MPC with Silent Preprocessing via Pseudorandom Correlation Generators

Lisa Kohl

Based on joint works with Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Peter Rindal, and Peter Scholl

Secure multi-party computation (MPC) [Yao86; GMW87; BGW88; CCD88]

Goal: Parties learn f(a, b) and nothing more

Secure MPC with preprocessing

[Beaver91]

- + Fast online phase, security against dishonest majority
- Preprocessing expensive (communication & storage)

Pseudorandom correlation generator (PCG) [BCGI18; BCGIKS19]

Short correlated seeds

0.00.0010

Pseudorandom correlation generator (PCG) [BCGI18; BCGIKS19]

Correctness: $R_0 \sim R_1$

Pseudorandom correlation generator (PCG) [BCGI18; BCGIKS19]

Security: $(k_0, R_1) \approx_c (k_0, [R_1 | R_0 \sim R_1])$

Secure MPC with *silent* preprocessing [BCGIKS19]

Generic construction of PCGs [BCGIKS19]

General additive correlations:

 R_0

Feasibility: PRG + Homomorphic secret sharing

 R_1

 $R_0 + R_1 = f(X)$

Landscape of PCGs

"Gentryland"	LWE+:	General additive [BCGIKS19]
"Cryptomania"	$DDH + PRG^*$:	Log-space [BCGIO17]
	$LWE + PRG^*$:	Bounded depth* [BCGIKS19]
"Lapland"	LPN:	Vector OLE [BCGI18]
		OT, Constant-degree [BCGIKS19]
	Ring-LPN:	OLE [BCGIKS20]
"Minicrypt"	OWF:	Linear [GI99; CDI05]
		Truth tables [BCGIKS19]
	*low-degree	*concretely efficient

Learning with errors vs. learning parity with noise

LWE:

LPN:

 $p = 2 (here: p \ge 2)$ s over \mathbb{Z}_p HW(e) small

Cryptography from LWE vs. LPN

Cryptography from LWE vs. LPN

A simple PRG from LPN LPN: Dual-LPN:

limited to quadratic stretch

arbitrary polynomial stretch

Why LPN is a perfect match for PCGs

- Sparse vector can be distributed via compressed secret shares
- ► LPN assumption is linear ~→ homomorphic properties

How to distribute a sparse vector efficiently ^[GI14] **Point Function:** F^{α} : $\{1, ..., N\} \rightarrow \mathbb{F}_{2^{\lambda}}, F^{\alpha}(x) = \begin{cases} y & \text{, if } x = \alpha \\ 0 & \text{, else} \end{cases}$

- Efficient constructions from OWFs [GI14; BGI16]
- Efficient distributed setup [Ds17]

Part I: PCG for oblivious transfer from LPN

Oblivious transfer (OT)

[Rab81; EGL85]

Security: Alice learns only r_b , Bob doesn't learn b

GMW Protocol: Secure MPC with 2 OTs per AND-Gate

Problem: OT is expensive ("public-key primitive")

OT extension

OT extension: Few base OTs + "cheap crypto" [Bea96; IKNP03] **Silent OT extension:** Local expansion [BCGIKS19; BCGIKRS19]

Comparison of OT extension protocols

128-bit security

Reference	Rounds	Comm. per random OT	Silent	Active	Based on
[Bea96]	2	poly	×	X	OWF
[IKNP03; ALSZ13; KOS15]	3*	128	×	\checkmark	crh
[KK13] (short strings)	3	pprox 78	×	X	crh
[BCGIKS19]	log N	0 - 3	\checkmark	×	LPN, crh**
[BCGIKRS19]	2*	0.1	 Image: A second s	\checkmark	LPN, crh**
*Fiat-Shamir for active security, **correlated-input secure hash function					

[GMMM18]: RO #> 2-round OT extension

Comparison of OT extension protocols

128-bit security

Reference	Rounds	Comm. per random OT	Silent	Active	Based on
[Bea96]	2	poly	×	X	OWF
[IKNP03; ALSZ13; KOS15]	3*	128	X	\checkmark	crh
[KK13] (short strings)	3	pprox 78	×	×	crh
[BCGIKS19]	log N	0 - 3	\checkmark	×	LPN, crh**
[BCGIKRS19]	2*	0.1	 Image: A second s	\checkmark	LPN, crh**
*Fiat-Shamir for active security, **correlated-input secure hash function					

- Semi-honest 2-PC w/ 4.2 bits per AND, $30 \times$ less than [DKSSZZ17]
- Improves PSI, malicious MPC
- Useful for non-interactive secure comp. [IKOPS11; AMPR14; MR17]

Correlated OT

Correlated OT + correlation robust hash function \Rightarrow OT [IKNP03] As vectors: \triangleq Subfield vector oblivious linear evaluation

$$\Delta \cdot \mathbf{b} = \mathbf{r} + \Delta \cdot \mathbf{b} + \mathbf{r}$$

Overview: PCG for correlated OT [BCGIKS19]

Idea:

1. Via distributed point functions:

1a. Towards 2-round setup [SGRR19; BCGIKRS19]

Problem: DPF require log *N* rounds for distributed setup!

Observation:

- Receiver knows b
- \rightsquigarrow Receiver knows the point $\alpha,$ where $\mathsf{PF}\neq\mathsf{0}$
- ~ Puncturable pseudorandom functions sufficient!

1b. Puncturable pseudorandom function [BGI13; BW13; KPTZ13]

Puncturable PRF (PPRF): $F_k: \{1, ..., N\} \rightarrow \mathbb{F}_{2^{\lambda}}$ $k \rightsquigarrow F_k(x) \text{ for all } x$ $k^{\star} \rightsquigarrow F_k(x) \text{ for all } x \neq \alpha$

1d. 2-Round setup for unit vector [SGRR19; BCGIKRS19]

Strategy: (based on [Ds17])

- Sender chooses k
- Receiver receives k^{\star} via chosen OTs:

• Note: OTs can be executed in parallel!

2. From unit to sparse vectors [BCGI18; BCGIKS19]

Repeat *t* **times**:

Alternative: Concatenation + LPN with *regular* noise

3. From sparse to pseudorandom vectors [BCGI18; BCGIKS19]

Main challenge: Parity check matrix is big!

• use quasi-cyclic codes \rightsquigarrow multiplication in $\mathcal{O}(N)$

Security

▶ Similar to PQ cryptosystems BIKE, HQC [AAB+19; ABB+19]

PCG for correlated OT from LPN - Recap

From correlated OT to chosen OT

- 1. Break correlations:
 - Locally apply crh [IKNP03]
- \rightsquigarrow MPC with 2-round silent preprocessing

2. Derandomization:

- Depends only on b
- Can be sent along with first message
- \rightsquigarrow 2-round OT extension

Runtimes (ms) for 10 million random OTs [BCGIKRS19]

[IKNP03] vs 2-round silent vs 3-round hybrid

Total communication: 160 MB vs 145 kB vs 127 kB

Part II: PCGs for OLE from LPN and ring-LPN

Oblivious linear evaluation (OLE)

- Generalization of OT to \mathbb{F}_p
- > 2 OLEs can be locally transformed into a multiplication triple

Towards PCG for OLE from LPN [BCGIKS19, BCGIKS20]

Idea: Rewrite **a** * **b** and use linearity of LPN

PCG for OLE via LPN [BCGIKS19,BCGIKS20]

Problem: Dimension (\rightsquigarrow computational cost) *quadratic* in N

A different perspective [BCGIKS20]

Observations:

- Generalizes to more dimensions
- Better efficiency via choosing H such that H * H compressible

If $\varphi(X)$ (of degree *N*) fully splits over $\mathbb{Z}_p[X]$:

If $\varphi(X)$ (of degree *N*) fully splits over $\mathbb{Z}_p[X]$:

 $\rightsquigarrow N$ OLEs over \mathbb{Z}_p in $\widetilde{\mathcal{O}}(N)$ computation time

Efficiency of our PCG construction for OLE [BCGIKS20]

To generate 1 Mio OLEs over \mathbb{Z}_q (*q* composite of 62-bit primes):

_	Reference	Amount	Seed size Communication		OLEs/second
-	[KPR18]	32 MB	32 MB	$> 1 \; GB$	30 K
	[BCGI K S19]	17 GB	3 GB	6 GB	6 K*
	[BCGI K S20]	32 MB	1.25 MB	7 MB	100 K*
				*expansion only,	estimated costs

- Setup with malicious security
- Generalizes to authenticated multiplication triples at $\approx \times 2$ cost!

Conclusion

PCGs for OT from LPN [BCGIKS19; BCGIKRS19]

- Random OT: practical, almost zero communication
- 2-Round OT extension (malicious security, implementation)

PCGs for OLE [BCGIKS20]

More efficient instantiation based on *fully splittable ring-LPN*

Open problems/ Ongoing work:

- Optimize OT: Better codes
- Efficient PCGs for more correlations
- Better understanding of LPN-flavored assumptions

Thank you!