Hardness of LWE on General Entropic Distributions

Nico Döttling Helmholtz Center for Information Security (CISPA)

Joint work with Zvika Brakerski

Leakage Resilient Cryptography

• **General Question:** What if the secret key of a scheme was accidentally chosen from a not fully random distribution or additional side-information

about the secret key was later leaked?

Overview

- Entropic LWE: LWE with weak secrets
- What was known
- Our Approach
- Lower Bounds

Learning with Errors [Reg05]

Given $m \geq O(n \log(q))$, *s* is uniquely specified by A , $sA + e$

Learning with Errors [Reg05] **Decisional Version:**

Worst-Case Hardness of LWE

- For gaussian error distributions D_{σ} , LWE enjoys worst-case hardness
- Quantum Reduction from (wc) SIVP to LWE [Reg05], classical reduction from (wc) GapSVP to LWE [Pei09,BLPRS13]
- Approxiation factor of worst-case problem relates to the modulus-to-noise ratio $\alpha = q/\sigma$

LWE-based Crypto

- Public Key Encryption
- Oblivious Transfer/Mutliparty Computation
- Fully Homomorphic Encryption (only under LWE)
- Attribute-based Encryption for all Circuits (only under LWE)
- Non-Interactive Zero-Knowledge

• A leakage resilient version of LWE we can generically add leakage resilience to many of

- For many schemes the LWE secret s constitutes the secret key
- these schemes, e.g. Regev encryption
- Tuesday Session: Version of LWE with (very strong) leakage can be used to build iO
- Given the importance of LWE, this can even be considered a self-supporting goal

Distribution S is adversarially chosen from a class of distributions

chosen from a min-entropy distribution $\mathcal S$

Decisional Version:

Hardness LWE with Entropic Secrets

- [GKPV10]: For super-polynomial α , reduction from LWE to eLWE for entropic secrets supported on short vectors
- [BLPRS13]: Hardness of LWE with binary secrets which preserves α exactly
- [AKPW13]: More refined version of the [GKPV10] argument, α degrades polynomially in the number of samples q , but also limited to short secrets

Recap: The Lossiness Technique [GKPV10]

The Lossiness Technique

- Common proof strategy: Replace uniformly chosen matrix A with a pseudorandom matrix which has unusually many short vectors in its (row-)span
- Now use that A , $sA + e$ loses information about s

The Lossiness Technique [GKPV10]

 $BC + F$, $S(BC + F) + e$ ≈*LWE* $BC + F$, $SBC + SF + e \approx_{s} BC + F$, $SBC + e' \approx_{LHL} BC + F$, $tC + e'$ = ≈*LWE A*, *u* $BC + F, u$ ≈*LWE*

Chosen from a min-entropy distribution S supported on $\{0,1\}^n$

The Lossiness Technique

- This proof fundamentally relies on the fact that s is short
- Otherwise the term sF cannot be "drowned" by e
- Furthermore: modulus-to-noise ratio deteriorates drastically (overcome by [AKPW13])
- Natural Question: Is the requirement of *s* being short fundamental or rather a limitation of the proof technique?

Entropic LWE on General Min-Entropy Distributions via Gentle Flooding at the Source

Our Approach

- We also pursue lossiness approach, but with a twist
- directly
-

• Change of Perspective: Instead of analyzing the interference of the secret with the noise term, we analyze what effect the noise has on the secret

• We relate this to a new quantity we call *noise-lossiness* of the secret *s*

Noise-Lossiness

- Fix a distribution of secrets $\mathcal S$ supported on $\mathbb Z_q^n$
- $s \leftarrow \mathcal{S}$, *e* is a gaussian with parameter σ
- Measures the information lost about s after passing it through a gaussian channel
- Different Perspective: How bad is S as an error correcting code?

$\nu_{\sigma}(S) = H$ $\bf\widetilde{d}$ $\int_{\infty}^{1} (s \mid s + e)$ $= -\log(\Pr[\mathscr{A}^*(s+e) = s])$ *s*,*e*

 \mathscr{A}^* is maximum likelihood decoder for \mathscr{S}

Decomposing Gaussians

- Well known: Sum of two continuous and independent gaussians is again a gaussian
- Reverse Perspective: Express a given gaussian as the sum of two independent gaussians
- For a given matrix F we want to decompose a spherical gaussian e with parameter σ into $e = e_1 F + e_2$
- e_1 is a spherical gaussian with parameter σ_1
- Such a decomposition exists if $\sigma \geq ||F|| \cdot \sigma_1$
- For a discrete gaussian $F \in \mathbb{Z}^{n \times m}$ with parameter γ , we can bound $||F|| \leq O(\gamma \sqrt{m})$

From Noise-Lossiness to Hardness of Entropic LWE

From Noise-Lossiness to Hardness of Entropic LWE

Hard if

$$
\begin{aligned}\n\int_{\infty}^{1} (s \mid BC + F, sBC + (s + e_1)F + e_2) \\
&= \tilde{H}_{\infty}(s \mid sB, s + e_1) \\
&= \tilde{H}_{\infty}(s \mid s + e_1) - k \log(q) \\
&= \nu_{\sigma_1}(s) - k \log(q) \quad \text{Can be improved if both } s \\
&= \text{and } B \text{ are short} \\
\text{rd if } \nu_{\sigma_1}(s) \ge k \log(q) + \omega(\log(\lambda))\n\end{aligned}
$$

From Noise-Lossiness to Hardness of Entropic LWE

Decisional Version: Need that S extractable via LHL

 $A, sA + e$ $BC + F$, $S(BC + F) + e$ $BC + F$ *, sBC* + *sF* + *e* ≈ = = $BC + F$, $SBC + SF + e_1F + e_2$ = $BC + F$, $sBC + (s + e_1)F + e_2 \approx L_{HL}BC + F$, $tC + (s + e_1)F + e_2 = BC + F$, $tC + sF + e_2$

Parameters

- We need to assume LWE with parameter *σ*
- We get hardness of entropic LWE with parameter $\sigma_1 \cdot \sigma \cdot \sqrt{m}$
- I.e. Modulus-to-noise ratio deteriorates by a factor $\sigma_1 \cdot \sqrt{m}$

Computing the Noise Lossiness

Noise Lossiness: General Distributions

 Z^n_q *q*

 $\nu_{\sigma}(S) \geq H_{\infty}(s) - n \cdot \log(q/\sigma) - 1$

Noise Lossiness: Short Distributions

 Z^n_q *q*

 $\nu_{\sigma}(s) \geq H_{\infty}(s) - 2r\sqrt{n/\sigma}$

- Putting everything together, assuming $LWE(k, q, \gamma)$ is hard:
- For general (non-short) min-entropy distributions S we get that $eLWE(\mathcal{S}, n, q, m, \sigma)$ is hard given that $H_{\infty}(s) \ge k \cdot \log(q) + n \cdot \log(q) / \sqrt{m/\sigma}$
- For *r*-bounded distributions \mathcal{S} we need $H_{\infty}(s) \gtrsim k \log(\gamma r) + 2r \sqrt{n m \gamma / \sigma}$

Main Result

Lower Bounds

- same order as *q*
- Can we do better for general entropic distributions?
- Specific Moduli: **No**!

• For the general case, min-entropy of $\mathcal S$ must close to $n\log(q)$ or σ of the

Counterexample

$q = p \cdot q'$

Let $\mathcal S$ be the uniform distribution on $p \cdot \mathbb Z_q^n$

sA is supported on *p* ⋅ ℤ*^m q*

∥*e*∥∞ < *p*/2

 \Rightarrow *sA* + *e* mod $p = e$

Lower Bounds

- What if \mathbb{Z}_q does not have a sub-structure?
- Meta-Reduction Framework: Show that BB-reduction can be used to break the underlying assumption without using an adversary
- Simulatable Adversaries [Wichs13]: From the view of a BB-reduction, an unbounded adversary can be simulated efficiently
- **Main Idea:** Simulator knows all the samples that were given to the adversary

BB-Lower Bound

Unbounded Adversary

Support of ${\mathcal S}$ is chosen uniformly random of size 2^k where $k \leq n \log(q/B)$

BB-Lower Bound

Efficient Simulator

Support of ${\mathcal S}$ is chosen uniformly random of size 2^k where $k \leq n \log(q/B)$

Take Away and Open Problems

- Standard LWE (non-short secrets) can tolerate a small amount of leakage,
- This has inherent reasons, either attacks or BB-impossibility
- (factor $\approx \log(q)$)

Open Problems

Conclusions

• LWE with short/binary secret tolerates a much higher leakage rate, but in general this comes at the cost of large public keys

- What about more specific classes of distributions/leakage functions?
- Leakage that includes the noise?
- Techniques do translate to Learning-with-Rounding, but not "nicely"
- Does the BB-impossibility extend e.g. to quantum reductions?
- Structured LWE, e.g. Ring-LWE?

