
MPC with Silent Preprocessing
via Pseudorandom Correlation Generators

Lisa Kohl

Based on joint works with Elette Boyle, Geoffroy Couteau, Niv Gilboa,
Yuval Ishai, Peter Rindal, and Peter Scholl

1

Secure multi-party computation (MPC)

Secure MPC with preprocessing

[Yao86; GMW87; BGW88; CCD88]

a b

public function f

a b

Correlated randomness

Goal: Parties learn f (a, b) and nothing more

+ Fast online phase

– Preprocessing expensive (communication & storage)

R0 ← Expand(k0) R1 ← Expand(k1)

2

Secure MPC with preprocessing
[Beaver91]

a b

public function f

a b

Correlated randomness

Goal: Parties learn f (a, b) and nothing more

+ Fast online phase, security against dishonest majority

– Preprocessing expensive (communication & storage)

R0 ← Expand(k0) R1 ← Expand(k1)

3

Pseudorandom correlation generator (PCG)
[BCGI18; BCGIKS19]

+ Fast online phase

– Preprocessing expensive (communication & storage)

SILENT

Correctness: R0 ∼ R1Security: (k0,R1) ≈c (k0, [R1 | R0 ∼ R1])

k1k0

R0 ← Expand(k0) R1 ← Expand(k1)

R0 R1

Short correlated seeds

Correlated randomness

Gen(1λ)
Setup with sublinear
communication & storage

4

Pseudorandom correlation generator (PCG)
[BCGI18; BCGIKS19]

+ Fast online phase

– Preprocessing expensive (communication & storage)

SILENT

Correctness: R0 ∼ R1

Security: (k0,R1) ≈c (k0, [R1 | R0 ∼ R1])

k1k0

R0 ← Expand(k0) R1 ← Expand(k1)

R0 R1

Short correlated seeds

Correlated randomness

Gen(1λ)

Setup with sublinear
communication & storage

4

Pseudorandom correlation generator (PCG)
[BCGI18; BCGIKS19]

+ Fast online phase

– Preprocessing expensive (communication & storage)

SILENT

Correctness: R0 ∼ R1

Security: (k0,R1) ≈c (k0, [R1 | R0 ∼ R1])

k1k0

R0 ← Expand(k0) R1 ← Expand(k1)

R0 R1

Short correlated seeds

Correlated randomness

Gen(1λ)

Setup with sublinear
communication & storage

4

Secure MPC with silent preprocessing
[BCGIKS19]

+ Fast online phase, security against dishonest majority

– Preprocessing expensive (communication & storage)

SILENT

Short correlated seeds

Correlated randomness

R0 ← Expand(k0) R1 ← Expand(k1)

Setup with sublinear
communication & storage

malicious security
at little extra cost

5

Generic construction of PCGs
[BCGIKS19]

General additive correlations:

R0 R1 R0 + R1 = f (X)

Feasibility: PRG + Homomorphic secret sharing

k1k0

R0 ← Evalf ◦PRG(k0) R1 ← Evalf ◦PRG(k1)

R0 R1

Share(sX)

6

Landscape of PCGs

?low-degree ?concretely efficient

“Minicrypt” OWF: Linear [GI99; CDI05]

Truth tables [BCGIKS19]

“Lapland” LPN:

Ring-LPN:

Vector OLE [BCGI18]

OT, Constant-degree [BCGIKS19]

OLE [BCGIKS20]

“Cryptomania” DDH + PRG?:

LWE + PRG?:

Log-space [BCGIO17]

Bounded depth? [BCGIKS19]

“Gentryland” LWE+: General additive [BCGIKS19]

7

Learning with errors vs. learning parity with noise

LWE:

p > 2

s over Zp

‖e‖∞ small

+ ≈ $

LPN:

p = 2 (here: p ≥ 2)

s over Zp

HW(e) small

+ ≈ $

8

Cryptography from LWE vs. LPN

LPNLWE

OWF
PRG

CRH
PKE

OT

NIKE

Additive HE

FHE

low noise

PCG for OLE
PCG for OT

9

Cryptography from LWE vs. LPN

LPNLWE

OWF
PRG

CRH
PKE

OT

NIKE

Additive HE

FHE

low noise

PCG for OLE
PCG for OT

9

A simple PRG from LPN

LPN:

limited to quadratic stretch

+ ≈ $

generator matrix G parity check matrix H

Dual-LPN:

arbitrary polynomial stretch

≈ $

10

Why LPN is a perfect match for PCGs

no quantum attacks! no quantum attacks!

≈ $

I Sparse vector can be distributed via compressed secret shares

I LPN assumption is linear homomorphic properties

11

How to distribute a sparse vector efficiently
[GI14]

Point Function: Fα : {1, . . . ,N} → F2λ,F
α(x) =

{
y , if x = α

0 , else

Distributed Point Function:

k0

1 α N

k1

+ = 0 y 0 · · · 0

I Efficient constructions from OWFs [GI14; BGI16]

I Efficient distributed setup [Ds17]

12

Part I: PCG for oblivious transfer from LPN

13

Oblivious transfer (OT)
[Rab81; EGL85]

b r0, r1

rb
OT

Security: Alice learns only rb, Bob doesn’t learn b

GMW Protocol: Secure MPC with 2 OTs per AND-Gate

Problem: OT is expensive (“public-key primitive”)

14

OT extension

Many (random) OTsbi , ri ,bi ri ,0, ri ,1

Many
OTs

Few
OTs

OT extension: Few base OTs + “cheap crypto” [Bea96; IKNP03]
Silent OT extension: Local expansion [BCGIKS19; BCGIKRS19]

15

Comparison of OT extension protocols
128-bit security

Reference Rounds Comm. per
random OT

Silent Active Based on

[Bea96] 2 poly 7 7 OWF
[IKNP03; ALSZ13; KOS15] 3? 128 7 3 crh
[KK13] (short strings) 3 ≈ 78 7 7 crh
[BCGIKS19] logN 0− 3 3 7 LPN, crh??

[BCGIKRS19] 2? 0.1 3 3 LPN, crh??

∗Fiat-Shamir for active security, ??correlated-input secure hash function

[GMMM18]: RO ; 2-round OT extension

I Semi-honest 2-PC w/ 4.2 bits per AND, 30× less than [DKSSZZ17]

I Improves PSI, malicious MPC

I Useful for non-interactive secure comp. [IKOPS11; AMPR14; MR17]

16

Comparison of OT extension protocols
128-bit security

Reference Rounds Comm. per
random OT

Silent Active Based on

[Bea96] 2 poly 7 7 OWF
[IKNP03; ALSZ13; KOS15] 3? 128 7 3 crh
[KK13] (short strings) 3 ≈ 78 7 7 crh
[BCGIKS19] logN 0− 3 3 7 LPN, crh??

[BCGIKRS19] 2? 0.1 3 3 LPN, crh??

∗Fiat-Shamir for active security, ??correlated-input secure hash function

I Semi-honest 2-PC w/ 4.2 bits per AND, 30× less than [DKSSZZ17]

I Improves PSI, malicious MPC

I Useful for non-interactive secure comp. [IKOPS11; AMPR14; MR17]
16

Correlated OT
∈ F2

bi

∈ F2λ

ri , ri + ∆

ri + ∆ · bi
OT

Correlated OT + correlation robust hash function ⇒ OT [IKNP03]

As vectors: , Subfield vector oblivious linear evaluation

+r + ∆ · b=∆ · b r

17

Overview: PCG for correlated OT
[BCGIKS19]

Idea:

1. Via distributed point functions:

k0 k1

+ = ∆

2. Via addition:
+ = ∆ ∆ ∆

3. Via LPN:
+ = ∆ · b

18

1a. Towards 2-round setup
[SGRR19; BCGIKRS19]

Problem: DPF require logN rounds for distributed setup!

Observation:

I Receiver knows b

 Receiver knows the point α, where PF 6= 0

 Puncturable pseudorandom functions sufficient!

19

1b. Puncturable pseudorandom function
[BGI13; BW13; KPTZ13]

Puncturable PRF (PPRF):
Fk : {1, . . . ,N} → F2λ

I k

?

 Fk(x) for all x

I k? Fk(x) for all x 6= α

Via GGM: k

α1 N. . .

|k | = λ, |k?| = λ logN
20

1c. PCG for unit vector via PPRF
[SGRR19; BCGIKRS19]

α, k? , Fk(α) + ∆ k

?

, ∆

How to set up k?, k?

21

1d. 2-Round setup for unit vector
[SGRR19; BCGIKRS19]

k

α1 N. . .

Strategy: (based on [Ds17])

I Sender chooses k

?

I Receiver receives k? via chosen OTs:

OT
¬path

k?
k

?

I Note: OTs can be executed in parallel!

22

2. From unit to sparse vectors
[BCGI18; BCGIKS19]

Repeat t times:

+

+
...

+

=

+

+
...

+

=

+

+
...

+

=

Alternative: Concatenation + LPN with regular noise

23

3. From sparse to pseudorandom vectors
[BCGI18; BCGIKS19]

≈ $

Main challenge: Parity check matrix is big!

I use quasi-cyclic codes multiplication in Õ(N)

Security

I Similar to PQ cryptosystems BIKE, HQC [AAB+19; ABB+19]

24

PCG for correlated OT from LPN - Recap
[BCGIKS19]

r + ∆ · bb

αi k?i , Fki (αi) + ∆ ki

?

, ∆

r

·

25

From correlated OT to chosen OT
1. Break correlations:

I Locally apply crh [IKNP03]

 MPC with 2-round silent preprocessing

2. Derandomization:

I Depends only on b

I Can be sent along with first message

 2-round OT extension

αi

b

·

26

Runtimes (ms) for 10 million random OTs
[BCGIKRS19]

Runtimes (ms) for 10 million random OTs

Peter Scholl 23

268

13728

128854

3373 3675 36032441 2726 2756

1

10

100

1000

10000

100000

LAN (10 Gbps) WAN (100 MBps) WAN (10 MBps)

IKNP vs 2-round silent vs 3-round silent

9x

5x
47x

Hybrid: IKNP for ≈1500 base OTs
Total comm: 160 MB vs 145 kB vs 127 kB[IKNP03] vs 2-round silent vs 3-round hybrid

I Total communication: 160 MB vs 145 kB vs 127 kB

27

Part II: PCGs for OLE from LPN and ring-LPN

28

Oblivious linear evaluation (OLE)

a ∈ Fp b , c ∈ Fp

d = ab + c
OLE

I Generalization of OT to Fp

I 2 OLEs can be locally transformed into a multiplication triple

−d=∗ ba c

29

Towards PCG for OLE from LPN
[BCGIKS19,BCGIKS20]

Idea: Rewrite a ∗ b and use linearity of LPN
=· b

a

Via LPN:

·

30

PCG for OLE via LPN
[BCGIKS19,BCGIKS20]

Via DPF:

Problem: Dimension (computational cost) quadratic in N

31

A different perspective
[BCGIKS20]

⊗

Observations:

I Generalizes to more dimensions

I Better efficiency via choosing H such that H ∗ H compressible

32

More efficient PCG for OLE from ring-LPN
[BCGIKS20]

public sparse

a(X) · s(X) + e(X) ≈c u(X) over Zp[X]/ϕ(X)

If ϕ(X) (of degree N) fully splits over Zp[X]:

AV

VD

V ≈c $

 N OLEs over Zp in Õ(N) computation time

33

More efficient PCG for OLE from ring-LPN
[BCGIKS20]

public sparse

a(X) · s(X) + e(X) ≈c u(X) over Zp[X]/ϕ(X)

If ϕ(X) (of degree N) fully splits over Zp[X]:

AV

VD V ≈c $

 N OLEs over Zp in Õ(N) computation time
33

Efficiency of our PCG construction for OLE
[BCGIKS20]

To generate 1 Mio OLEs over Zq (q composite of 62-bit primes):

Reference Amount Seed size Communication OLEs/second

[KPR18] 32 MB 32 MB > 1 GB 30 K
[BCGIKS19] 17 GB 3 GB 6 GB 6 K?

[BCGIKS20] 32 MB 1.25 MB 7 MB 100 K?

?expansion only, estimated costs

I Setup with malicious security

I Generalizes to authenticated multiplication triples at ≈ ×2 cost!

34

Conclusion
PCGs for OT from LPN [BCGIKS19; BCGIKRS19]

I Random OT: practical, almost zero communication
I 2-Round OT extension (malicious security, implementation)

PCGs for OLE [BCGIKS20]

I More efficient instantiation based on fully splittable ring-LPN

Open problems/ Ongoing work:
I Optimize OT: Better codes
I Efficient PCGs for more correlations
I Better understanding of LPN-flavored assumptions

Thank you!
35

