= C(T]+) ®@10%))

/ \ 1. “cut-and-choose:
@ @ + every player tests n @

random states

A A

+ remaining n copies are
v v “pretty good”

@ G 2. magic-state distillation:
\ g / + a Clifford circuit ()

+ remaining copy is “very
good”
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e CNOT (2-qubit Clifford): apply (C! ® C5)CNOT(C! & CI)
& perform public authentication test

* T (non-Clifford): generate encoded magic states and perform
encoded magic-state computation wTd H H c
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Protocols (

e 1-qubit Cliffords C — C' :=

Gl)

C(|Y) @ |0™) — C'(G|) @ ]0™))) for these G :
oGt 1t ©

e CNOT (2-qubit Clifford): apply (C! ® C5)CNOT(C! & CI)
& perform public authentication test

* T (non-Clifford): generate encoded magic states and perform

encoded magic-state computation

e Computational-basis measurement
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Comp-Basis Measurement
— C(h@ 2y ‘O>®n) =C Z Ozm\m> R |O>®n

me{0,1}

@ + MPC samples r,s « {0,1}"*! ¢ < {0,1}"

- MPC instructs player to apply V := X"Z* H CNOTifi CT
1€[n]
- player measures in computational basis, outcome 7’

@ » MPC checks whether ' =r @ (m,m - ¢)
for some m € {0, 1}
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Summary

A protocol for multiparty computation of any quantum circuit:
e Computationally secure against < k — 1 cheaters (out of k)
e Encoded states of size 2n + 1 (vs. kn + 1 in [DNS12])

o T gate: requires kn magic states (vs. 7" from naive
extension of [DNS12])

* Rounds of g communication: O(k(d + log(n)))
ford the {CNOT, T }-depth of the quantum computation
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Open Questions

 Post-quantum secure classical MPC protocol for
@ dishonest majority?

e CNOT operation without a round of g communication?

* More efficient protocols for more specific
functionalities?

e Classical MPC is a versatile tool (e.g. for zero-
knowledge proofs or digital signature). Are there such
use cases for MPQC?
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