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How to get a shorter basis?

° ° ° o o — Use the shortest vector to reduce the longest one.
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An effective way of
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computing this element:
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In dim 2... The Lagrange-Gauss reduction algorithm

Gauss-Lagrange reduction

1 if ||v|]| < ||u|| then return Gauss(v, u);
2 vV v — l<”’v>—‘u;

Tull?

3 if ||V/]| < ||v]| then return
Gauss(u, v');

4 else return (u,v);

AX~—R- R —R

v Properties of a Gauss-reduced basis (u, v)
/ : / N/ N/ \ / N\
RTFTRN LA e
EAVAVAY A VAVAS o llull < IVl and |(u,v)| < 142
N/ / / 0\ \ N/
i ’;‘( ’f\/’ Hoo e u is a shortest vector of A
\/7\/7777\/7\‘/
\\;/tx/iy\)‘i\_/ o ||ul|® < (4/3) covol(A)
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Finding a shortest/closest vector in a lattice is hard
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[LLL82] There exists a polynomial-time algorithm, which given any lattice A, produces

a vector in \ of Euclidean length at most a factor of 2¢ longer than a shortest vector.

e Simultaneous Diophantine approximation e Cryptanalysis Knapsack problem , RSA for
r — % <e small public exponents, lattice-based

e Minimal polynomials of algebraic numbers cryptography...
(ri=r) e Computations in algebraic number theory

e Polynomial factorization over rationals (ideal computations, HNF, control of size

Approximate a root r, find a minimal g of elements...)

vanishing at r.
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Towards a polynomial-time reduction algorithm

Any basis (v1,...,vq) of a lattice A yields a filtration:

{O}IAoC/\lC"’C/\,'_lC/\,'C/\,'_HC"’C/\d:/\

Reduce the projected lattice with Gauss

i algorithm, lift and replace.
Profile space

deg(A1) deg(A7) deg(Ad-1)
o - --o— o o o o
0 deg(Ai-1)  deg(Ait1) deg(Aq)

Gauss’s reduction is a local tool for
densifying the filtration

deg(A}) < deg(Ay)
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Quantitatively...

e Algorithmic tools: QR decomposition, e If very precautious one can use
Size-reduction floating-point representation
e Original analysis: e [? [Nguyen-Stehlé:2009]:
0(d°B?) O(d°B(d + B))

e [Neumaier-Stehlé:2016] (recursive

strategy):
0) (d4+e Bl+e)



Generalization: towards algebraic lattices
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Orthogonalize (M = QR)

1 for j=1to d do

i—1 (M;,Q;
2 Q « M =35 <<Qf,Q,>> Qi
3 end for

4 return R = (<QC)7MJ>) :
[1Qill 1<i<j<d
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the rank.
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Enhancing reduction over Z

— ldea: Use parallelisation and recursion on

the rank.
| | | | | | | o
| | | | | | e Work on filtrations/R-part of QR
A round of local reductions acts as a discretized decomposition
Laplacian operator on the profile “space™ e Reduction is done by reducing rank 2

projected sublattices
deg(A1) deg(Ag—2) deg(Ad)

o o ---o—e o
0 deg(A2) deg(Ag-1) t=0.10
1.0
e Reminiscent of the diffusion property of 08
the solution of the heat equation N,
ou
— =alAu
at 04

0.2

e Characteristic time is quadratic in the
diameter of the space. 00

-4 -2 0 2 4
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On the complexity of the reduction

Complexity [E-Kirchner-Fouque 2019]

Let A be a matrix of dimension d with entries in Z, with x(A) < 28 such that B > d. Our
reduction algorithm finds an integer vector x with

| Ax|| < 29/2| det A7,

Further, the heuristic running time is

d~ B )

21
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exploit the algebraic specificities. e Translated over Ok: find the closest
e Work on filtrations/R-part of QR element in this ring: instance of CVP
K—R-T AR —A
et /N / N/ N/ N\
decomposition PR
/ \ / N\ / N\ / N\ . \
. . / / \/ \/ \ \
e Reduction can be done with the parallel A T
/ / \ / \ \/ \ \
/ GeoR=ar = W= = =
N v VAN A AR
structure \\L\f/\J\f %(77{7%/\7 7‘/
. . N/
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Adapting to number fields

e Over Z: requires integral rounding
— ldea: Use the same structure as over Z, but

exploit the algebraic specificities.

. . e Translated over Ok: find the closest
e Work on filtrations/R-part of QR

element in this ring: instance of CVP

decomposition K- A A A
/N / N/ N/ N\
2 . C—¥— - —% -
e Reduction can be done with the parallel EEVANAN AN
A-F- XK &4
\ /
structure \/ RN AN VN
\/\\/\\/\/\//\/
. 5 % oMo ok of = Mo
e Size-reduction? \/ AR
NN N ’\K*\‘/
. o \ I\ /
Hack: Use units to decrease the condition NI DL Y

number and lower the precision.

e Approx-CVP suffices : just do the
coefficient-wise rounding!
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/
¥

’ ’
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General recursive strateg

o

Ok, mOk, ®---® mgOk, -——---- 1 I/E/(LLKTEVIT}(—§>::::’\ 10k, © a0k,
descend
Y
,
,
¥
’ / / /
Ok,_4 mOk,_, @+ ® my,, O, , ——--------=----~ o10k,_, ® a50k,_,

24



General recursive strateg

Ok,

ffffff r’e,d_m:e‘ﬂ(_§>::::f\ OQOKh @ OéQOKh

m Ok, @ -+ ® myOk, 1

descend

,
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General recursive strateg
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General recursive strategy
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General recursive strategy
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General recursive strategy
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General recursive strate

Ok,

ml(’)Kh D---D meKh ****** redl@g;k—?’::::ﬁ aIOKh D OzzoKh
descena
v € M (short)
¥
,
;
/
/
i
¥
myOk,_, ® @ méththn ***************** a0k, , ® a50k, , = v'Ok,_, ®w'Ok,_,
’ »
W
: . 5 ’ ’ Lift
c & descend v € M’ (short) -
Y N
. e
Mz =01Z& & Pl ————-- reduce rank 2------- a1 Z® axZ = vZdwl (reduced)
! A
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+
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General recursive strategy

OKh ml(?Kh D---D meKh ****** red{u’cg‘rki’::::ﬁ aloKh &) agoKh = U”OK,, ) w”OKh
e A
descend ///
v € M (short) _Lift
e -
,
;
,
/
;
¥
Oki_s O @ 000 @ Wiy Ol o= a0k, , ® 4,0k, , = v'Ok, , ®w'Ok, ,
[ ) '1
y
: N L Lift
D& descend : v’ € M (short) -
. R
z Mz =51Z& & Pl ————-- reduce rank 2------- a1 ® arZ = v & wl (l'educed)
| o
SCHONHAGE L
hd ///
v (short) P
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On the complexity of the reduction

Complexity [E-Kirchner-Fouque 2019]

Let f be a log-smooth integer. The complexity of the algorithm Reduce on rank two
modules over K = Q[x]/®¢(x), represented as a matrix M whose number of bits in the input
coefficients is uniformly bounded by B > n, is heuristically a O(n?B) with n = o(f). The
first column of the reduced matrix has its coefficients uniformly bounded by 20(") covol(M) 3.

25



Faster with symplectic symmetries Sp,(2,L ® R)

[

Spu.(2[L : K], K ® R)
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A primer on symplectic geometry

Euclidean space Symplectic space
e Symmetric bilinear Form (-, -) e Antisymmetric bilinear Form w
e Transformation group: O,(R) e Transformation group: Sp,(R)

e Nice bases: Orthonormal bases .
e Nice bases: Darboux bases
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Going further with symplectic symmetries

Kh — OKh
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Going further with symplectic symmetries

Jh Kh — OKh

T 1]

Kh—l — Oth

Jp € N*(K2) is the determinant form: T T

a((2):(3)) =om e 1o

M is Jp-symplectic iff det M = 1. y >
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Going further with symplectic symmetries

In Ky < > OKh

X
5
-
—

Jp € N*(K2) is the determinant form:

N

I Q«+—— 2

— Descend the form Jj, in J,El) to Kp_1 by
composition with a non-trivial linear form
T 3 Kh — Kh—l
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Going further with symplectic symmetries

Jp € N*(K2) is the determinant form:

Sth(Q, Kh) Jh Kh — OK;,
Jh < <X0> : <y0>> = XoY1 — X1Y0 j 7 r
X1 i

Sp o (2r, Kn-1) S Kyl - Ok,

— Descend the form J, in J,Sl) to K1 by
composition with a non-trivial linear form
T Kh = Kh—l

v

Jp Q+——2Z

Compatibility
Let M be a 2 x 2 matrix over Kj, which is
Jp-symplectic, then its descent M’ € K292 g

h—1
Ji-symplectic.
h=Symp o8



Going further with symplectic symmetries

Jp € N*(K2) is the determinant form:

Sth(Q, Kh) Jh Kh — OK;,
Ih < <i0>7 (}}:0)) = Xo¥1 — X1Y0 v r
1 1 e
Sp o (2r, Kn-1) S Kyl - Ok,

— Descend the form J, in J,Sl) to K1 by
composition with a non-trivial linear form <
T Kh = Kh—l

SpJLh>(2n,Q) J,I;' Q+—Z

Compatibility

Let M be a 2 x 2 matrix over K} which is
Jp-symplectic, then its descent M’ € K% 2% is
Jj-symplectic. o8



Improved complexity

Improved complexity [E-Kirchner-Fouque 2019]

Select an integer f a power of g = O(log f) and let n = ¢(f). The complexity for reducing
matrices M with condition number lower than 28, of dimension two over L = Q[x]/®¢(x)
with B the number of bits in the input coefficients is heuristically

_ log(1/2+1/2q) <0

2 2+e(q) O(log log n)
O(n B) +n , e(q) g 7
and the first column of the reduced matrix has coefficients bounded by

1
2n

200 | Ny, 1 (det M)
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Open problems
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symplectic structures 1. Decrease the complexity, but...

2. Increase the approximation factor
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Open problems

Over O a projective module is of the

shape: aja; & -+ & apa,

e Getting further using higher-order e Need to adapt the lifting to ideals [Cohen]

symplectic structures e Requires computations with ideals:
bottleneck is now the ideal multiplication

algorithm
e Get rid of the heuristics:

L. e 2-elements representation: multiplying
reduce projective modules

a=oa10, + a0, =510+ 5,0,
consists in the reduction of the ideal
generated by (aiﬁj)lg,"jgz (module
spanned by 4 elements)
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Open problems

Over O a projective module is of the

shape: a1a; & -+ @ apa,

e Getting further using higher-order

et siuemics e Need to adapt the lifting to ideals [Cohen|

e Requires computations with ideals:
bottleneck is now the ideal multiplication
e Get rid of the heuristics: algorithm

reduce projective modules
Cross recursive algorithms: reduction
and ideal multiplication
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Thank you !
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