
void
SR(i

nt i)
bool

o=tr
ue; f

or(in
t z=

0;o;z
++)

o=fa
lse; f

or(in
t j=0

;j<=
i;j++

) r[i]
[j]=0

; for(
int k

=0;k
<N;k

++)
r[i][j]

+=
L[i][k

]*(FF
)L[j][

k]; fo
r(int

k=0;
k<j;

k++
) r[i]

[j]-=
mu[j

][k]*
r[i][k

]; if(
j<i)

mu[i
][j]=

r[i][j]
/r[j][

j]; for(in
t j=i

-1;j>
=0;j

–) II
m=r

ound
(mu[

i][j]);
if(ab

s(mu
[i][j])

>0.5
+1e-

3) o=
true;

for(in
t k=

0;k<
N;k+

+) L
[i][k]

-=m
*L[j]

[k]; f
or(in

t k=
0;k<

j;k+
+) m

u[i][k
]-=m

*mu
[j][k]

;

void
LLL(

int s
t,int

ed)in
t i=s

t+1;
SR(s

t); w
hile(

i<ed
) SR

(i); F
F l=r[i

][i]; i
nt iD

est=
i; FF

lR=l
; for(

int j=
i-1;j>

=0;j
–) l+

=r[j]
[j]*m

u[i][j
]*mu

[i][j];
if(j>

i-2 and
l<=

r[j][j]
) iDe

st=j
; lR=

l; if(iD
est<

i) for
(int

k=0;
k<N

;k++
) sp(

L[i][k
],L[iD

est][k
]); fo

r(int
k=0;

k<N
;k++

) mu
[iDes

t][k]=
mu[i

][k];
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covol(Λ) =
√

det 〈vi , vj〉

Corresponds to the volume of the fundamental domain
{
∑

xivi |0 6 xi < 1}.
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In dim 2... The Lagrange-Gauss reduction algorithm

Gauss-Lagrange reduction

1 if ‖v‖ < ‖u‖ then return Gauss(v , u);

2 v ′ ← v −
⌊
〈u,v〉
‖u‖2

⌉
u;

3 if ‖v ′‖ < ‖v‖ then return
Gauss(u, v ′);

4 else return (u, v);
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In dim 2... The Lagrange-Gauss reduction algorithm

Gauss-Lagrange reduction

1 if ‖v‖ < ‖u‖ then return Gauss(v , u);

2 v ′ ← v −
⌊
〈u,v〉
‖u‖2

⌉
u;

3 if ‖v ′‖ < ‖v‖ then return
Gauss(u, v ′);

4 else return (u, v);

Properties of a Gauss-reduced basis (u, v)

• ‖u‖ 6 ‖v‖ and |〈u, v〉| 6 ‖u‖2
2 .

• u is a shortest vector of Λ

• ‖u‖2 6 (4/3) covol(Λ)
4



And now what?

Minkowski theorem for first minima: For any lattice Λ of rank d,

λ1(Λ) 6
√
d covol(Λ)

1
d

• Simultaneous Diophantine approximation∣∣∣ri − pi
q

∣∣∣ 6 ε

• Minimal polynomials of algebraic numbers
(ri = r i )

• Polynomial factorization over rationals
Approximate a root r , find a minimal g
vanishing at r .

• Cryptanalysis Knapsack problem , RSA for
small public exponents, lattice-based
cryptography...

• Computations in algebraic number theory
(ideal computations, HNF, control of size
of elements...)
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Towards a polynomial-time reduction algorithm

Any basis (v1, . . . , vd) of a lattice Λ yields a filtration:

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λi−1 ⊂ Λi ⊂ Λi+1 ⊂ · · · ⊂ Λd = Λ
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{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λi−1 ⊂ Λi ⊂ Λi+1 ⊂ · · · ⊂ Λd = Λ

Profile space
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deg(Λ1)

deg(Λi−1)

deg(Λ′i )

deg(Λi+1)

deg(Λd−1)

deg(Λd)

deg(Λ′i ) 6 deg(Λi )

Reduce the projected lattice with Gauss
algorithm, lift and replace.

Gauss’s reduction is a local tool for
densifying the filtration
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Quantitatively...

• Algorithmic tools: QR decomposition,
Size-reduction

• Original analysis:

O
(
d6B3)

• If very precautious one can use
floating-point representation

• L2 [Nguyen-Stehlé:2009]:

O
(
d5B(d + B)

)
• [Neumaier-Stehlé:2016] (recursive

strategy):
O
(
d4+εB1+ε

)
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Generalization: towards algebraic lattices



Number fields and algebraic lattices

Number field

• Finite extension of Q:

L ∼= Q[X ]�(P)

• Ring of integers:

OL = {α | ∃R ∈ Z[X ] monic ,R(α) = 0}

Lattice
A (Euclidean) lattice Λ is a discrete subgroup
of a Euclidean space (say Rn).
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Number fields and algebraic lattices

Natural Hermitian structure

• [L : Q] embeddings L→ C

• Archimedean embedding Σ:

L⊗Q R → Rr × Cc

x 7→ (σ(x))σ:L→C

• Transport the Hermitian structure to L⊗ R:

〈a, b〉Σ =
∑

σ:L→C

σ(a)σ(b).

• For any x = (x1, . . . , xd) ∈ (L⊗ R)d and
y = (y1, . . . , yd) ∈ (L⊗ R)d :

〈x , y〉 =
d∑

i=1

〈xi , yi 〉Σ,

Lattice
An (algebraic) lattice Λ is a free OL-module
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Reduction of algebraic lattices
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Base reduction



Enhancing reduction over Z

→ Idea: Use parallelisation and recursion on
the rank.
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Enhancing reduction over Z

Orthogonalize (M = QR)

1 for j = 1 to d do
2 Qj ← Mj −

∑j−1
i=1

〈Mj ,Qi 〉
〈Qi ,Qi 〉Qi

3 end for

4 return R =
(
〈Qi ,Mj〉
‖Qi‖

)
16i<j6d

;

→ Idea: Use parallelisation and recursion on
the rank.

• Work on filtrations/R-part of QR
decomposition
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Enhancing reduction over Z

A round of local reductions acts as a discretized
Laplacian operator on the profile “space”:

0

deg(Λ1)

deg(Λ2)

deg(Λd−2)

deg(Λd−1)

deg(Λd)

• Reminiscent of the diffusion property of
the solution of the heat equation

∂u

∂t
= α∆u

• Characteristic time is quadratic in the
diameter of the space.

→ Idea: Use parallelisation and recursion on
the rank.
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decomposition

• Reduction is done by reducing rank 2
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On the complexity of the reduction

Complexity [E-Kirchner-Fouque 2019]

Let A be a matrix of dimension d with entries in Z, with κ(A) ≤ 2B such that B ≥ d . Our
reduction algorithm finds an integer vector x with

‖Ax‖ ≤ 2d/2| detA|1/d .

Further, the heuristic running time is

O
(

dω

(ω − 2)2 ·
B

logB
+ d2B logB

)
.

21



Playing with number fields

L OL

K OK

Q Z



Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.
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Adapting to number fields

→ Idea: Use the same structure as over Z, but
exploit the algebraic specificities.

• Work on filtrations/R-part of QR

decompositionX
• Reduction can be done with the parallel

structureX
• Size-reduction? X

Hack: Use units to decrease the condition
number and lower the precision.

• Over Z: requires integral rounding

• Translated over OK : find the closest
element in this ring: instance of CVP

• Approx-CVP suffices : just do the
coefficient-wise rounding!
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On the complexity of the reduction

Complexity [E-Kirchner-Fouque 2019]
Let f be a log-smooth integer. The complexity of the algorithm Reduce on rank two
modules over K = Q[x ]/Φf (x), represented as a matrix M whose number of bits in the input
coefficients is uniformly bounded by B > n, is heuristically a Õ

(
n2B

)
with n = ϕ(f ). The

first column of the reduced matrix has its coefficients uniformly bounded by 2Õ(n) covol(M)
1
2n .
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Faster with symplectic symmetries Spω(2,L⊗ R)

Spω·τ(2[L : K],K⊗ R)
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Improved complexity

Improved complexity [E-Kirchner-Fouque 2019]
Select an integer f a power of q = O(log f ) and let n = ϕ(f ). The complexity for reducing
matrices M with condition number lower than 2B , of dimension two over L = Q[x ]/Φf (x)

with B the number of bits in the input coefficients is heuristically

Õ
(
n2+ε(q)B

)
+ nO(log log n), ε(q) =

log(1/2 + 1/2q)

log q
< 0

and the first column of the reduced matrix has coefficients bounded by

2Õ(n)
∣∣NKh/Q(detM)

∣∣ 1
2n .
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shape: α1a1 ⊕ · · · ⊕ αnan

• Need to adapt the lifting to ideals [Cohen]

• Requires computations with ideals:
bottleneck is now the ideal multiplication
algorithm

• 2-elements representation: multiplying
a = α1OL + α2OL, b = β1OL + β2OL

consists in the reduction of the ideal
generated by (αiβj)16i,j62 (module
spanned by 4 elements)
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Open problems

• Getting further using higher-order
symplectic structures

• Get rid of the heuristics:
reduce projective modules

Over OL a projective module is of the
shape: α1a1 ⊕ · · · ⊕ αnan

• Need to adapt the lifting to ideals [Cohen]

• Requires computations with ideals:
bottleneck is now the ideal multiplication
algorithm

Cross recursive algorithms: reduction
and ideal multiplication
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Thank you !
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