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CODE-BASED PKE SCHEMES

McEliece: first cryptosystem using error correcting codes (1978).

Based on the hardness of decoding random linear codes.

Important that the chosen code is indistinguishable from random.

→ the Code Equivalence Problem.
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CODE EQUIVALENCE NOTIONS

PERMUTATION CODE EQUIVALENCE

Two codes C and C′ are permutationally equivalent, or C PE∼ C′, if there
is a permutation π ∈ Sn that maps C into C, i.e.

C′ = {π(x), x ∈ C} .

This notion can be extended using linear isometries.

LINEAR CODE EQUIVALENCE

Two codes C and C′ are linearly equivalent, or C LE∼ C′, if there is a
linear isometry µ = (v , π) ∈ F∗nq o Sn such that C′ = µ(C), i.e.

C′ = {µ(x), x ∈ C} .
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THE CODE EQUIVALENCE PROBLEM

Code equivalence can be described using generator matrices.
Clearly:

C
PE∼ C′ ⇐⇒ ∃(S,P) ∈ GLk (q)× Sn s.t. G′ = SGP,

C
LE∼ C′ ⇐⇒ ∃(S,Q) ∈ GLk (q)×Mn(q) s.t. G′ = SGQ,

where P is a permutation matrix, and Q a monomial matrix.

PERMUTATION (LINEAR) CODE EQUIVALENCE PROBLEM

Let C and C′ be two [n, k ] linear codes over Fq , having generator
matrices G and G′, respectively. Determine whether the two codes
are permutationally (linearly) equivalent, i.e. if there exist matrices
S ∈ GL and P ∈ Sn (Q ∈ Mn(q)) such that G′ = SGP (G′ = SGQ).
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HARDNESS AT A GLANCE

Studied for a very long time.

Unlikely to be NP-complete (unless polynomial hierarchy collapses).
(Petrank and Roth, 1997)

Existing algorithms efficiently attack particular cases, however...

...underlying exponential complexity makes it easy to find intractable
instances.
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APPLICATIONS IN CRYPTOGRAPHY

Could Code Equivalence be used as a stand-alone problem?

The situation for linear isometries recalls that of DLP (although
without commutativity).

This means several existing constructions could be adapted to be
based on Code Equivalence, with evident computational advantages.

For example, a ZK protocol can be obtained, which can be then
transformed into a signature scheme via Fiat-Shamir.

It may also be possible to obtain signatures by following El Gamal’s
framework, leading to even more efficient instantiations.

It could also be possible to devise a Diffie-Hellman-like
non-interactive key exchange.
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LEON’S ALGORITHM

Introduced in 1982 as a method to find the automorphism group of a
code.

Can be adapted to solve Permutation Equivalence by analyzing the
action of the permutation on a subset of fixed-weight codewords.

Weight, say ω, is usually set ≥ GV bound. This is likely the best
choice (big enough but not too big).

Bottleneck: it requires enumerating all the codewords of weight ω.

Complexity can be estimated as:

O
(

4(n − k)
ω∑
δ=1

(δ − 1)
(

k
δ

)
(q − 1)δ−1

)
.

Only efficient for codes of small dimension over small finite fields.
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SUPPORT SPLITTING ALGORITHM

Introduced by Sendrier in 2000 as a dedicated algorithm for
Permutation Equivalence, uses the following concept.

SIGNATURE FUNCTION

Let C be a linear code of length n; we say that a function S is a
signature function over a set F if it maps C and a position i ∈ [0;n− 1]
to F and is such that

S(C, i) = S
(
π(C), π(i)

)
, ∀π ∈ Sn.

A signature function is fully discriminant if S(C, i) 6= S(C, j), ∀i 6= j .

Then clearly S(C, i) = S(C′, j) ⇐⇒ j = π(i), which allows to
reconstruct the permutation.
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COMPLEXITY OF SSA

Finding a fully discriminant signature is not obvious.

Sendrier proposes to build them from the hull of the code, i.e. C ∩ C⊥

(via puncturing and computing the weight enumerator).

Complexity scales accordingly, and it is given by:

O
(
n3 + n2qdhull log n

)
Algorithm is efficient when hull is small - but not trivial (empty).
(Bardet, Otmani and Saeed-Taha, 2019)

Worst-case: weakly self-dual codes (C ⊆ C⊥).
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SOLVING LINEAR EQUIVALENCE

Both algorithms can be extended to work on the Linear Equivalence
version, using closures.

CLOSURE OF A CODE

Let Fq = {a0 = 0,a1, · · · ,aq−1}, and a = (a1, · · · ,aq−1). We define
the closure of a linear code C, defined over Fq , as the [n(q − 1), k ]
linear code

C̃ = {c ⊗ a, c ∈ C}.

THEOREM 1

Let C,C ⊆ Fn
q ; then, C LE∼ C′ if and only if C̃ PE∼ C̃′.

Leon’s algorithm needs to enumerate all fixed-weight codewords in
the closure.

SSA applies directly to the closure; however, when q ≥ 5, this is
always weakly self-dual.
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GROVER’S ALGORITHM

We can expect that a Grover search would provide the usual speedup
to Leon’s algorithm.

However, a Grover search over all possible secrets (i.e. P ∈ Sn)
would not outperform the classical SSA, because of the size of Sn.

Alternatively, could use Grover’s within SSA.

Searching for j = π(i) corresponds to f (j) = 1 for

f (j) =
{

1 if S(C′, j) = S(C, i)
0 otherwise

Due to the short search space and expensive oracle, we have a total
cost of

Õ(n5/2qdHull log n).

Once again, this does not outperform the classical SSA.
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0 otherwise

Due to the short search space and expensive oracle, we have a total
cost of

Õ(n5/2qdHull log n).

Once again, this does not outperform the classical SSA.
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QUANTUM FOURIER SAMPLING

Search for a secret subgroup H within a known “control group” G.

In our case, we have G = (GLk (2)× Sn)o Z2.
(Dinh, Moore and Russell, 2011)

In some cases, this leads to an upper bound on the sampling
probability.

This does not necessarily imply any form of hardness.
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Thank you
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