
Cryptanalysis
of Candidate

Program
Obfuscators

Yilei Chen
[VISA Research]

2020 Simons Program on Lattices

Cryptanalysis
of Candidate

Program
Obfuscators

Yilei Chen
[VISA Research]

2020 Simons Program on Lattices

On the (Im)possibility of Obfuscating Programs
Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, Yang

2000

Zero-Knowledge and Code Obfuscation
Hada

2001

Candidate Multilinear Maps from Ideal Lattices
Garg, Gentry, Halevi

Candidate indistinguishability obfuscation and functional
encryption for all circuits
Garg, Gentry, Halevi, Raykova, Sahai, Waters

2013

Multilinear maps Obfuscation

Start the age of discovery in Cryptoland
(assuming the mmaps and iO candidates are secure)

2013

Candidate Multilinear Maps from Ideal Lattices
Garg, Gentry, Halevi

Candidate indistinguishability obfuscation and functional
encryption for all circuits
Garg, Gentry, Halevi, Raykova, Sahai, Waters

Functional encryption

Witness encryption

Deniable encryption
Watermarking

Instantiating
random oracles

Broadcast
encryption

Hardness of finding
Nash Equilibrium

Delegate RAM
computation
with privacy

ObfuscationMultilinear maps

2013 - 2015

Functional encryption

Witness encryption

Deniable encryption
Watermarking

Instantiating
random oracles

Broadcast
encryption

Hardness of finding
Nash Equilibrium

Delegate RAM
computation
with privacy

ObfuscationMultilinear maps

2013 - 2015

“Central hub” of cryptography

Multilinear maps Obfuscation

Are the mmaps / obfuscation
candidates secure?

Multilinear maps Obfuscation

Multilinear maps => Obfuscation
Candidate [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
Idealized multilinear maps => VBB [Barak, Garg, Kalai, Paneth, Sahai 14]
Multilinear Subgroup Elimination => iO [Gentry, Lewko, Sahai, Waters 15]

2013 - 2015

Multilinear maps Obfuscation

???

Lattices

Candidate multilinear maps from Lattice-ish problems
Garg, Gentry, Halevi 2013 [GGH 13]
Coron, Lepoint, Tibouchi 2013 [CLT 13]
Gentry, Gorbunov, Halevi 2015 [GGH 15]

Multilinear maps => Obfuscation
Candidate [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
Idealized multilinear maps => VBB [Barak, Garg, Kalai, Paneth, Sahai 14]
Multilinear Subgroup Elimination => iO [Gentry, Lewko, Sahai, Waters 15]

2013 - 2015

Multilinear maps Obfuscation

??????

Lattices

Candidate multilinear maps from Lattice-ish problems
Garg, Gentry, Halevi 2013 [GGH 13]
Coron, Lepoint, Tibouchi 2013 [CLT 13]
Gentry, Gorbunov, Halevi 2015 [GGH 15]

Multilinear maps => Obfuscation
Candidate [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
Idealized multilinear maps => VBB [Barak, Garg, Kalai, Paneth, Sahai 14]
Multilinear Subgroup Elimination => iO [Gentry, Lewko, Sahai, Waters 15]

2015

Cryptanalysis of the Multilinear Map over the Integers
Cheon, Han, Lee, Ryu, Stehle [Eurocrypt 2015]

Status of multilinear maps and iO

N party key
exchange

iO [GGHRSW 13]

GGH13 Standing Standing

CLT13 Broken
[CHLRS 15]

Broken for simple program
[CGHLMMRST 15]

GGH15 Standing Standing

2015

Cryptanalysis of the Multilinear Map over the Integers
Cheon, Han, Lee, Ryu, Stehle

Zeroizing without low-level zeroes: New MMAP attacks and their limitations
Coron, Gentry, Halevi, Lepoint, Maji, Miles, Raykova, Sahai, Tibouchi

Status of multilinear maps and iO

N party key
exchange

iO [GGHRSW 13]

GGH13 Broken
[Hu, Jia 16]

Partial attack
[Miles, Sahai, Zhandry 16]

CLT13 Broken
[CHLRS 15]

Broken for simple program
[CGHLMMRST 15]

GGH15 Broken
[CLLT 16]

Standing

2016

Cryptanalysis of GGH map
Hu, Jia

Annihilation attacks: Cryptanalysis of indistinguishability obfuscation over GGH13
Miles, Sahai, Zhandry

Cryptanalysis of GGH15 multilinear maps
Coron, Lee, Lepoint, Tibouchi

Functional encryption

Witness encryption

Deniable encryption
Watermarking

Instantiating
random oracles

Broadcast
encryption

Hardness of finding
Nash Equilibrium

Delegate RAM
computation
with privacy

ObfuscationMultilinear maps

2013 - 2015

Functional encryption

Witness encryption

Deniable encryption
Watermarking

Instantiating
random oracles

Broadcast
encryption

Hardness of finding
Nash Equilibrium

Delegate RAM
computation
with privacy

ObfuscationMultilinear maps

2015

Functional encryption

Witness encryption

Deniable encryption
Watermarking

Instantiating
random oracles

Broadcast
encryption

Hardness of finding
Nash Equilibrium

Delegate RAM
computation
with privacy

Obfuscation
Multilinear maps

2016

What was the choice you made in your life?

2016

Vivre sa vie (Jean-Luc Godard)

2016 1962

What was the choice you made in your life?

Vivre sa vie (Jean-Luc Godard)

2016 1962

What was the choice you made in your life?

-- Vivre sa vie (1962)

My choice: See the soul of obfuscation.

2016

Today: the soul of obfuscation

> Overview of obfuscators and attacks

> Two attacks on obfuscators based on GGH15

Cryptanalyses of candidate branching program obfuscators
Chen, Gentry, Halevi [Eurocrypt 2017]
GGH15 beyond permutation branching programs
Chen, Vaikuntanathan, Wee [Crypto 2018]

> Explain two interesting open problems

“NTRU without mod q”
Better “rank attack” on Obfs & PRFs using quantum

> Overview

>>> How are the iO candidates doing?

>>> What are the general attack strategies?

>>> Why focus on GGH15?

Witness encryption

Deniable encryption
Watermarking

Instantiating
random oracles

Broadcast
encryption

Hardness of finding
Nash Equilibrium

Delegate RAM
computation
with privacy

ObfuscationMultilinear maps

iO => CRYPTO since 2013

Functional Encryption

ObfuscationMultilinear maps

Succinct Functional Encryption

LWE + Constant degree PRG +
Constant degree (>=3) multilinear maps

Noisy-Linear FE

LWE + bilinear maps
 + Low degree “PRG”

Candidate using
tensor product*

Candidate using affine
determinant program

Black-box pseudo-free groups*
[Canetti, Vaikuntanathan, BC 6]

Candidate using lattices

Candidate using
special FHE

??? => iO
2020: none of them are “well
understood”, still exploring.

Algebraic
geometry*

Candidates
using lattices

* not published in peer-reviewed conferences

General strategies of breaking iO:

In common:
0. Find two programs that are functionally equivalent, then
distinguish the obfuscated version of them :)

General strategies of breaking iO:

In common:
0. Find two programs that are functionally equivalent, then
distinguish the obfuscated version of them :)
1. Find equations over Z, Q, instead of over Fq.
2. Turn high degree equations into linear equations.

Looking ahead, there are many ways of preventing (2), but (1)
seems to be hard to prevent in all the “noisy” iO candidates.

General strategies of breaking iO:

Interesting attacks on specific components of obfuscation:
1. Lattice attacks:

Trace attack on the NTRU variant used in GGH13 [Cheon, Jeong, Lee 16]
Subfield attacks on overstretched NTRU [Albrecht, Bai, Ducas 16]

2. SOS attacks on low-degree “PRGs”: [Lombardi, Vaikuntanathan 17], [Barak,
Brakerski, Komargodski, Kothari 18], [Barak, Hopkins, Jain, Kothari, Sahai 19]

In common:
0. Find two programs that are functionally equivalent, then
distinguish the obfuscated version of them :)
1. Find equations over Z, Q, instead of over Fq.
2. Turn high degree equations into linear equations.

Looking ahead, there are many ways of preventing (2), but (1)
seems to be hard to prevent in all the “noisy” iO candidates.

Why focus on GGH15 (Gentry, Gorbunov, Halevi)?

Private Constrained
Pseudorandom Function Compute & Compare Obfuscation

(a.k.a. Lockable Obfuscation)

Full-fledged
Obfuscation

Safe modes of GGH15
multilinear maps

Lattices

Traitor Tracing

[Wichs, Zirdelis 17]
[Goyal, Koppula, Waters 17]

[Canetti, Chen 17]

Direct construction from LWE
[Goyal, Koppula, Waters 18][Chen, Vaikuntanathan,

Waters, Wee, Wichs 18]

Safe modes of GGH15
Upcoming:

9:45 Venkata Koppula
> Lockable obfuscation

10:50 Rishab Goyal
> Traitor Tracing

Why focus on GGH15 (Gentry, Gorbunov, Halevi)?

Private Constrained
Pseudorandom Function Compute & Compare Obfuscation

(a.k.a. Lockable Obfuscation)

Traitor Tracing

[Wichs, Zirdelis 17]
[Goyal, Koppula, Waters 17]

[Canetti, Chen 17]

Direct construction from LWE
[Goyal, Koppula, Waters 18][Chen, Vaikuntanathan,

Waters, Wee, Wichs 18]

Start now: the soul of obfuscation
à la [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13] + GGH15 multilinear maps

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
(0) Representation of plaintext program.
(1) Safeguard 1
(2) Safeguard 2
(3) Safeguard 3
(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

Safeguards aim at randomizing the plaintext program, preventing illegal
operations; mmaps is the source of “computational hardness”

g, gS1,... gSk -> g∏S

Multilinear maps in the
group representation

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1
(2) Safeguard 2
(3) Safeguard 3
(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

Barrington 1986: log-depth boolean circuits => matrix branching programs

Example: how to represent an AND gate

1

0

Input wire 1 Input wire 1Input wire 2 Input wire 2

P-1P Q Q-1

I I I I

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1
(2) Safeguard 2
(3) Safeguard 3
(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

1 B
1,1

B
2,1

B
3,1

B
4,1

0 B
1,0

B
2,0

B
3,0

B
4,0

i 1 2 1 2

1 B’
1,1

B’
2,1

B’
3,1

B'
4,1

0 B’
1,0

B’
2,0

B’
3,0

B’
4,0

i 1 2 1 2

“Dummy branch”
All B'

i,b
 = I

Evaluate: ∏B = I?

“function branch”

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization [Kilian 88]
(2) Safeguard 2
(3) Safeguard 3
(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

1 B
1,1

K
1

K
1

-1B
2,1

K
2

K
2

-1B
3,1

K
3

K
3

-1B
4,1

0 B
1,0

K
1

K
1

-1B
2,0

K
2

K
2

-1B
3,0

K
3

K
3

-1B
4,0

i 1 2 1 2

1 B’
1,1

K’
1

K’
1

-1B’
2,1

K’
2

K’
2

-1B’
3,1

K’
3

K’
3

-1B’
4,1

0 B’
1,0

K’
1

K’
1

-1B’
2,0

K’
2

K’
2

-1B’
3,0

K’
3

K’
3

-1B’
4,0

i 1 2 1 2

Random
matrix K, K’

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization
(2) Safeguard 2: Bundling scalars (against mix-input attack)
(3) Safeguard 3
(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

1 a
1,1

B
1,1

K
1

a
2,1

K
1

-1B
2,1

K
2

a
3,1

K
2

-1B
3,1

K
3

a
4,1

K
3

-1B
4,1

0 a
1,0

B
1,0

K
1

a
2,0

K
1

-1B
2,0

K
2

a
3,0

K
2

-1B
3,0

K
3

a
4,0

K
3

-1B
4,0

i 1 2 1 2

1 a’
1,1

B’
1,1

K’
1

a’
2,1

K’
1

-1B’
2,1

K’
2

a’
3,1

K’
2

-1B’
3,1

K’
3

a’
4,1

K’
3

-1B’
4,1

0 a’
1,0

B’
1,0

K’
1

a’
2,0

K’
1

-1B’
2,0

K’
2

a’
3,0

K’
2

-1B’
3,0

K’
3

a’
4,0

K’
3

-1B’
4,0

i 1 2 1 2

a
1,1

a
3,1

 = a’
1,1

a’
3,1

a
1,0

a
3,0

 = a’
1,0

a’
3,0

a
2,1

a
4,1

 = a’
2,1

a’
4,1

a
2,0

a
4,0

 = a’
2,0

a’
4,0

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization
(2) Safeguard 2: Bundling scalars (against mix-input attack)
(3) Safeguard 3: random diagonal entries and bookends
(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

1 a
1,1

J B
1,1

K
1

a
2,1

K
1

-1B
2,1

K
2

a
3,1

K
2

-1B
3,1

K
3

a
4,1

K
3

-1B
4,1

L

0 a
1,0

J B
1,0

K
1

a
2,0

K
1

-1B
2,0

K
2

a
3,0

K
2

-1B
3,0

K
3

a
4,0

K
3

-1B
4,0

L

i 1 2 1 2

1 a’
1,1

J’B’
1,1

K’
1

a’
2,1

K’
1

-1B’
2,1

K’
2

a’
3,1

K’
2

-1B’
3,1

K’
3

a’
4,1

K’
3

-1B’
4,1

L’

0 a’
1,0

J’B’
1,0

K’
1

a’
2,0

K’
1

-1B’
2,0

K’
2

a’
3,0

K’
2

-1B’
3,0

K
3

a’
4,0

K’
3

-1B’
4,0

L’

i 1 2 1 2

1 S
1,1

S
2,1

... S
h,1

0 S
1,0

S
2,0

... S
h,0

i i
1

i
2

... i
h

S
2,1

= a
2,1

K
1

-1[*B
2,1

]K
2

S
1,1

= a
1,1

 J[*B
1,1

]K
1

S
h,1

= a
h,1

K
h-1

-1[*B
h,1

]L

a
2,1

K
1

-1
U

K
2

V

B
2,1

Zoom in: random diagonal entries and bookends

J
L

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization
(2) Safeguard 2: Bundling scalars
(3) Safeguard 3: random diagonal entries and bookends
(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

1 a
1,1

J B
1,1

K
1

a
2,1

K
1

-1B
2,1

K
2

a
3,1

K
2

-1B
3,1

K
3

a
4,1

K
3

-1B
4,1

L

0 a
1,0

J B
1,0

K
1

a
2,0

K
1

-1B
2,0

K
2

a
3,0

K
2

-1B
3,0

K
3

a
4,0

K
3

-1B
4,0

L

i 1 2 1 2

1 a’
1,1

J’B’
1,1

K’
1

a’
2,1

K’
1

-1B’
2,1

K’
2

a’
3,1

K’
2

-1B’
3,1

K’
3

a’
4,1

K’
3

-1B’
4,1

L’

0 a’
1,0

J’B’
1,0

K’
1

a’
2,0

K’
1

-1B’
2,0

K’
2

a’
3,0

K’
2

-1B’
3,0

K
3

a’
4,0

K’
3

-1B’
4,0

L’

i 1 2 1 2

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization
(2) Safeguard 2: Bundling scalars
(3) Safeguard 3: random diagonal entries and bookends
(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

1 a
1,1

J B
1,1

K
1

a
2,1

K
1

-1B
2,1

K
2

a
3,1

K
2

-1B
3,1

K
3

a
4,1

K
3

-1B
4,1

L

0 a
1,0

J B
1,0

K
1

a
2,0

K
1

-1B
2,0

K
2

a
3,0

K
2

-1B
3,0

K
3

a
4,0

K
3

-1B
4,0

L

i 1 2 1 2

Already lost?

Then remember “Barrington”
and “bundling scalars”

Recap of GGH15 multilinear maps
[Gentry, Gorbunov, Halevi 15]

+ mod qAS ExY =

A

Learning with errors [Regev 2005]
Search LWE: Given A, Y = SA+E mod q, find S,
Decisional LWE: Distinguish A, Y from random.

 Uniform Small Unclear

GGH15: (Ring)LWE analogy

g, gS1,... gSk -> g∏S

Multilinear maps in the
group representation

A, S
1
A+E

1
,..., S

k
A+E

k
 -> ∏SA+E

What is GGH15 trying to do?

The difficulty is to compute the map without revealing the secrets.

GGH15 for 1 multiplication

A2s2A1A0 s1

Encoding(S
i
):

 Uniform Small Unclear

GGH15 for 1 multiplication

A2s2A1A0

Y2=S2A2+E2Y1=S1A1+E1

s1

Encoding(S
i
): 2 steps

1. Compute Y
i
 = S

i
 A

i
+E

i

 Uniform Small Unclear

GGH15 for 1 multiplication

A2s2A1A0

Y2=S2A2+E2
D2D1 Y1=S1A1+E1

s1

Encoding(S
i
): 2 steps

1. Compute Y
i
 = S

i
 A

i
+E

i
2. Sample (by the trapdoor of A

i-1
) small D

i
 such

that A
i-1

D
i
=Y

i

D
i
 = Encoding(S

i
)

 Uniform Small Unclear

A0 D1 D2
x x

Functionality

GGH15 for 1 multiplication

A2s2A1A0

Y2=S2A2+E2
D2D1 Y1=S1A1+E1

s1

 Uniform Small Unclear

Recall the goal: S
1
A+E

1
,..., S

k
A+E

k
 -> ∏SA+E

A0

= A1s1 E1+

D1 D2

D2

x x
Functionality

D2

GGH15 for 1 multiplication

A2s2A1A0

Y2=S2A2+E2
D2D1 Y1=S1A1+E1

s1

 Uniform Small Unclear

A0

= A1s1 E1+

D1 D2

D2

x x
Functionality

D2
= A2s1 E1+ D2

s2 s1 E2 +

GGH15 for 1 multiplication

A2s2A1A0

Y2=S2A2+E2
D2D1 Y1=S1A1+E1

s1

 Uniform Small Unclear

A0

= A1s1 E1+

D1 D2

D2

x x
Functionality

D2
= A2s1 E1+ D2

s2 s1 E2 +

= A2s1 +s2 “small”

GGH15 for 1 multiplication

A2s2A1A0

Y2=S2A2+E2
D2D1 Y1=S1A1+E1

s1

 Uniform Small Unclear

A typical evaluation pattern for GGH15: subset product

A4

A0

D1,1

D1,0

D2,1

D2,0

D3,1

D3,0

D4,1

D4,0

s1,1

s1,0

s2,1

s2,0

s3,1

s3,0

s4,1

s4,0 + “small”

Encodings
secrets

1 a
1,1

J B
1,1

K
1

a
2,1

K
1

-1B
2,1

K
2

a
3,1

K
2

-1B
3,1

K
3

a
4,1

K
3

-1B
4,1

L

0 a
1,0

J B
1,0

K
1

a
2,0

K
1

-1B
2,0

K
2

a
3,0

K
2

-1B
3,0

K
3

a
4,0

K
3

-1B
4,0

L

i 1 2 1 2

S
1,1

= a
1,1

 J[vB
1,1

]K
1

[GGHRSW13]+[GGH15]

A4A3A0

Y4,1=S4,1A4+E4,1
D4,1D1,1

Y1,1=S1,1A1+E1,

1

A1 ...

Y4,0=S4,0A4+E4,0
D4,0

[GGHRSW13]+[GGH15]

A0

D2,1 Dh,1
D1,1

D1,0 D2,0 Dh,0

A0’

D’2,1
D’h,1

D’1,1

D’1,0
D’2,0

D’h,0

...

...

...

...

AL
S

1,1
= a

1,1
 J[*B

1,1

]K
1

Where is the soul?
à la GGHRSW13 Obfuscation + GGH15 multilinear maps

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization
(2) Safeguard 2: Bundling scalars
(3) Safeguard 3: random diagonal entries and bookends
(4) Wrap (0-3) by GGH15

1 a
1,1

J B
1,1

K
1

a
2,1

K
1

-1B
2,1

K
2

a
3,1

K
2

-1B
3,1

K
3

a
4,1

K
3

-1B
4,1

L

0 a
1,0

J B
1,0

K
1

a
2,0

K
1

-1B
2,0

K
2

a
3,0

K
2

-1B
3,0

K
3

a
4,0

K
3

-1B
4,0

L

i 1 2 1 2

Attack: weakness of GGH15 + the weakness in (0)-(3)

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

A0 D1 D2
x x

= A2s1 E1+ D2
s2 s1 E2 +

mod q

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

A0 D1 D2
x x

= A2s1 E1+ D2
s2 s1 E2 +

mod q

If = 0, then s1 s2

A0 D1 D2
x x

= E1 D2
s1 E2 +

mod q

, holds over Z

If = 0, then s1 s2

A0 D1 D2
x x

= E1 D2
s1 E2 +

mod q

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

If = 0, then s1 s2

A0 D1 D2
x x

= E1 D2
s1 E2 +

mod q

=
D2

 s1 | E1 E2x

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

A0 Dx Dz
x x mod q

=
Dz

 sx | Ex
Ez

x

Let =wxz

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

A0 Dx Dz
x x mod q

=
Dz

 sx | Ex
Ez

x

Let =wxz

If we have more inputs at x and z, say x1, x2, x3, z1, z2, … then

Dz1

 sx1 | Ex1 Ez1

x
wx1 z1

wx2 z1

wx3 z1

wx1 z2

wx2 z2

wx3 z2

= sx2 | Ex2
 sx3 | Ex3

Dz2

Ez2

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

Dz1

 sx1 | Ex1 Ez1

x
wx1 z1

wx2 z1

wx3 z1

wx1 z2

wx2 z2

wx3 z2

= sx2 | Ex2
 sx3 | Ex3

Dz2

Ez2

1 a
1,1

J B
1,1

K
1

a
2,1

K
1

-1B
2,1

K
2

a
3,1

K
2

-1B
3,1

K
3

a
4,1

K
3

-1B
4,1

L

0 a
1,0

J B
1,0

K
1

a
2,0

K
1

-1B
2,0

K
2

a
3,0

K
2

-1B
3,0

K
3

a
4,0

K
3

-1B
4,0

L

i 1 2 1 2

In obfuscation, sxi contains useful information,

Assuming the rest are random (and small)

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

By evaluating on the combinations of x1, x2, x3, z1, z2, …, we got

Dz1

 sx1 | Ex1 Ez1

x
wx1 z1

wx2 z1

wx3 z1

wx1 z2

wx2 z2

wx3 z2

= sx2 | Ex2
 sx3 | Ex3

Dz2

Ez2

By evaluating on the combinations of x1, x2, x3, z1, z2, …, we got

Denote the whole matrix as W = X * Z.

X ZW

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

Dz1

 sx1 | Ex1 Ez1

x
wx1 z1

wx2 z1

wx3 z1

wx1 z2

wx2 z2

wx3 z2

= sx2 | Ex2
 sx3 | Ex3

Dz2

Ez2

By evaluating on the combinations of x1, x2, x3, z1, z2, …, we got

Denote the whole matrix as W = X * Z.

In [Chen, Gentry, Halevi 17], collect W s.t. X is tall, Z is square,
compute the left kernel of W, then extract the bundling scalars.

In [Chen, Vaikuntanathan, Wee 18], collect W s.t. X and Z are square,
compute the rank of W, reveal information about the matrix BP directly.

X ZW

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

More details about [CGH 17]

Target: Distinguish these two programs

1 I I I I I I I I

0 I I I I I I I I

i 1 2 1 2 3 4 3 4

here P ≠ I

1 I I I I I I I I

0 P I P-1 I I I I I

i 1 2 1 2 3 4 3 4

Program 1

Goal of the attack:
extract the bundling
scalars in the X zone, run
the mixed-input attack.

Z zoneX zone

Program 2

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
I.e., evaluate on 000|000, 001|000, 010|000, ... 000|001, 001|001, ...

A
D1,1

D1,0

D2,1

D2,0

...

...

Dh-1,1

Dh-1,0

Dh,1

Dh,0

A’
D’1,1

D’1,0

D’2,1

D’2,0

...

...

D’h-1,1

D’h-1,

0

D’h,1

D’h,0

wi,j= A DxiDzj - A’ D’xiD’zj mod q

Z zoneX zone

w1,1 … w1,v
w2,1 … w2,v

…
wu,1 … wu,v

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W
 (In the rest of the analysis in this talk, I will ignore the dummy branch.)

Z zoneX zone

w1,1 … w1,v
w2,1 … w2,v

…
wu,1 … wu,v

Sx1 Ex1 Ez1

Dz1

…

Ezv

Dzv

Sx2 Ex2

Sxu Exu

… x =

wi,j= A DxiDzj - A’ D’xiD’zj mod q

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W
 (In the rest of the analysis in this talk, I will ignore the dummy branch.)

w1,1 … w1,v
w2,1 … w2,v

…
wu,1 … wu,v

Sx1 Ex1 Ez1

Dz1

…

Ezv

Dzv

Sx2 Ex2

Sxu Exu

… x =

F⋅W = F⋅X⋅Z = 0 => F⋅X=0
(Z is square and full-rank whp)

ZX W

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W: FW = FXZ = 0 => FX=0
Step 3: From F, learn something about scalars

Sx1 Ex1

Sx2 Ex2

Sxu Exu

… = 0

f1,1, f1,2, ..., f1,u
...

fd,1, fd,2, ..., fd,u
x

The useful equations:
∀ k in [1,d]
∑u

i=1 fk,i ⋅ a
xi

= 0

coefficients unknowns S
xi
= a

xi
 J[*B

xi
]K

x

where a
xi
=∏jaj,xijUse the homogeneous feature, possible

to get a
1,1

a
3,1

/a
1,0

a
3,0

, a
1,1

a
3,1

/a
2,1

a
4,1

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W: FW = FXZ = 0 => FX=0
Step 3: From F, learn something about scalars

1 I I I I I I I I

0 I I I I I I I I

i 1 2 1 2 3 4 3 4

1 I I I I I I I I

0 P I P-1 I I I I I

i 1 2 1 2 3 4 3 4

What we can get:
a

1,1
a

3,1
/a

1,0
a

3,0
a

1,1
a

3,1
/a

2,1
a

4,1
 in Q[x]/ɸ(x)

1 2 3 4

What we want:
The small multiples of
each of them
a

1,1
, a

3,1
, a

1,0
, a

3,0
…..

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W: FW = FXZ = 0 => FX=0
Step 3: From F, learn something about scalars

1 I I I I I I I I

0 I I I I I I I I

i 1 2 1 2 3 4 3 4

1 I I I I I I I I

0 P I P-1 I I I I I

i 1 2 1 2 3 4 3 4

What we can get:
a

1,1
a

3,1
/a

1,0
a

3,0
a

1,1
a

3,1
/a

2,1
a

4,1
 in Q[x]/ɸ(x)

1 2 3 4

What we want:
The small multiples of
each of them
a

1,1
, a

3,1
, a

1,0
, a

3,0
…..

For certain parameters, can
use averaging attack.
But in general, need quantum
poly or classical subexp!

NTRU problem:

Given h = f/g

 in Z

q
[x]/ɸ(x), where f, g in Z[x]/ɸ(x) with

small coefficients, find small multiples of f and g.

Open problem 1:

“NTRU problem without mod q”

Given h = f/g

 in Q[x]/ɸ(x), where f, g in Z[x]/ɸ(x) with small

coefficients, find small multiples of f and g in Z[x]/ɸ(x).

Example: (Sage)

n = 8
P.<x> = ZZ["x"]
phi = x^n + 1
f = P.random_element(x=-100, y=101, degree=n-1)
g = P.random_element(x=-100, y=101, degree=n-1)
h = (f * g.change_ring(QQ).inverse_mod(phi)) % phi

print(f, g, h)

-5*x^7 + 11*x^6 - 38*x^5 + 13*x^4 + 72*x^3 - 7*x^2 - 88*x + 23
-24*x^7 + x^6 - 4*x^5 - 40*x^4 + 99*x^3 + 30*x^2 - 33*x + 96
-5967273975693765/23276530089158977*x^7 + 21013131762418457/23276530089158977*x^6 +
16763779410495968/23276530089158977*x^5 + 4594423085422955/23276530089158977*x^4 -
19985854142124613/23276530089158977*x^3 - 19258587086998750/23276530089158977*x^2 +
5782611576011603/23276530089158977*x + 28754308083338628/23276530089158977

Open problem 1:

“NTRU problem without mod q”

Given h = f/g

 in Q[x]/ɸ(x), where f, g in Z[x]/ɸ(x) with small

coefficients, find small multiples of f and g in Z[x]/ɸ(x).

Open problem 1:

“NTRU problem without mod q”

Given h = f/g

 in Q[x]/ɸ(x), where f, g in Z[x]/ɸ(x) with small

coefficients, find small multiples of f and g in Z[x]/ɸ(x).

If given “many” f1/g, f2/g, … fn/g with the same g, then
the problem can be solved using the averaging attack.

Summary of the [CGH 17] attack on GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W: FW = FXZ = 0 => FX=0
Step 3: From F, learn the ratios of the scalars.
Step 4: (Quantum poly. or classically sub.exp.) from the ratios, find small scalars.

1 I I I I I I I I

0 I I I I I I I I

i 1 2 1 2 3 4 3 4

1 I I I I I I I I

0 P I P-1 I I I I I

i 1 2 1 2 3 4 3 4

Two limitations:
1. Need quantum poly or

classical subexp in the
last step.

2. Only applies to BPs
where the indices can
be partitioned in X
and Z zones.

Summary of the [CGH 17] attack on GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W: FW = FXZ = 0 => FX=0
Step 3: From F, learn the ratios of the scalars.
Step 4: (Quantum poly. or classically sub.exp.) from the ratios, find small scalars.

1 I I I I I I I I

0 I I I I I I I I

i 1 2 1 2 3 4 3 4

1 I I I I I I I I

0 P I P-1 I I I I I

i 1 2 1 2 3 4 3 4

Two limitations:
1. Need quantum poly or

classical subexp in the
last step.

2. Only applies to BPs
where the indices can
be partitioned in X
and Z zones.

Overcomed in [CVW 18]

[CVW 18]: “rank attack”

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W [CGH 17]
Step 2: Compute the rank of W :) [CVW 18]

Z zoneX zone

w1,1 … w1,v
w2,1 … w2,v

…
wu,1 … wu,v

Sx1 Ex1 Ez1

Dz1

…

Ezv

Dzv

Sx2 Ex2

Sxu Exu

… x =

wi,j= A DxiDzj - A’ D’xiD’zj mod q

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W [CGH 17]
Step 2: Compute the rank of W :) The rank of W reveals the rank of “S”.

Z zoneX zone

w1,1 … w1,v
w2,1 … w2,v

…
wu,1 … wu,v

Sx1 Ex1 Ez1

Dz1

…

Ezv

Dzv

Sx2 Ex2

Sxu Exu

… x =

wi,j= A DxiDzj - A’ D’xiD’zj mod q

Full rank
whp

Full
rank
whp

S
xi
= a

xi
 J[*B

xi
]K

x

W

S’
xi
= a’

xi
 J’[*I

xi
]K’

x

1 I I I I I I I I

0 I I I I I I I I

i 1 2 3 4 5 6 7 8

here P ≠ I

1 I I I I I I I I

0 P I I I I I I I

i 1 2 3 4 5 6 7 8

Program 1

Z zoneX zone

Program 2

How to find two programs where this attack applies?
(Caveat: these two programs are not functionally equivalent.)

How to find two programs where this attack applies?
(Caveat: these two programs are not functionally equivalent.)

1 I I I I I I I I

0 I I I I I I I I

i 1 2 3 4 5 6 7 8

here P ≠ I

1 I I I I I I I I

0 P I I I I I I I

i 1 2 3 4 5 6 7 8

Program 1

Z zoneX zone

Program 2

I I

I I

I I

P I

In the analysis, you will
see an intermediate step

where for program 1,
rank(W) depends on

whereas for program 2,
rank(W) depends on

How to find two programs where inputs are not partitioned?

1* I I I I

0* I I I I

i X1 Z1 X2 Z2

here P ≠ I

1* I I I I

0* P I P-1 I

i X1 Z1 X2 Z2

Program 1

Program 2

How to find two programs where inputs are not partitioned?

1* I I I I

0* I I I I

i X1 Z1 X2 Z2

here P ≠ I

1* I I I I

0* P I P-1 I

i X1 Z1 X2 Z2

Program 1

Program 2

W

The attack algorithm is the same,
except that dim(W) is bigger, and the
analysis is harder.

How to find two programs where inputs are not partitioned?

1* I I I I

0* I I I I

i X1 Z1 X2 Z2

here P ≠ I

1* I I I I

0* P I P-1 I

i X1 Z1 X2 Z2

Program 1

Program 2

The analysis uses a matrix-product switching trick
used in [Apon, Döttling, Garg, Mukherjee 17]
& [Coron, Lee, Lepoint, Tibouchi 17]

Given four matrices A, B, C, D where
B, C are square and of dimension n,
A, D are vectors of dimension n.
Then

w = A*B*C*D = u(A, C) * v(B, D),
where u and v are vectors of dimension n3.

I I

I I

I I

M(P) I

vs

How to find two programs where inputs are not partitioned?

1* I I I I

0* I I I I

i X1 Z1 X2 Z2

here P ≠ I

1* I I I I

0* P I P-1 I

i X1 Z1 X2 Z2

Program 1

Program 2

Implication: can switch the index from 1212
to 1122 by blowing up the dimension.

In general, if 123123...123 repeat c times,
the dimension of the matrix W is 2^{2c-1}.

I I

I I

I I

M(P) I

vs

*Beyond iO: Rank attack can be used to break “PRFs” from matrix products.

1 B
1,1

B
2,1

B
3,1

B
4,1

B
5,1

B
6,1

0 B
1,0

B
2,0

B
3,0

B
4,0

B
5,0

B
6,0

i 1 2 3 1 2 3

Here is a candidate PRF: F

Key: sample 2*c*L matrices { B
i,b

 } of dimension w. (In the example, c = 2, L=3)

On an L-bit input x, repeat x for c times, then do the subset-product evaluation.

Here is a candidate PRF: F

Key: sample 2*c*L matrices { B
i,b

 } of dimension w. (In the example, c = 2, L=3)

On an L-bit input x, repeat x for c times, then do the subset-product evaluation.

[Chen, Hhan, Vaikuntanathan, Wee 19]:
The rank attack runs in time w^{O(c)}. So when c is a constant, F is not a PRF.

The attack collects a matrix of dimension w^{2c}, then computes its rank. If the
rank is lower than some threshold, then it is not a random function.
We also simplify the proof of the matrix switching lemma.

*Beyond iO: Rank attack can be used to break “PRFs” from matrix products.

1 B
1,1

B
2,1

B
3,1

B
4,1

B
5,1

B
6,1

0 B
1,0

B
2,0

B
3,0

B
4,0

B
5,0

B
6,0

i 1 2 3 1 2 3

Open problem 2:

Better rank attack for matrix PRFs or iO using quantum?
Or: Quantum advantage in the rank problem => breaking LWE?

Background:

> Quantum algorithms for deciding whether the rank is super high, or super low:
[Harrow, Hassidim, Lloyd 09], [Ambainis 12], [Belovs 11]

The precise runtime depends on the singular values of the matrix and others.

> Solving the rank problem of an exponential dimensional matrix
 => ? => break all the PRFs computable in NC1?
This is based on two steps. First, use Barrington theorem to convert any NC1
circuit into a matrix branching program (of polynomially many input repetitions).
Second, use the algorithm in Section 3 of [Chen, Hhan, Vaikuntanathan, Wee 19]
to break all the PRFs based on matrix branching program in 2^{ O(r) } times, where
r is the time that the input repeats.

> [Zhandry 13] shows that the classical PRF computable in NC1 from [Banerjee,
Peikert, Rosen 12] is a PRF in the quantum-query model under LWE assumption.

Status of iOs under the framework of [GGHRSW 13]

Type of program
(branching programs)

Simple
(read-once BP)

Complex
(read-const-many BP)

Very Complex
(read-n or dual-input BP)

GGH13 [MSZ 16]*
[CGH 17]

[ADGM 17]*
[CVW 18]

Standing

CLT13 [CHLRS 15]
[Coron et al. 15]

[CLLT 17] Standing

GGH15 [CGH 17] [CVW 18] Standing

* The attack applies when the “diagonal padding” safeguard is not there.

In [Chen, Vaikuntanathan, Wee 18], we propose a variant of GGHRSW13.
The main differences are
(0) The oblivious branching program has to repeat the indices for n times.
(2) The “bundling factors” are non-commutative.

Attacked by [Cheon, Cho, Hhan, Kim, Lee 19] using statistical method,
fixed in [Chen, Hhan, Vaikuntanathan, Wee 19].

[Bartusek, Guan, Ma, Zhandry 18] provides a different variant that is also
standing right now.

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization
(2) Safeguard 2: Bundling scalars
(3) Safeguard 3: random diagonal entries and bookends
(4) Wrap (0-3) by GGH15

Open problem 2:

Better rank attack for matrix PRFs or iO using quantum?
Or: Quantum advantage in the rank problem => breaking LWE?

Open problem 1:

“NTRU problem without mod q”

Given h = f/g

 in Q[x]/ɸ(x), where f, g in Z[x]/ɸ(x) with small

coefficients, find small multiples of f and g in Z[x]/ɸ(x).

Thanks for
your time!

Yilei Chen
[VISA Reseach]

2020 Simons Lattices

