Hardness of LWE on General Entropic Distributions

Nico Döttling Helmholtz Center for Information Security (CISPA)

Joint work with Zvika Brakerski

Leakage Resilient Cryptography

about the secret key was later leaked?

pk

• General Question: What if the secret key of a scheme was accidentally chosen from a not fully random distribution or additional side-information

Overview

- Entropic LWE: LWE with weak secrets
- What was known
- Our Approach
- Lower Bounds

Learning with Errors [Reg05]

Given $m \ge O(n \log(q))$, s is uniquely specified by A, sA + e

Learning with Errors [Reg05] Decisional Version:

Worst-Case Hardness of LWE

- For gaussian error distributions D_{σ} , LWE enjoys worst-case hardness
- Quantum Reduction from (wc) SIVP to LWE [Reg05], classical reduction from (wc) GapSVP to LWE [Pei09, BLPRS13]
- Approxiation factor of worst-case problem relates to the modulus-to-noise ratio $\alpha = q/\sigma$

LWE-based Crypto

- Public Key Encryption
- Oblivious Transfer/Multiparty Computation
- Fully Homomorphic Encryption (only under LWE)
- Attribute-based Encryption for all Circuits (only under LWE)
- Non-Interactive Zero-Knowledge

- For many schemes the LWE secret s constitutes the secret key
- these schemes, e.g. Regev encryption
- Tuesday Session: Version of LWE with (very strong) leakage can be used to build iO
- Given the importance of LWE, this can even be considered a self-supporting goal

• A leakage resilient version of LWE we can generically add leakage resilience to many of

Distribution \mathcal{S} is adversarially chosen from a class of

chosen from a min-entropy distribution ${\mathcal S}$

Decisional Version:

Hardness LWE with Entropic Secrets

- [GKPV10]: For super-polynomial α, reduction from LWE to eLWE for entropic secrets supported on short vectors
- [BLPRS13]: Hardness of LWE with binary secrets which preserves α exactly
- [AKPW13]: More refined version of the
 [GKPV10] argument, *α* degrades
 polynomially in the number of samples *q*,
 but also limited to short secrets

Recap: The Lossiness Technique [GKPV10]

The Lossiness Technique

- Common proof strategy: Replace uniformly chosen matrix A with a pseudorandom matrix which has unusually many short vectors in its (row-)span
- Now use that A, sA + e loses information about s

The Lossiness Technique [GKPV10]

Chosen from a min-entropy distribution \mathcal{S} supported on $\{0,1\}^n$

A, u \approx_{LWE} \approx_{LWE} BC + F, uBC + F, s(BC + F) + e \approx_{LWE} $BC + F, sBC + sF + e \approx_s BC + F, sBC + e' \approx_{LHL} BC + F, tC + e'$

The Lossiness Technique

- This proof fundamentally relies on the fact that s is short
- Otherwise the term sF cannot be "drowned" by e
- Furthermore: modulus-to-noise ratio deteriorates drastically (overcome by [AKPW13])
- Natural Question: Is the requirement of *s* being short fundamental or rather a limitation of the proof technique?

Entropic LWE on General Min-Entropy Distributions via Gentle Flooding at the Source

Our Approach

- We also pursue lossiness approach, but with a twist
- directly

• Change of Perspective: Instead of analyzing the interference of the secret with the noise term, we analyze what effect the noise has on the secret

• We relate this to a new quantity we call *noise-lossiness* of the secret s

Noise-Lossiness

- Fix a distribution of secrets \mathcal{S} supported on \mathbb{Z}_q^n
- $s \leftarrow \mathcal{S}, e$ is a gaussian with parameter σ
- Measures the information lost about *s* after \bullet passing it through a gaussian channel
- Different Perspective: How bad is \mathcal{S} as an error ulletcorrecting code?

$\nu_{\sigma}(\mathcal{S}) = \tilde{H}_{\infty}(s \mid s + e)$ $= -\log(\Pr[\mathscr{A}^*(s+e) = s])$ S, e

 \mathscr{A}^* is maximum likelihood decoder for \mathscr{S}

Decomposing Gaussians

- Well known: Sum of two continuous and independent gaussians is again a gaussian
- Reverse Perspective: Express a given gaussian as the sum of two independent gaussians
- For a given matrix F we want to decompose a spherical gaussian e with parameter σ into $e = e_1F + e_2$
- e_1 is a spherical gaussian with parameter σ_1
- Such a decomposition exists if $\sigma \ge ||F|| \cdot \sigma_1$
- For a discrete gaussian $F \in \mathbb{Z}^{n \times m}$ with parameter γ , we can bound $||F|| \leq O(\gamma \sqrt{m})$

From Noise-Lossiness to Hardness of Entropic LWE

 $BC + F, sBC + (s + e_1)F + e_2$

From Noise-Lossiness to Hardness of Entropic LWE

From Noise-Lossiness to Hardness of Entropic LWE

Decisional Version: Need that \mathcal{S} extractable via LHL

A, sA + e \approx BC + F, s(BC + F) + eBC + F, sBC + sF + eBC + F, $sBC + sF + e_1F + e_2$ $BC + F, sBC + (s + e_1)F + e_2 \approx_{LHL} BC + F, tC + (s + e_1)F + e_2 = BC + F, tC + sF + e_1$

Parameters

- We need to assume LWE with parameter σ
- We get hardness of entropic LWE with parameter $\sigma_1 \cdot \sigma \cdot \sqrt{m}$
- I.e. Modulus-to-noise ratio deteriorates by a factor $\sigma_1 \cdot \sqrt{m}$

Computing the Noise Lossiness

Noise Lossiness: General Distributions

П

 $\nu_{\sigma}(\mathcal{S}) \ge H_{\infty}(s) - n \cdot \log(q/\sigma) - 1$

Noise Lossiness: Short Distributions

 $\nu_{\sigma}(\mathcal{S}) \ge H_{\infty}(s) - 2r\sqrt{n/\sigma}$

- Putting everything together, assuming $LWE(k, q, \gamma)$ is hard:
- For general (non-short) min-entropy distributions \mathcal{S} we get that $eLWE(\mathcal{S}, n, q, m, \sigma)$ is hard given that $H_{\infty}(s) \gtrsim k \cdot \log(q) + n \cdot \log(q\gamma\sqrt{m/\sigma})$
- For r-bounded distributions \mathcal{S} we need $H_{\infty}(s) \gtrsim k \log(\gamma r) + 2r \sqrt{nm\gamma}/\sigma$

Main Result

Lower Bounds

- same order as q
- Can we do better for general entropic distributions?
- Specific Moduli: No!

• For the general case, min-entropy of S must close to $n \log(q)$ or σ of the

Counterexample

$q = p \cdot q'$

Let S be the uniform distribution on $p \cdot \mathbb{Z}_q^n$

sA is supported on $p \cdot \mathbb{Z}_q^m$

 $\|e\|_{\infty} < p/2$

 $\Rightarrow sA + e \mod p = e$

Lower Bounds

- What if \mathbb{Z}_q does not have a sub-structure?
- Meta-Reduction Framework: Show that BB-reduction can be used to break the underlying assumption without using an adversary
- Simulatable Adversaries [Wichs13]: From the view of a BB-reduction, an unbounded adversary can be simulated efficiently
- Main Idea: Simulator knows all the samples that were given to the adversary

BB-Lower Bound

Unbounded Adversary

Support of S is chosen uniformly random of size 2^k where $k \leq n \log(q/B)$

BB-Lower Bound

Efficient Simulator

Support of S is chosen uniformly random of size 2^k where $k \leq n \log(q/B)$

Take Away and Open Problems

Conclusions

- Standard LWE (non-short secrets) can tolerate a small amount of leakage,
- This has inherent reasons, either attacks or BB-impossibility \bullet
- \bullet (factor $\approx \log(q)$)

Open Problems

- What about more specific classes of distributions/leakage functions? ullet
- Leakage that includes the noise?
- Techniques do translate to Learning-with-Rounding, but not "nicely" ullet
- Does the BB-impossibility extend e.g. to quantum reductions?
- Structured LWE, e.g. Ring-LWE?

LWE with short/binary secret tolerates a much higher leakage rate, but in general this comes at the cost of large public keys

