Algebraic techniques for Algebraic lattices

Thomas Espitau

March 2, 2020, Simons Institute

Lattices and LLL

Lattice

A (Euclidean) lattice Λ is a *discrete* subgroup of an Euclidean space (say \mathbf{R}^n).

Lattice

A (Euclidean) lattice Λ is a *discrete* subgroup of an Euclidean space (say \mathbf{R}^n).

The covolume $covol(\Lambda)$ of Λ is the quantity

 $\mathsf{covol}(\Lambda) = \sqrt{\det \left\langle \mathit{v}_i, \mathit{v}_j
ight
angle}$

Corresponds to the volume of the fundamental domain $\{\sum x_i v_i | 0 \leqslant x_i < 1\}.$

Lattice

A (Euclidean) lattice Λ is a *discrete* subgroup of an Euclidean space (say \mathbf{R}^n).

The covolume $covol(\Lambda)$ of Λ is the quantity

 $\mathsf{covol}(\Lambda) = \sqrt{\det \left\langle v_i, v_j
ight
angle}$

Corresponds to the volume of the fundamental domain $\{\sum x_i v_i | 0 \leqslant x_i < 1\}.$

Independent of the basis

How to get a shorter basis?

 \rightarrow Use the shortest vector to reduce the longest one.

- \rightarrow Use the shortest vector to reduce the longest one.
 - 1. Take the *shortest* element in the coset

- \rightarrow Use the shortest vector to reduce the longest one.
 - 1. Take the *shortest* element in the coset

- \rightarrow Use the shortest vector to reduce the longest one.
 - 1. Take the *shortest* element in the coset
 - 2. Repeat

- \rightarrow Use the shortest vector to reduce the longest one.
 - 1. Take the *shortest* element in the coset
 - 2. Repeat

How to get a shorter basis?

 \rightarrow Use the shortest vector to reduce the longest one.

 $\frac{\langle w, v \rangle}{\langle w, w \rangle} W$

An effective way of computing this element:

1. Orthogonal

projection

How to get a shorter basis?

 \rightarrow Use the shortest vector to reduce the longest one.

 $\frac{\langle w, v \rangle}{\langle w, w \rangle} W$

W

 $\langle w, v \rangle$

An effective way of computing this element:

1. Orthogonal

projection

2. Round

How to get a shorter basis?

 \rightarrow Use the shortest vector to reduce the longest one.

An effective way of computing this element:

1. Orthogonal

projection

- 2. Round
- 3. Substract

 $\frac{\langle w, v \rangle}{\langle w, w \rangle} W$

 $\frac{\langle w, v \rangle}{\langle w, w \rangle}$

W

How to get a shorter basis?

 \rightarrow Use the shortest vector to reduce the longest one.

 $\frac{\langle w, v \rangle}{\langle w, w \rangle} W$

 $\frac{\langle w, v \rangle}{\langle w, w \rangle}$

W

An effective way of computing this element:

1. Orthogonal

projection

- 2. Round
- 3. Substract $v - \left\lceil \frac{\langle w, v \rangle}{\langle w, w \rangle} \right\rceil w$

Properties of a Gauss-reduced basis (u, v)

•
$$||u|| \leq ||v||$$
 and $|\langle u, v \rangle| \leq \frac{||u||^2}{2}$.

Properties of a Gauss-reduced basis (u, v)

- $||u|| \leq ||v||$ and $|\langle u, v \rangle| \leq \frac{||u||^2}{2}$.
- u is a shortest vector of Λ

Properties of a Gauss-reduced basis (u, v)

- $||u|| \leq ||v||$ and $|\langle u, v \rangle| \leq \frac{||u||^2}{2}$.
- u is a shortest vector of Λ
- $||u||^2 \leq (4/3) \operatorname{covol}(\Lambda)$

Minkowski theorem for first minima: For any lattice Λ of rank d,

 $\lambda_1(\Lambda) \leqslant \sqrt{d} \operatorname{covol}(\Lambda)^{\frac{1}{d}}$

Minkowski theorem for first minima: For any lattice Λ of rank d,

 $\lambda_1(\Lambda) \leqslant \sqrt{d} \operatorname{covol}(\Lambda)^{\frac{1}{d}}$

Finding a shortest/closest vector in a lattice is hard

• Simultaneous Diophantine approximation $\left| r_i - \frac{p_i}{q} \right| \leqslant \epsilon$

- Simultaneous Diophantine approximation $\left| r_i \frac{p_i}{q} \right| \leqslant \epsilon$
- Minimal polynomials of algebraic numbers (*r_i* = *rⁱ*)

- Simultaneous Diophantine approximation $\left| r_i \frac{p_i}{q} \right| \leq \epsilon$
- Minimal polynomials of algebraic numbers (*r_i* = *rⁱ*)
- Polynomial factorization over rationals Approximate a root *r*, find a minimal *g* vanishing at *r*.

• **Cryptanalysis** Knapsack problem , RSA for small public exponents, lattice-based cryptography...

- Simultaneous Diophantine approximation $\left| r_i \frac{p_i}{q} \right| \leq \epsilon$
- Minimal polynomials of algebraic numbers $(r_i = r^i)$
- Polynomial factorization over rationals Approximate a root *r*, find a minimal *g* vanishing at *r*.

- Cryptanalysis Knapsack problem , RSA for small public exponents, lattice-based cryptography...
- Computations in algebraic number theory (ideal computations, HNF, control of size of elements...)

Any basis (v_1, \ldots, v_d) of a lattice Λ yields a filtration:

$$\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_{i-1} \subset \Lambda_i \subset \Lambda_{i+1} \subset \cdots \subset \Lambda_d = \Lambda$$

٦

Any basis (v_1, \ldots, v_d) of a lattice Λ yields a filtration:

$$\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_{i-1} \subset \Lambda_i \subset \Lambda_{i+1} \subset \cdots \subset \Lambda_d = \Lambda$$

Any basis (v_1, \ldots, v_d) of a lattice Λ yields a filtration:

$$\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_{i-1} \subset \Lambda_i \subset \Lambda_{i+1} \subset \cdots \subset \Lambda_d = \Lambda$$

Reduce the projected lattice with **Gauss algorithm**, **lift** and **replace**.

Any basis (v_1, \ldots, v_d) of a lattice Λ yields a filtration:

$$\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_{i-1} \subset \Lambda_i \subset \Lambda_{i+1} \subset \cdots \subset \Lambda_d = \Lambda$$

Reduce the projected lattice with **Gauss** algorithm, lift and replace.

 $\mathsf{deg}(\Lambda'_i) \leqslant \mathsf{deg}(\Lambda_i)$

Any basis (v_1, \ldots, v_d) of a lattice Λ yields a filtration:

$$\{0\} = \Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_{i-1} \subset \Lambda_i \subset \Lambda_{i+1} \subset \cdots \subset \Lambda_d = \Lambda$$

Reduce the projected lattice with **Gauss** algorithm, lift and replace.

Gauss's reduction is a *local* tool for densifying the filtration

From local to global: an iterative strategy

From local to global: an iterative strategy

Quantitatively...

- Algorithmic tools: QR decomposition, Size-reduction
- Original analysis:

 $O(d^6B^3)$

- If very precautious one can use floating-point representation
- L² [Nguyen-Stehlé:2009]:

 $O(d^5B(d+B))$

• [Neumaier-Stehlé:2016] (recursive strategy):

 $O(d^{4+\epsilon}B^{1+\epsilon})$

Generalization: towards algebraic lattices

Number fields and algebraic lattices

Number field

• Finite extension of **Q**:

$$L \cong \mathbf{Q}[X]_{(P)}$$

• Ring of integers:

 $\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbf{Z}[X] \text{ monic }, R(\alpha) = 0 \}$

Number fields and algebraic lattices

Number field

• Finite extension of **Q**:

$$L \cong \mathbf{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbf{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

For instance:

$$\mathcal{O}_{\mathsf{Q}} = \mathsf{Z}$$
$$\mathcal{O}_{\mathsf{Q}(i)} = \mathsf{Z}[i] = \{a + ib \mid a, b \in \mathsf{Z}\}$$
$$\mathcal{O}_{\mathsf{Q}(j)} = \mathsf{Z}[i] = \{a + jb \mid a, b \in \mathsf{Z}\}$$

• Finite extension of **Q**:

$$L \cong \mathbf{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbf{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

For instance:

$$\mathcal{O}_{\mathsf{Q}} = \mathsf{Z}$$
$$\mathcal{O}_{\mathsf{Q}(i)} = \mathsf{Z}[i] = \{a + ib \mid a, b \in \mathsf{Z}\}$$
$$\mathcal{O}_{\mathsf{Q}(j)} = \mathsf{Z}[i] = \{a + jb \mid a, b \in \mathsf{Z}\}$$

Lattice

A (Euclidean) lattice Λ is a *discrete* subgroup of a Euclidean space (say \mathbb{R}^n).

• Finite extension of **Q**:

$$L \cong \mathbf{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbf{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

For instance:

$$\mathcal{O}_{\mathsf{Q}} = \mathsf{Z}$$
$$\mathcal{O}_{\mathsf{Q}(i)} = \mathsf{Z}[i] = \{a + ib \mid a, b \in \mathsf{Z}\}$$
$$\mathcal{O}_{\mathsf{Q}(j)} = \mathsf{Z}[i] = \{a + jb \mid a, b \in \mathsf{Z}\}$$

Lattice

A (Euclidean) lattice Λ is a free Z-module of finite rank, endowed with an inner product on $\Lambda \otimes_Z R$.

• Finite extension of **Q**:

$$L \cong \mathbf{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbf{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

For instance:

$$\mathcal{O}_{\mathsf{Q}} = \mathsf{Z}$$
$$\mathcal{O}_{\mathsf{Q}(i)} = \mathsf{Z}[i] = \{a + ib \mid a, b \in \mathsf{Z}\}$$
$$\mathcal{O}_{\mathsf{Q}(j)} = \mathsf{Z}[i] = \{a + jb \mid a, b \in \mathsf{Z}\}$$

Lattice

• Finite extension of **Q**:

$$L \cong \mathbf{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbf{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

For instance:

$$\mathcal{O}_{\mathsf{Q}} = \mathsf{Z}$$
$$\mathcal{O}_{\mathsf{Q}(i)} = \mathsf{Z}[i] = \{a + ib \mid a, b \in \mathsf{Z}\}$$
$$\mathcal{O}_{\mathsf{Q}(j)} = \mathsf{Z}[i] = \{a + jb \mid a, b \in \mathsf{Z}\}$$

Lattice

• Finite extension of **Q**:

$$L \cong \mathbf{Q}[X]_{(P)}$$

• Ring of integers:

$$\mathcal{O}_L = \{ \alpha \mid \exists R \in \mathbf{Z}[X] \text{ monic }, R(\alpha) = 0 \}$$

For instance:

$$\mathcal{O}_{\mathsf{Q}} = \mathsf{Z}$$
$$\mathcal{O}_{\mathsf{Q}(i)} = \mathsf{Z}[i] = \{a + ib \mid a, b \in \mathsf{Z}\}$$
$$\mathcal{O}_{\mathsf{Q}(j)} = \mathsf{Z}[i] = \{a + jb \mid a, b \in \mathsf{Z}\}$$

Lattice

Natural Hermitian structure

- $[L: \mathbf{Q}]$ embeddings $L \to \mathbf{C}$
- Archimedean embedding Σ :

 $\begin{array}{rccc} L \otimes_{\mathbf{Q}} \mathbf{R} & \to & \mathbf{R}^r \times \mathbf{C}^c \\ x & \mapsto & (\sigma(x))_{\sigma: L \to \mathbf{C}} \end{array}$

• *Transport* the Hermitian structure to $L \otimes \mathbf{R}$:

$$\langle a,b
angle_{\Sigma}=\sum_{\sigma:L
ightarrow {\sf C}}\overline{\sigma(a)}\sigma(b).$$

• For any
$$x = (x_1, \dots, x_d) \in (L \otimes \mathbf{R})^d$$
 and
 $y = (y_1, \dots, y_d) \in (L \otimes \mathbf{R})^d$:
 $\langle x, y \rangle = \sum_{i=1}^d \langle x_i, y_i \rangle_{\Sigma},$

Lattice

Natural Hermitian structure

- $[L: \mathbf{Q}]$ embeddings $L \to \mathbf{C}$
- Archimedean embedding Σ :

 $\begin{array}{rccc} L \otimes_{\mathbf{Q}} \mathbf{R} & \to & \mathbf{R}^r \times \mathbf{C}^c \\ x & \mapsto & (\sigma(x))_{\sigma: L \to \mathbf{C}} \end{array}$

• Transport the Hermitian structure to $L \otimes \mathbf{R}$:

$$\langle a,b
angle_{\Sigma}=\sum_{\sigma:L
ightarrow {\sf C}}\overline{\sigma(a)}\sigma(b).$$

• For any
$$x = (x_1, \dots, x_d) \in (L \otimes \mathbb{R})^d$$
 and
 $y = (y_1, \dots, y_d) \in (L \otimes \mathbb{R})^d$:
 $\langle x, y \rangle = \sum_{i=1}^d \langle x_i, y_i \rangle_{\Sigma},$

Lattice

Natural Hermitian structure

- $[L: \mathbf{Q}]$ embeddings $L \to \mathbf{C}$
- Archimedean embedding Σ :

 $\begin{array}{rccc} L \otimes_{\mathbf{Q}} \mathbf{R} & \to & \mathbf{R}^r \times \mathbf{C}^c \\ x & \mapsto & (\sigma(x))_{\sigma: L \to \mathbf{C}} \end{array}$

• *Transport* the Hermitian structure to $L \otimes \mathbf{R}$:

$$\langle a,b
angle_{\Sigma}=\sum_{\sigma:L
ightarrow {\sf C}}\overline{\sigma(a)}\sigma(b).$$

• For any
$$x = (x_1, \dots, x_d) \in (L \otimes \mathbf{R})^d$$
 and
 $y = (y_1, \dots, y_d) \in (L \otimes \mathbf{R})^d$:
 $\langle x, y \rangle = \sum_{i=1}^d \langle x_i, y_i \rangle_{\Sigma},$

Lattice

Reduction of algebraic lattices

Techniques for the reduction of algebraic lattices Techniques for the reduction of algebraic lattices

QR-decomposition

Need an oracle...

Module-SVP to Module-SVP type

Base reduction
Orthogonalize (M = QR) -
1 for
$$j = 1$$
 to d do
2 $| Q_j \leftarrow M_j - \sum_{i=1}^{j-1} \frac{\langle M_i, Q_i \rangle}{\langle Q_i, Q_i \rangle} Q_i$
3 end for
4 return $R = \left(\frac{\langle Q_i, M_j \rangle}{||Q_i||}\right)_{1 \le i < j \le d};$

• Work on filtrations/R-part of *QR* decomposition

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices

Enhancing reduction over Z

A round of local reductions acts as a *discretized* Laplacian operator on the profile "space":

• Reminiscent of the *diffusion property* of the solution of the heat equation

 $\frac{\partial u}{\partial t} = \alpha \Delta u$

• *Characteristic time* is **quadratic in the diameter** of the space.

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices
- Operations are *local*: possible to recurse on blocks

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices
- Operations are *local*: possible to recurse on blocks

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices
- Operations are *local*: possible to recurse on blocks

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices
- Operations are *local*: possible to recurse on blocks

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices
- Operations are *local*: possible to recurse on blocks

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices
- Operations are *local*: possible to recurse on blocks

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices
- Operations are *local*: possible to recurse on blocks

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices
- Operations are *local*: possible to recurse on blocks

- Work on filtrations/R-part of *QR* decomposition
- Reduction is done by reducing rank 2 projected sublattices
- Operations are *local*: possible to recurse on blocks

Complexity [E-Kirchner-Fouque 2019]

Let A be a matrix of dimension d with entries in **Z**, with $\kappa(A) \leq 2^B$ such that $B \geq d$. Our reduction algorithm finds an integer vector x with

$$||Ax|| \le 2^{d/2} |\det A|^{1/d}.$$

Further, the *heuristic* running time is

$$O\left(\frac{d^{\omega}}{(\omega-2)^2}\cdot\frac{B}{\log B}+d^2B\log B\right).$$

Playing with number fields

• Work on filtrations/R-part of *QR* decomposition

Work on filtrations/R-part of *QR* decomposition √

- Work on filtrations/R-part of QR decomposition
- Reduction can be done with the parallel structure

- Work on filtrations/R-part of QR decomposition
- Reduction can be done with the parallel structure

- Work on filtrations/R-part of QR decomposition
- Reduction can be done with the parallel structure

- Work on filtrations/R-part of QR decomposition
- Reduction can be done with the parallel structure
- Size-reduction?

- Work on filtrations/R-part of QR decomposition
- Reduction can be done with the parallel structure
- Size-reduction?

• Over Z: requires integral rounding

- Work on filtrations/R-part of QR decomposition √
- Reduction can be done with the parallel structure
- Size-reduction?

• Over Z: requires integral rounding

• Translated over $\mathcal{O}_{\mathcal{K}}$: find the closest element in this ring: instance of CVP

- Work on filtrations/R-part of QR decomposition ✓
- Reduction can be done with the parallel structure
- Size-reduction?

- Over Z: requires integral rounding
- Translated over $\mathcal{O}_{\mathcal{K}}$: find the closest element in this ring: instance of CVP

• Approx-CVP suffices

- Work on filtrations/R-part of QR decomposition √
- Reduction can be done with the parallel structure
- Size-reduction?

• Over Z: requires integral rounding

 Translated over O_K: find the closest element in this ring: instance of CVP

• Approx-CVP suffices : just do the coefficient-wise rounding!

- Work on filtrations/R-part of QR decomposition √
- Reduction can be done with the parallel structure
- Size-reduction? 🗸

• Over Z: requires integral rounding

 Translated over O_K: find the closest element in this ring: instance of CVP

• Approx-CVP suffices : just do the coefficient-wise rounding!

- Work on filtrations/R-part of QR decomposition ✓
- Reduction can be done with the parallel structure \checkmark
- Size-reduction? ✓

Hack: Use units to decrease the condition number and *lower the precision*.

• Over Z: requires integral rounding

 Translated over O_K: find the closest element in this ring: instance of CVP

• Approx-CVP suffices : just do the coefficient-wise rounding!

Complexity [E-Kirchner-Fouque 2019]

Let f be a log-smooth integer. The complexity of the algorithm **Reduce** on rank two modules over $K = \mathbf{Q}[x]/\Phi_f(x)$, represented as a matrix M whose number of bits in the input coefficients is uniformly bounded by B > n, is *heuristically* a $\tilde{O}(n^2B)$ with $n = \varphi(f)$. The first column of the reduced matrix has its coefficients uniformly bounded by $2^{\tilde{O}(n)} \operatorname{covol}(M)^{\frac{1}{2n}}$.

A primer on symplectic geometry

A primer on symplectic geometry

Euclidean space

• Symmetric bilinear Form $\langle \cdot, \cdot \rangle$

Symplectic space

• Antisymmetric bilinear Form ω

- Symmetric bilinear Form $\langle\cdot,\cdot\rangle$
- Transformation group: $O_n(\mathbf{R})$

- Antisymmetric bilinear Form $\boldsymbol{\omega}$
- Transformation group: $Sp_{\omega}(\mathbf{R})$

- Symmetric bilinear Form $\langle\cdot,\cdot\rangle$
- Transformation group: $O_n(\mathbf{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form $\boldsymbol{\omega}$
- Transformation group: $Sp_{\omega}(\mathbf{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

- Symmetric bilinear Form $\langle\cdot,\cdot\rangle$
- Transformation group: $O_n(\mathbf{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form $\boldsymbol{\omega}$
- Transformation group: $Sp_{\omega}(\mathbf{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

- Symmetric bilinear Form $\langle\cdot,\cdot\rangle$
- Transformation group: $O_n(\mathbf{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form ω
- Transformation group: $Sp_{\omega}(\mathbf{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

- Symmetric bilinear Form $\langle\cdot,\cdot\rangle$
- Transformation group: $O_n(\mathbf{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form $\boldsymbol{\omega}$
- Transformation group: $Sp_{\omega}(\mathbf{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

- Symmetric bilinear Form $\langle\cdot,\cdot\rangle$
- Transformation group: $O_n(\mathbf{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form $\boldsymbol{\omega}$
- Transformation group: $Sp_{\omega}(\mathbf{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

- Symmetric bilinear Form $\langle\cdot,\cdot\rangle$
- Transformation group: $O_n(\mathbf{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form $\boldsymbol{\omega}$
- Transformation group: $Sp_{\omega}(\mathbf{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

- Symmetric bilinear Form $\langle\cdot,\cdot\rangle$
- Transformation group: $O_n(\mathbf{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form $\boldsymbol{\omega}$
- Transformation group: $Sp_{\omega}(\mathbf{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

- Symmetric bilinear Form $\langle\cdot,\cdot\rangle$
- Transformation group: $O_n(\mathbf{R})$
- Nice bases: Orthonormal bases

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

- Antisymmetric bilinear Form $\boldsymbol{\omega}$
- Transformation group: $Sp_{\omega}(\mathbf{R})$
- Nice bases: Darboux bases

$$\begin{bmatrix} 0 & I_d \\ -I_d & 0 \end{bmatrix}$$

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix}x_0\\x_1\end{pmatrix},\begin{pmatrix}y_0\\y_1\end{pmatrix}\right) = x_0y_1 - x_1y_0$$

M is J_h -symplectic iff det M = 1.

$$J_h \in \bigwedge^2(K_h^2)$$
 is the determinant form

$$J_h\left(\begin{pmatrix}x_0\\x_1\end{pmatrix},\begin{pmatrix}y_0\\y_1\end{pmatrix}\right) = x_0y_1 - x_1y_0$$

 \rightarrow Descend the form J_h in $J_h^{(1)}$ to K_{h-1} by composition with a non-trivial linear form $\tau : K_h \rightarrow K_{h-1}$

$$J_h \in igwedge^2(\mathcal{K}_h^2)$$
 is the determinant form

$$J_h\left(\begin{pmatrix}x_0\\x_1\end{pmatrix},\begin{pmatrix}y_0\\y_1\end{pmatrix}\right) = x_0y_1 - x_1y_0$$

 \rightarrow Descend the form J_h in $J_h^{(1)}$ to K_{h-1} by composition with a non-trivial linear form $\tau : K_h \rightarrow K_{h-1}$

$$J_h \in \bigwedge^2 (K_h^2)$$
 is the determinant form:
 $J_h \left(\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}, \begin{pmatrix} y_0 \\ y_1 \end{pmatrix} \right) = x_0 y_1 - x_1 y_0$

 \rightarrow Descend the form J_h in $J_h^{(1)}$ to K_{h-1} by composition with a non-trivial linear form $\tau : K_h \rightarrow K_{h-1}$

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix}x_0\\x_1\end{pmatrix},\begin{pmatrix}y_0\\y_1\end{pmatrix}\right) = x_0y_1 - x_1y_0$$

 \rightarrow Descend the form J_h in $J_h^{(1)}$ to K_{h-1} by composition with a non-trivial linear form $\tau : K_h \rightarrow K_{h-1}$

Compatibility

Let M be a 2 × 2 matrix over K_h which is J_h -symplectic, then its descent $M' \in K_{h-1}^{2d_h \times 2d_h}$ is J'_h -symplectic.

 $J_h \in \bigwedge^2(K_h^2)$ is the determinant form:

$$J_h\left(\begin{pmatrix}x_0\\x_1\end{pmatrix},\begin{pmatrix}y_0\\y_1\end{pmatrix}\right) = x_0y_1 - x_1y_0$$

 \rightarrow Descend the form J_h in $J_h^{(1)}$ to K_{h-1} by composition with a non-trivial linear form $\tau : K_h \rightarrow K_{h-1}$

Compatibility

Let M be a 2×2 matrix over K_h which is J_h -symplectic, then its descent $M' \in K_{h-1}^{2d_h \times 2d_h}$ is J'_h -symplectic.

Improved complexity [E-Kirchner-Fouque 2019]

Select an integer f a power of $q = O(\log f)$ and let $n = \varphi(f)$. The complexity for reducing matrices M with condition number lower than 2^B , of dimension two over $L = \mathbf{Q}[x]/\Phi_f(x)$ with B the number of bits in the input coefficients is *heuristically*

$$ilde{\mathrm{O}}\Big(n^{2+arepsilon(q)}B\Big)+n^{\mathrm{O}(\log\log n)},\qquad arepsilon(q)=rac{\log(1/2+1/2q)}{\log q}<0$$

and the first column of the reduced matrix has coefficients bounded by

 $2^{\tilde{\mathcal{O}}(n)} |N_{K_h/\mathbf{Q}}(\det M)|^{\frac{1}{2n}}.$

Exploitation of the symplectic symmetries:

- 1. **Decrease** the complexity, but...
- 2. Increase the approximation factor

Exploitation of the symplectic symmetries:

- 1. Decrease the complexity, but...
- 2. Increase the approximation factor

Seek for transformations preserving arbitrary non-degenerate alternate forms (for example the *volume form*)

Exploitation of the symplectic symmetries:

1. Decrease the complexity, but...

2. Increase the approximation factor

Seek for transformations preserving arbitrary non-degenerate alternate forms (for example the *volume form*)

Problems:

- Non uniqueness of higher-order symplectic structures (no Darboux' structure theorem)
- Find a descent compatible with this additional structure

Exploitation of the symplectic symmetries:

1. Decrease the complexity, but...

2. Increase the approximation factor

Seek for transformations preserving arbitrary non-degenerate alternate forms (for example the *volume form*)

Problems:

- Non uniqueness of higher-order symplectic structures (no Darboux' structure theorem)
- Find a descent compatible with this additional structure

- Getting further using higher-order symplectic structures
- Get rid of the heuristics: reduce *projective* modules
- Getting further using higher-order symplectic structures
- Get rid of the heuristics: reduce *projective* modules

Over \mathcal{O}_L a projective module is of the shape: $\alpha_1\mathfrak{a}_1\oplus\cdots\oplus\alpha_n\mathfrak{a}_n$

• Need to adapt the lifting to ideals [Cohen]

- Getting further using higher-order symplectic structures
- Get rid of the heuristics: reduce *projective* modules

Over \mathcal{O}_L a projective module is of the shape: $\alpha_1 \mathfrak{a}_1 \oplus \cdots \oplus \alpha_n \mathfrak{a}_n$

- Need to adapt the lifting to ideals [Cohen]
- Requires computations with ideals: bottleneck is now the ideal multiplication algorithm

- Getting further using higher-order symplectic structures
- Get rid of the heuristics: reduce *projective* modules

Over \mathcal{O}_L a projective module is of the shape: $\alpha_1\mathfrak{a}_1\oplus\cdots\oplus\alpha_n\mathfrak{a}_n$

- Need to adapt the lifting to ideals [Cohen]
- Requires computations with ideals: bottleneck is now the ideal multiplication algorithm
- 2-elements representation: multiplying $\mathfrak{a} = \alpha_1 \mathcal{O}_L + \alpha_2 \mathcal{O}_L, \mathfrak{b} = \beta_1 \mathcal{O}_L + \beta_2 \mathcal{O}_L$ consists in the reduction of the ideal generated by $(\alpha_i \beta_j)_{1 \leq i, j \leq 2}$ (module spanned by 4 elements)

- Getting further using higher-order symplectic structures
- Get rid of the heuristics: reduce *projective* modules

Over \mathcal{O}_L a projective module is of the shape: $\alpha_1\mathfrak{a}_1\oplus\cdots\oplus\alpha_n\mathfrak{a}_n$

- Need to adapt the lifting to ideals [Cohen]
- Requires computations with ideals: bottleneck is now the ideal multiplication algorithm

Cross recursive algorithms: reduction and ideal multiplication

Thank you !

31