
void
SR(i

nt i)
bool

o=tr
ue; f

or(in
t z=

0;o;z
++)

o=fa
lse; f

or(in
t j=0

;j<=
i;j++

) r[i]
[j]=0

; for(
int k

=0;k
<N;k

++)
r[i][j]

+=
L[i][k

]*(FF
)L[j][

k]; fo
r(int

k=0;
k<j;

k++
) r[i]

[j]-=
mu[j

][k]*
r[i][k

]; if(
j<i)

mu[i
][j]=

r[i][j]
/r[j][

j]; for(in
t j=i

-1;j>
=0;j

–) II
m=r

ound
(mu[

i][j]);
if(ab

s(mu
[i][j])

>0.5
+1e-

3) o=
true;

for(in
t k=

0;k<
N;k+

+) L
[i][k]

-=m
*L[j]

[k]; f
or(in

t k=
0;k<

j;k+
+) m

u[i][k
]-=m

*mu
[j][k]

;

void
LLL(

int s
t,int

ed)in
t i=s

t+1;
SR(s

t); w
hile(

i<ed
) SR

(i); F
F l=r[i

][i]; i
nt iD

est=
i; FF

lR=l
; for(

int j=
i-1;j>

=0;j
–) l+

=r[j]
[j]*m

u[i][j
]*mu

[i][j];
if(j>

i-2 and
l<=

r[j][j]
) iDe

st=j
; lR=

l; if(iD
est<

i) for
(int

k=0;
k<N

;k++
) sp(

L[i][k
],L[iD

est][k
]); fo

r(int
k=0;

k<N
;k++

) mu
[iDes

t][k]=
mu[i

][k];

Algebraic techniques for Algebraic lattices

Thomas Espitau

March 2, 2020, Simons Institute

Lattices and LLL

What is this all about?

Lattice
A (Euclidean) lattice Λ is a discrete subgroup of an
Euclidean space (say Rn).

2

What is this all about?

Lattice
A (Euclidean) lattice Λ is a discrete subgroup of an
Euclidean space (say Rn).

2

What is this all about?

Lattice
A (Euclidean) lattice Λ is a discrete subgroup of an
Euclidean space (say Rn).

2

What is this all about?

Lattice
A (Euclidean) lattice Λ is a discrete subgroup of an
Euclidean space (say Rn).

The covolume covol(Λ) of Λ is the quantity

covol(Λ) =
√

det 〈vi , vj〉

Corresponds to the volume of the fundamental domain
{
∑

xivi |0 6 xi < 1}.

2

What is this all about?

Lattice
A (Euclidean) lattice Λ is a discrete subgroup of an
Euclidean space (say Rn).

The covolume covol(Λ) of Λ is the quantity

covol(Λ) =
√

det 〈vi , vj〉

Corresponds to the volume of the fundamental domain
{
∑

xivi |0 6 xi < 1}.

Independent of the basis

2

What is this all about?

How to get a shorter basis?

3

What is this all about?

How to get a shorter basis?

→ Use the shortest vector to reduce the longest one.

3

What is this all about?

How to get a shorter basis?

→ Use the shortest vector to reduce the longest one.

1. Take the shortest element in the coset

3

What is this all about?

How to get a shorter basis?

→ Use the shortest vector to reduce the longest one.

1. Take the shortest element in the coset

3

What is this all about?

How to get a shorter basis?

→ Use the shortest vector to reduce the longest one.

1. Take the shortest element in the coset

2. Repeat

3

What is this all about?

How to get a shorter basis?

→ Use the shortest vector to reduce the longest one.

1. Take the shortest element in the coset

2. Repeat

3

What is this all about?

How to get a shorter basis?

→ Use the shortest vector to reduce the longest one.

An effective way of
computing this element:

1. Orthogonal
projection 〈w ,v〉

〈w ,w〉w w

v

3

What is this all about?

How to get a shorter basis?

→ Use the shortest vector to reduce the longest one.

An effective way of
computing this element:

1. Orthogonal
projection 〈w ,v〉

〈w ,w〉w

2. Round
⌈
〈w ,v〉
〈w ,w〉

⌋
w

w

v

3

What is this all about?

How to get a shorter basis?

→ Use the shortest vector to reduce the longest one.

An effective way of
computing this element:

1. Orthogonal
projection 〈w ,v〉

〈w ,w〉w

2. Round
⌈
〈w ,v〉
〈w ,w〉

⌋
w

3. Substract
v −

⌈
〈w ,v〉
〈w ,w〉

⌋
w

w

v

3

What is this all about?

How to get a shorter basis?

→ Use the shortest vector to reduce the longest one.

An effective way of
computing this element:

1. Orthogonal
projection 〈w ,v〉

〈w ,w〉w

2. Round
⌈
〈w ,v〉
〈w ,w〉

⌋
w

3. Substract
v −

⌈
〈w ,v〉
〈w ,w〉

⌋
w

w

v

3

In dim 2... The Lagrange-Gauss reduction algorithm

Gauss-Lagrange reduction

1 if ‖v‖ < ‖u‖ then return Gauss(v , u);

2 v ′ ← v −
⌊
〈u,v〉
‖u‖2

⌉
u;

3 if ‖v ′‖ < ‖v‖ then return
Gauss(u, v ′);

4 else return (u, v);

4

In dim 2... The Lagrange-Gauss reduction algorithm

Gauss-Lagrange reduction

1 if ‖v‖ < ‖u‖ then return Gauss(v , u);

2 v ′ ← v −
⌊
〈u,v〉
‖u‖2

⌉
u;

3 if ‖v ′‖ < ‖v‖ then return
Gauss(u, v ′);

4 else return (u, v);

Properties of a Gauss-reduced basis (u, v)

• ‖u‖ 6 ‖v‖ and |〈u, v〉| 6 ‖u‖2
2 .

4

In dim 2... The Lagrange-Gauss reduction algorithm

Gauss-Lagrange reduction

1 if ‖v‖ < ‖u‖ then return Gauss(v , u);

2 v ′ ← v −
⌊
〈u,v〉
‖u‖2

⌉
u;

3 if ‖v ′‖ < ‖v‖ then return
Gauss(u, v ′);

4 else return (u, v);

Properties of a Gauss-reduced basis (u, v)

• ‖u‖ 6 ‖v‖ and |〈u, v〉| 6 ‖u‖2
2 .

• u is a shortest vector of Λ

4

In dim 2... The Lagrange-Gauss reduction algorithm

Gauss-Lagrange reduction

1 if ‖v‖ < ‖u‖ then return Gauss(v , u);

2 v ′ ← v −
⌊
〈u,v〉
‖u‖2

⌉
u;

3 if ‖v ′‖ < ‖v‖ then return
Gauss(u, v ′);

4 else return (u, v);

Properties of a Gauss-reduced basis (u, v)

• ‖u‖ 6 ‖v‖ and |〈u, v〉| 6 ‖u‖2
2 .

• u is a shortest vector of Λ

• ‖u‖2 6 (4/3) covol(Λ)
4

And now what?

Minkowski theorem for first minima: For any lattice Λ of rank d,

λ1(Λ) 6
√
d covol(Λ)

1
d

• Simultaneous Diophantine approximation∣∣∣ri − pi
q

∣∣∣ 6 ε

• Minimal polynomials of algebraic numbers
(ri = r i)

• Polynomial factorization over rationals
Approximate a root r , find a minimal g
vanishing at r .

• Cryptanalysis Knapsack problem , RSA for
small public exponents, lattice-based
cryptography...

• Computations in algebraic number theory
(ideal computations, HNF, control of size
of elements...)

5

And now what?

Minkowski theorem for first minima: For any lattice Λ of rank d,

λ1(Λ) 6
√
d covol(Λ)

1
d

• Simultaneous Diophantine approximation∣∣∣ri − pi
q

∣∣∣ 6 ε

• Minimal polynomials of algebraic numbers
(ri = r i)

• Polynomial factorization over rationals
Approximate a root r , find a minimal g
vanishing at r .

• Cryptanalysis Knapsack problem , RSA for
small public exponents, lattice-based
cryptography...

• Computations in algebraic number theory
(ideal computations, HNF, control of size
of elements...)

5

And now what?

Finding a shortest/closest vector in a lattice is hard

• Simultaneous Diophantine approximation∣∣∣ri − pi
q

∣∣∣ 6 ε

• Minimal polynomials of algebraic numbers
(ri = r i)

• Polynomial factorization over rationals
Approximate a root r , find a minimal g
vanishing at r .

• Cryptanalysis Knapsack problem , RSA for
small public exponents, lattice-based
cryptography...

• Computations in algebraic number theory
(ideal computations, HNF, control of size
of elements...)

5

And now what?

[LLL82] There exists a polynomial-time algorithm, which given any lattice Λ, produces
a vector in Λ of Euclidean length at most a factor of 2d longer than a shortest vector.

• Simultaneous Diophantine approximation∣∣∣ri − pi
q

∣∣∣ 6 ε

• Minimal polynomials of algebraic numbers
(ri = r i)

• Polynomial factorization over rationals
Approximate a root r , find a minimal g
vanishing at r .

• Cryptanalysis Knapsack problem , RSA for
small public exponents, lattice-based
cryptography...

• Computations in algebraic number theory
(ideal computations, HNF, control of size
of elements...)

5

And now what?

[LLL82] There exists a polynomial-time algorithm, which given any lattice Λ, produces
a vector in Λ of Euclidean length at most a factor of 2d longer than a shortest vector.

• Simultaneous Diophantine approximation∣∣∣ri − pi
q

∣∣∣ 6 ε

• Minimal polynomials of algebraic numbers
(ri = r i)

• Polynomial factorization over rationals
Approximate a root r , find a minimal g
vanishing at r .

• Cryptanalysis Knapsack problem , RSA for
small public exponents, lattice-based
cryptography...

• Computations in algebraic number theory
(ideal computations, HNF, control of size
of elements...)

5

And now what?

[LLL82] There exists a polynomial-time algorithm, which given any lattice Λ, produces
a vector in Λ of Euclidean length at most a factor of 2d longer than a shortest vector.

• Simultaneous Diophantine approximation∣∣∣ri − pi
q

∣∣∣ 6 ε

• Minimal polynomials of algebraic numbers
(ri = r i)

• Polynomial factorization over rationals
Approximate a root r , find a minimal g
vanishing at r .

• Cryptanalysis Knapsack problem , RSA for
small public exponents, lattice-based
cryptography...

• Computations in algebraic number theory
(ideal computations, HNF, control of size
of elements...)

5

And now what?

[LLL82] There exists a polynomial-time algorithm, which given any lattice Λ, produces
a vector in Λ of Euclidean length at most a factor of 2d longer than a shortest vector.

• Simultaneous Diophantine approximation∣∣∣ri − pi
q

∣∣∣ 6 ε

• Minimal polynomials of algebraic numbers
(ri = r i)

• Polynomial factorization over rationals
Approximate a root r , find a minimal g
vanishing at r .

• Cryptanalysis Knapsack problem , RSA for
small public exponents, lattice-based
cryptography...

• Computations in algebraic number theory
(ideal computations, HNF, control of size
of elements...)

5

And now what?

[LLL82] There exists a polynomial-time algorithm, which given any lattice Λ, produces
a vector in Λ of Euclidean length at most a factor of 2d longer than a shortest vector.

• Simultaneous Diophantine approximation∣∣∣ri − pi
q

∣∣∣ 6 ε

• Minimal polynomials of algebraic numbers
(ri = r i)

• Polynomial factorization over rationals
Approximate a root r , find a minimal g
vanishing at r .

• Cryptanalysis Knapsack problem , RSA for
small public exponents, lattice-based
cryptography...

• Computations in algebraic number theory
(ideal computations, HNF, control of size
of elements...)

5

Towards a polynomial-time reduction algorithm

Any basis (v1, . . . , vd) of a lattice Λ yields a filtration:

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λi−1 ⊂ Λi ⊂ Λi+1 ⊂ · · · ⊂ Λd = Λ

6

Towards a polynomial-time reduction algorithm

Any basis (v1, . . . , vd) of a lattice Λ yields a filtration:

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λi−1 ⊂ Λi ⊂ Λi+1 ⊂ · · · ⊂ Λd = Λ

Profile space

0

deg(Λ1)

deg(Λi−1)

deg(Λi)

deg(Λi+1)

deg(Λd−1)

deg(Λd)

6

Towards a polynomial-time reduction algorithm

Any basis (v1, . . . , vd) of a lattice Λ yields a filtration:

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λi−1 ⊂ Λi ⊂ Λi+1 ⊂ · · · ⊂ Λd = Λ

Profile space

0

deg(Λ1)

deg(Λi−1)

deg(Λ′i)

deg(Λi+1)

deg(Λd−1)

deg(Λd)

Reduce the projected lattice with Gauss
algorithm, lift and replace.

6

Towards a polynomial-time reduction algorithm

Any basis (v1, . . . , vd) of a lattice Λ yields a filtration:

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λi−1 ⊂ Λi ⊂ Λi+1 ⊂ · · · ⊂ Λd = Λ

Profile space

0

deg(Λ1)

deg(Λi−1)

deg(Λ′i)

deg(Λi+1)

deg(Λd−1)

deg(Λd)

deg(Λ′i) 6 deg(Λi)

Reduce the projected lattice with Gauss
algorithm, lift and replace.

6

Towards a polynomial-time reduction algorithm

Any basis (v1, . . . , vd) of a lattice Λ yields a filtration:

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λi−1 ⊂ Λi ⊂ Λi+1 ⊂ · · · ⊂ Λd = Λ

Profile space

0

deg(Λ1)

deg(Λi−1)

deg(Λ′i)

deg(Λi+1)

deg(Λd−1)

deg(Λd)

deg(Λ′i) 6 deg(Λi)

Reduce the projected lattice with Gauss
algorithm, lift and replace.

Gauss’s reduction is a local tool for
densifying the filtration

6

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

From local to global: an iterative strategy

7

Quantitatively...

• Algorithmic tools: QR decomposition,
Size-reduction

• Original analysis:

O
(
d6B3)

• If very precautious one can use
floating-point representation

• L2 [Nguyen-Stehlé:2009]:

O
(
d5B(d + B)

)
• [Neumaier-Stehlé:2016] (recursive

strategy):
O
(
d4+εB1+ε

)

8

Generalization: towards algebraic lattices

Number fields and algebraic lattices

Number field

• Finite extension of Q:

L ∼= Q[X]�(P)

• Ring of integers:

OL = {α | ∃R ∈ Z[X] monic ,R(α) = 0}

Lattice
A (Euclidean) lattice Λ is a discrete subgroup
of a Euclidean space (say Rn).

10

Number fields and algebraic lattices

Number field

• Finite extension of Q:

L ∼= Q[X]�(P)

• Ring of integers:

OL = {α | ∃R ∈ Z[X] monic ,R(α) = 0}

For instance:
OQ = Z

OQ(i) = Z[i] = {a + ib | a, b ∈ Z}

OQ(j) = Z[i] = {a + jb | a, b ∈ Z}

Lattice
A (Euclidean) lattice Λ is a discrete subgroup
of a Euclidean space (say Rn).

10

Number fields and algebraic lattices

Number field

• Finite extension of Q:

L ∼= Q[X]�(P)

• Ring of integers:

OL = {α | ∃R ∈ Z[X] monic ,R(α) = 0}

For instance:
OQ = Z

OQ(i) = Z[i] = {a + ib | a, b ∈ Z}

OQ(j) = Z[i] = {a + jb | a, b ∈ Z}

Lattice
A (Euclidean) lattice Λ is a discrete subgroup
of a Euclidean space (say Rn).

10

Number fields and algebraic lattices

Number field

• Finite extension of Q:

L ∼= Q[X]�(P)

• Ring of integers:

OL = {α | ∃R ∈ Z[X] monic ,R(α) = 0}

For instance:
OQ = Z

OQ(i) = Z[i] = {a + ib | a, b ∈ Z}

OQ(j) = Z[i] = {a + jb | a, b ∈ Z}

Lattice
A (Euclidean) lattice Λ is a free Z-module of
finite rank, endowed with an inner product on
Λ⊗Z R.

10

Number fields and algebraic lattices

Number field

• Finite extension of Q:

L ∼= Q[X]�(P)

• Ring of integers:

OL = {α | ∃R ∈ Z[X] monic ,R(α) = 0}

For instance:
OQ = Z

OQ(i) = Z[i] = {a + ib | a, b ∈ Z}

OQ(j) = Z[i] = {a + jb | a, b ∈ Z}

Lattice
An (algebraic) lattice Λ is a free OL-module
of finite rank, endowed with an inner product
on Λ⊗OL

R.

10

Number fields and algebraic lattices

Number field

• Finite extension of Q:

L ∼= Q[X]�(P)

• Ring of integers:

OL = {α | ∃R ∈ Z[X] monic ,R(α) = 0}

For instance:
OQ = Z

OQ(i) = Z[i] = {a + ib | a, b ∈ Z}

OQ(j) = Z[i] = {a + jb | a, b ∈ Z}

Lattice
An (algebraic) lattice Λ is a free OL-module
of finite rank, endowed with an inner product
on Λ⊗OL

R.

10

Number fields and algebraic lattices

Number field

• Finite extension of Q:

L ∼= Q[X]�(P)

• Ring of integers:

OL = {α | ∃R ∈ Z[X] monic ,R(α) = 0}

For instance:
OQ = Z

OQ(i) = Z[i] = {a + ib | a, b ∈ Z}

OQ(j) = Z[i] = {a + jb | a, b ∈ Z}

Lattice
An (algebraic) lattice Λ is a free OL-module
of finite rank, endowed with an inner product
on Λ⊗OL

R.

10

Number fields and algebraic lattices

Natural Hermitian structure

• [L : Q] embeddings L→ C

• Archimedean embedding Σ:

L⊗Q R → Rr × Cc

x 7→ (σ(x))σ:L→C

• Transport the Hermitian structure to L⊗ R:

〈a, b〉Σ =
∑

σ:L→C

σ(a)σ(b).

• For any x = (x1, . . . , xd) ∈ (L⊗ R)d and
y = (y1, . . . , yd) ∈ (L⊗ R)d :

〈x , y〉 =
d∑

i=1

〈xi , yi 〉Σ,

Lattice
An (algebraic) lattice Λ is a free OL-module
of finite rank, endowed with an inner product
on Λ⊗OL

R.

10

Number fields and algebraic lattices

Natural Hermitian structure

• [L : Q] embeddings L→ C

• Archimedean embedding Σ:

L⊗Q R → Rr × Cc

x 7→ (σ(x))σ:L→C

• Transport the Hermitian structure to L⊗ R:

〈a, b〉Σ =
∑

σ:L→C

σ(a)σ(b).

• For any x = (x1, . . . , xd) ∈ (L⊗ R)d and
y = (y1, . . . , yd) ∈ (L⊗ R)d :

〈x , y〉 =
d∑

i=1

〈xi , yi 〉Σ,

Lattice
An (algebraic) lattice Λ is a free OL-module
of finite rank, endowed with an inner product
on Λ⊗OL

R.

Z[i]

1

i

10

Number fields and algebraic lattices

Natural Hermitian structure

• [L : Q] embeddings L→ C

• Archimedean embedding Σ:

L⊗Q R → Rr × Cc

x 7→ (σ(x))σ:L→C

• Transport the Hermitian structure to L⊗ R:

〈a, b〉Σ =
∑

σ:L→C

σ(a)σ(b).

• For any x = (x1, . . . , xd) ∈ (L⊗ R)d and
y = (y1, . . . , yd) ∈ (L⊗ R)d :

〈x , y〉 =
d∑

i=1

〈xi , yi 〉Σ,

Lattice
An (algebraic) lattice Λ is a free OL-module
of finite rank, endowed with an inner product
on Λ⊗OL

R.

Z[j]

1

j

10

Reduction of algebraic lattices

Techniques for the
reduction of

algebraic lattices

12

Need an oracle...

QR-decomposition

Module-SVP to
Module-SVP type

Techniques for the
reduction of

algebraic lattices

13

Parallel

Need an oracle...

Controlled

precision

fast-LLL

QR-decomposition

Module-SVP to
Module-SVP type

Rank recursivity
Techniques for the

reduction of
algebraic lattices

14

Controlled precision

Lifting is

tricky Need an oracle...

QR-decomposition

Module-SVP to
Module-SVP type

Unit rounding

Field recursivity

Parallel

Controlled

precision

Rank recursivity
Techniques for the

reduction of
algebraic lattices

15

Controlled precision

Beat LLL swap
bound

Lifting is

tricky

Compatible with subfield descent

Parallel

Sym
plectic

 ge
ometry

Need an oracle...

Controlled

precision

fast-LLL

QR-decomposition

Module-SVP to
Module-SVP type

Unit rounding

Rank recursivity

Field recursivity

Techniques for the
reduction of

algebraic lattices

16

Overstretched NTRU

Controlled precision

Fast Gentry-Szydlo

Beat LLL swap
bound

Knapsacks

Lifting is

tricky

Compatible with subfield descent

Parallel

Sym
plectic

 ge
ometry

Need an oracle...

Controlled

precision

fast-LLL

QR-decomposition

FHE over the

integers

Module-SVP to
Module-SVP type

Unit rounding

Rank recursivity

Field recursivity

Techniques for the
reduction of

algebraic lattices

17

Base reduction

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

19

Enhancing reduction over Z

Orthogonalize (M = QR)

1 for j = 1 to d do
2 Qj ← Mj −

∑j−1
i=1

〈Mj ,Qi 〉
〈Qi ,Qi 〉Qi

3 end for

4 return R =
(
〈Qi ,Mj〉
‖Qi‖

)
16i<j6d

;

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

19

Enhancing reduction over Z

A round of local reductions acts as a discretized
Laplacian operator on the profile “space”:

0

deg(Λ1)

deg(Λ2)

deg(Λd−2)

deg(Λd−1)

deg(Λd)

• Reminiscent of the diffusion property of
the solution of the heat equation

∂u

∂t
= α∆u

• Characteristic time is quadratic in the
diameter of the space.

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

• Operations are local: possible to recurse
on blocks

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

• Operations are local: possible to recurse
on blocks

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

• Operations are local: possible to recurse
on blocks

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

• Operations are local: possible to recurse
on blocks

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

• Operations are local: possible to recurse
on blocks

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

• Operations are local: possible to recurse
on blocks

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

• Operations are local: possible to recurse
on blocks

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

• Operations are local: possible to recurse
on blocks

19

Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition

• Reduction is done by reducing rank 2
projected sublattices

• Operations are local: possible to recurse
on blocks

19

20

On the complexity of the reduction

Complexity [E-Kirchner-Fouque 2019]

Let A be a matrix of dimension d with entries in Z, with κ(A) ≤ 2B such that B ≥ d . Our
reduction algorithm finds an integer vector x with

‖Ax‖ ≤ 2d/2| detA|1/d .

Further, the heuristic running time is

O
(

dω

(ω − 2)2 ·
B

logB
+ d2B logB

)
.

21

Playing with number fields

L OL

K OK

Q Z

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR
decomposition

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structure

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structureX

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structureX

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structureX
• Size-reduction?

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structureX
• Size-reduction?

• Over Z: requires integral rounding

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structureX
• Size-reduction?

• Over Z: requires integral rounding

• Translated over OK : find the closest
element in this ring: instance of CVP

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structureX
• Size-reduction?

• Over Z: requires integral rounding

• Translated over OK : find the closest
element in this ring: instance of CVP

• Approx-CVP suffices

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structureX
• Size-reduction?

• Over Z: requires integral rounding

• Translated over OK : find the closest
element in this ring: instance of CVP

• Approx-CVP suffices : just do the
coefficient-wise rounding!

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structureX
• Size-reduction? X

• Over Z: requires integral rounding

• Translated over OK : find the closest
element in this ring: instance of CVP

• Approx-CVP suffices : just do the
coefficient-wise rounding!

23

Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structureX
• Size-reduction? X

Hack: Use units to decrease the condition
number and lower the precision.

• Over Z: requires integral rounding

• Translated over OK : find the closest
element in this ring: instance of CVP

• Approx-CVP suffices : just do the
coefficient-wise rounding!

23

General recursive strategy

OKh

OKh−1

...

Z

24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh

OKh−1

...

Z

24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh

OKh−1

...

Z

reduce rk 2

24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh

OKh−1 m′1OKh−1 ⊕ · · · ⊕m′2mh
OKh−1

...

Z

reduce rk 2

descend

24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh

OKh−1 m′1OKh−1 ⊕ · · · ⊕m′2mh
OKh−1 α′1OKh−1 ⊕ α′2OKh−1

...

Z

reduce rk 2

descend

24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh

OKh−1 m′1OKh−1 ⊕ · · · ⊕m′2mh
OKh−1 α′1OKh−1 ⊕ α′2OKh−1

...
...

...

Z MZ = β1Z⊕ · · · ⊕ βkZ

reduce rk 2

descend

descend

24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh

OKh−1 m′1OKh−1 ⊕ · · · ⊕m′2mh
OKh−1 α′1OKh−1 ⊕ α′2OKh−1

...
...

...

Z MZ = β1Z⊕ · · · ⊕ βkZ α1Z⊕ α2Z

reduce rk 2

descend

descend

reduce rank 2

24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh

OKh−1 m′1OKh−1 ⊕ · · · ⊕m′2mh
OKh−1 α′1OKh−1 ⊕ α′2OKh−1

...
...

...

Z MZ = β1Z⊕ · · · ⊕ βkZ α1Z⊕ α2Z

υ (short)

reduce rk 2

descend

descend

reduce rank 2

schonhage

24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh

OKh−1 m′1OKh−1 ⊕ · · · ⊕m′2mh
OKh−1 α′1OKh−1 ⊕ α′2OKh−1

...
...

...

Z MZ = β1Z⊕ · · · ⊕ βkZ α1Z⊕ α2Z υZ⊕ ωZ (reduced)

υ (short)

reduce rk 2

descend

descend

reduce rank 2

schonhage

∼=

complete
24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh

OKh−1 m′1OKh−1 ⊕ · · · ⊕m′2mh
OKh−1 α′1OKh−1 ⊕ α′2OKh−1

...
...

... υ′ ∈ M ′ (short)

Z MZ = β1Z⊕ · · · ⊕ βkZ α1Z⊕ α2Z υZ⊕ ωZ (reduced)

υ (short)

reduce rk 2

descend

descend

reduce rank 2

schonhage

∼=

complete 24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh

OKh−1 m′1OKh−1 ⊕ · · · ⊕m′2mh
OKh−1 α′1OKh−1 ⊕ α′2OKh−1 υ′OKh−1 ⊕ ω′OKh−1

...
...

... υ′ ∈ M ′ (short)

Z MZ = β1Z⊕ · · · ⊕ βkZ α1Z⊕ α2Z υZ⊕ ωZ (reduced)

υ (short)

reduce rk 2

descend

∼=

descend Lift

reduce rank 2

schonhage

∼=

complete 24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh

υ′′ ∈ M (short)

OKh−1 m′1OKh−1 ⊕ · · · ⊕m′2mh
OKh−1 α′1OKh−1 ⊕ α′2OKh−1 υ′OKh−1 ⊕ ω′OKh−1

...
...

... υ′ ∈ M ′ (short)

Z MZ = β1Z⊕ · · · ⊕ βkZ α1Z⊕ α2Z υZ⊕ ωZ (reduced)

υ (short)

reduce rk 2

descend

∼=

descend Lift

reduce rank 2

schonhage

∼=

complete 24

General recursive strategy

OKh
m1OKh

⊕ · · · ⊕mdOKh
α1OKh

⊕ α2OKh
υ′′OKh

⊕ ω′′OKh

υ′′ ∈ M (short)

OKh−1 m′1OKh−1 ⊕ · · · ⊕m′2mh
OKh−1 α′1OKh−1 ⊕ α′2OKh−1 υ′OKh−1 ⊕ ω′OKh−1

...
...

... υ′ ∈ M ′ (short)

Z MZ = β1Z⊕ · · · ⊕ βkZ α1Z⊕ α2Z υZ⊕ ωZ (reduced)

υ (short)

reduce rk 2

descend

∼=

Lift

∼=

descend Lift

reduce rank 2

schonhage

∼=

complete 24

On the complexity of the reduction

Complexity [E-Kirchner-Fouque 2019]
Let f be a log-smooth integer. The complexity of the algorithm Reduce on rank two
modules over K = Q[x]/Φf (x), represented as a matrix M whose number of bits in the input
coefficients is uniformly bounded by B > n, is heuristically a Õ

(
n2B

)
with n = ϕ(f). The

first column of the reduced matrix has its coefficients uniformly bounded by 2Õ(n) covol(M)
1
2n .

25

Faster with symplectic symmetries Spω(2,L⊗ R)

Spω·τ(2[L : K],K⊗ R)

A primer on symplectic geometry

27

A primer on symplectic geometry

Euclidean space Symplectic space

27

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form 〈·, ·〉

Symplectic space

• Antisymmetric bilinear Form ω

27

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form 〈·, ·〉
• Transformation group: On(R)

Symplectic space

• Antisymmetric bilinear Form ω

• Transformation group: Spω(R)

27

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form 〈·, ·〉
• Transformation group: On(R)

• Nice bases: Orthonormal bases
1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 1



Symplectic space

• Antisymmetric bilinear Form ω

• Transformation group: Spω(R)

• Nice bases: Darboux bases[
0 Id

−Id 0

]

27

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form 〈·, ·〉
• Transformation group: On(R)

• Nice bases: Orthonormal bases
1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 1



Symplectic space

• Antisymmetric bilinear Form ω

• Transformation group: Spω(R)

• Nice bases: Darboux bases[
0 Id

−Id 0

]

27

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form 〈·, ·〉
• Transformation group: On(R)

• Nice bases: Orthonormal bases
1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 1



Symplectic space

• Antisymmetric bilinear Form ω

• Transformation group: Spω(R)

• Nice bases: Darboux bases[
0 Id

−Id 0

]

27

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form 〈·, ·〉
• Transformation group: On(R)

• Nice bases: Orthonormal bases
1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 1



Symplectic space

• Antisymmetric bilinear Form ω

• Transformation group: Spω(R)

• Nice bases: Darboux bases[
0 Id

−Id 0

]

27

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form 〈·, ·〉
• Transformation group: On(R)

• Nice bases: Orthonormal bases
1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 1



Symplectic space

• Antisymmetric bilinear Form ω

• Transformation group: Spω(R)

• Nice bases: Darboux bases[
0 Id

−Id 0

]

27

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form 〈·, ·〉
• Transformation group: On(R)

• Nice bases: Orthonormal bases
1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 1



Symplectic space

• Antisymmetric bilinear Form ω

• Transformation group: Spω(R)

• Nice bases: Darboux bases[
0 Id

−Id 0

]

27

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form 〈·, ·〉
• Transformation group: On(R)

• Nice bases: Orthonormal bases
1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 1



Symplectic space

• Antisymmetric bilinear Form ω

• Transformation group: Spω(R)

• Nice bases: Darboux bases[
0 Id

−Id 0

]

27

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form 〈·, ·〉
• Transformation group: On(R)

• Nice bases: Orthonormal bases
1 0 · · · 0

0
.

...
...

. 0
0 · · · 0 1



Symplectic space

• Antisymmetric bilinear Form ω

• Transformation group: Spω(R)

• Nice bases: Darboux bases[
0 Id

−Id 0

]

27

Going further with symplectic symmetries

Kh OKh

Kh−1 OKh−1

...
...

Q Z

r

28

Going further with symplectic symmetries

Jh ∈
∧2(K 2

h) is the determinant form:

Jh

((
x0

x1

)
,

(
y0

y1

))
= x0y1 − x1y0

M is Jh-symplectic iff detM = 1.

Jh Kh OKh

Kh−1 OKh−1

...
...

Q Z

r

28

Going further with symplectic symmetries

Jh ∈
∧2(K 2

h) is the determinant form:

Jh

((
x0

x1

)
,

(
y0

y1

))
= x0y1 − x1y0

→ Descend the form Jh in J
(1)
h to Kh−1 by

composition with a non-trivial linear form
τ : Kh → Kh−1

Jh Kh OKh

J
(1)
h Kh−1 OKh−1

...
...

Q Z

τ r

28

Going further with symplectic symmetries

Jh ∈
∧2(K 2

h) is the determinant form:

Jh

((
x0

x1

)
,

(
y0

y1

))
= x0y1 − x1y0

→ Descend the form Jh in J
(1)
h to Kh−1 by

composition with a non-trivial linear form
τ : Kh → Kh−1

Jh Kh OKh

J
(1)
h Kh−1 OKh−1

...
...

Q Z

τ r

28

Going further with symplectic symmetries

Jh ∈
∧2(K 2

h) is the determinant form:

Jh

((
x0

x1

)
,

(
y0

y1

))
= x0y1 − x1y0

→ Descend the form Jh in J
(1)
h to Kh−1 by

composition with a non-trivial linear form
τ : Kh → Kh−1

Jh Kh OKh

J
(1)
h Kh−1 OKh−1

...
...

...

Jhh Q Z

τ r

28

Going further with symplectic symmetries

Jh ∈
∧2(K 2

h) is the determinant form:

Jh

((
x0

x1

)
,

(
y0

y1

))
= x0y1 − x1y0

→ Descend the form Jh in J
(1)
h to Kh−1 by

composition with a non-trivial linear form
τ : Kh → Kh−1

SpJh(2,Kh) Jh Kh OKh

Sp
J

(1)
h

(2r ,Kh−1) J
(1)
h Kh−1 OKh−1

...
...

...

Jhh Q Z

τ r

Compatibility
Let M be a 2× 2 matrix over Kh which is
Jh-symplectic, then its descent M ′ ∈ K 2dh×2dh

h−1 is
J ′h-symplectic.

28

Going further with symplectic symmetries

Jh ∈
∧2(K 2

h) is the determinant form:

Jh

((
x0

x1

)
,

(
y0

y1

))
= x0y1 − x1y0

→ Descend the form Jh in J
(1)
h to Kh−1 by

composition with a non-trivial linear form
τ : Kh → Kh−1

SpJh(2,Kh) Jh Kh OKh

Sp
J

(1)
h

(2r ,Kh−1) J
(1)
h Kh−1 OKh−1

...
...

...

Sp
J

(h)
h

(2n,Q) Jhh Q Z

τ r

Compatibility
Let M be a 2× 2 matrix over Kh which is
Jh-symplectic, then its descent M ′ ∈ K 2dh×2dh

h−1 is
J ′h-symplectic. 28

Improved complexity

Improved complexity [E-Kirchner-Fouque 2019]
Select an integer f a power of q = O(log f) and let n = ϕ(f). The complexity for reducing
matrices M with condition number lower than 2B , of dimension two over L = Q[x]/Φf (x)

with B the number of bits in the input coefficients is heuristically

Õ
(
n2+ε(q)B

)
+ nO(log log n), ε(q) =

log(1/2 + 1/2q)

log q
< 0

and the first column of the reduced matrix has coefficients bounded by

2Õ(n)
∣∣NKh/Q(detM)

∣∣ 1
2n .

29

Open problems

• Getting further using higher-order
symplectic structures

Exploitation of the symplectic symmetries:

1. Decrease the complexity, but...

2. Increase the approximation factor

30

Open problems

• Getting further using higher-order
symplectic structures

Exploitation of the symplectic symmetries:

1. Decrease the complexity, but...

2. Increase the approximation factor

Seek for transformations preserving arbitrary
non-degenerate alternate forms (for example
the volume form)

30

Open problems

• Getting further using higher-order
symplectic structures

Exploitation of the symplectic symmetries:

1. Decrease the complexity, but...

2. Increase the approximation factor

Seek for transformations preserving arbitrary
non-degenerate alternate forms (for example
the volume form)

Problems:

• Non uniqueness of higher-order symplectic
structures (no Darboux’ structure
theorem)

• Find a descent compatible with this
additional structure

30

Open problems

• Getting further using higher-order
symplectic structures

Exploitation of the symplectic symmetries:

1. Decrease the complexity, but...

2. Increase the approximation factor

Seek for transformations preserving arbitrary
non-degenerate alternate forms (for example
the volume form)

Problems:

• Non uniqueness of higher-order symplectic
structures (no Darboux’ structure
theorem)

• Find a descent compatible with this
additional structure

30

Open problems

• Getting further using higher-order
symplectic structures

• Get rid of the heuristics:
reduce projective modules

30

Open problems

• Getting further using higher-order
symplectic structures

• Get rid of the heuristics:
reduce projective modules

Over OL a projective module is of the
shape: α1a1 ⊕ · · · ⊕ αnan

• Need to adapt the lifting to ideals [Cohen]

30

Open problems

• Getting further using higher-order
symplectic structures

• Get rid of the heuristics:
reduce projective modules

Over OL a projective module is of the
shape: α1a1 ⊕ · · · ⊕ αnan

• Need to adapt the lifting to ideals [Cohen]

• Requires computations with ideals:
bottleneck is now the ideal multiplication
algorithm

30

Open problems

• Getting further using higher-order
symplectic structures

• Get rid of the heuristics:
reduce projective modules

Over OL a projective module is of the
shape: α1a1 ⊕ · · · ⊕ αnan

• Need to adapt the lifting to ideals [Cohen]

• Requires computations with ideals:
bottleneck is now the ideal multiplication
algorithm

• 2-elements representation: multiplying
a = α1OL + α2OL, b = β1OL + β2OL

consists in the reduction of the ideal
generated by (αiβj)16i,j62 (module
spanned by 4 elements)

30

Open problems

• Getting further using higher-order
symplectic structures

• Get rid of the heuristics:
reduce projective modules

Over OL a projective module is of the
shape: α1a1 ⊕ · · · ⊕ αnan

• Need to adapt the lifting to ideals [Cohen]

• Requires computations with ideals:
bottleneck is now the ideal multiplication
algorithm

Cross recursive algorithms: reduction
and ideal multiplication

30

Thank you !

31

