Lattices, Post-Quantum Security, and Fully Homomorphic Encryption

Daniele Micciancio
(UC San Diego)

April 2020

Encryption

- Secure communication over insecure channel

Modern Cryptography

- Hard mathematical Problem:
- Factoring: Given pq, find p and q
- Cryptographic Construction:
- Encryption scheme
- Proof of security:

```
If you can break encryption
```

 factor numbers

Factoring and Quantum (In)Security

- Shor (1994):
- efficient quantum algorithm to factor numbers
- Assumption that factoring is hard does not hold in a "post-quantum" world
- Same holds for most other mathematical problems currently in use:
- discrete logarithm, elliptic curve, etc.
- Need for new mathematical problems that are not solvable by quantum algorithms

Subset-Sum Problem

- Given n integer numbers
- a_{1}, \ldots, a_{n}
and a target value
- b
- Goal:
- Find a subset that adds up to b $\Sigma\left\{a_{i} \mid i \in S\right\}=b$

Subset-Sum / Knapsack

- Also known as the "Knapsack" problem
- Fill a knapsack of capacity b
- using a selection of items of size a_{1}, \ldots, a_{n}
- items can be used multiple times

image: CC BY-SA 2.5 wikipedia:Knapsack_problem

Try it out!

MY HOBBY:
 EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Hardness of Subset-Sum

- NP-complete: no efficient algorithm unless $\mathrm{P}=\mathrm{NP}$ (or NP \subset BQP)
- One of Karp 21 NP-complete problems
- [Karp 1972]

NP-hard problems:

1. Set packing
2. Vertex Cover

3. Max Cut

Revocriburity among consimaroortal prooslems ${ }^{+}$

Richard M. Karp
University of California at Berkeley

Abstract: A large class of computational problems involve the determination of properties of graphs, digraphs, integers, arrays of integers, finite families of finite sets, boolean formulas and elements of other countable domains. Through simple encodings
from such domains into the set of words over a finite alphabet from such domains into the set of words over a finite alphabet
these problems can be converted into language recognition problems, and we can inquire into their computational complexity. It is and we can inquire into their computamional coction satily solved when an algorithm for its solution is found which terminates within a number of steps bounded by a polynomial in the length of the input. We show that a large number of classic unsolved problems of covering, matching, packing, routing, assignment and sequencing are equivalent, in the sense that either each of them possesses a polynomial-bounded algorithm or none of them does.

1. INTRODUCTION

All the general methods presently known for computing the chromatic number of a graph, deciding whether a graph has a Hamilton circuit, or solving a system of linear inequalities in which the variables are constrained to be 0 or 1 , require a combinatorial search for which the worst case time requirement grows exponentially with the length of the input. In this paper we give theorems which strongly suggest, but do not imply, that
these problems, as well as many others, will remain intractable these problems
perpetually.
${ }^{\dagger}$ This research was partially supported by National Science Foundation Grant GJ-474.

Lattice/Knapsack Cryptgraphy: abridged (pre-)history

- Knapsack public key cryptosystem
- [Merkle, Hellman 1978]
- Cryptanalysis
- [Shamir 1984],[Lagarias,Odlyzko 1985]
- Several variants kept being suggested for almost two decades, but invariably broken
- "The Rise and Fall of Knapsack Cryptosystems" [Odlyzko 1990]
- Turning point [Ajtai 1996]
- worst-case/average-case connection
- the "right" way to use knapsack/lattices for cryptography

Subset-Sum vs Lattice Problems

- Subset-sum over vectors $a_{i}={ }_{\frac{1}{5}}^{\frac{1}{5}} \in Z^{n}$
- Essentially the same as the knapsack problem, just more convenient in cryptography applications

4
1
6
2
3
:---
1
7
3
3
:---:
2
13
5
6

linear combination with small coefficients

Geometry of Lattices

Set of all integer linear combinations of basis vectors $B=\left[b_{1}, \ldots, b_{n}\right] \subset R^{n}$
$L(B)=\left\{B x: x \in Z^{n}\right\} \subset \operatorname{span}(B)=\{B x: x \in R n\}$

Linear functions

Matrix-Vector multiplication $\quad \mathrm{n}$ •

- $A \in Z_{q}{ }^{n \times h}, x \in Z_{q}{ }^{n}, b \in Z_{q}{ }^{n}$
- $f_{A}(x)=A x$
- $f_{A}(x+y)=f_{A}(x)+f_{A}(y)$

- Easy to compute and invert

matrix-vector multiplication

Short Integer Solution (SIS)

- [Ajtai 1996] One-Way Function:

$$
\begin{aligned}
& -f_{A}(x)=A x(\bmod q) \\
& -A \in Z_{q}{ }^{n \times h}, x \in\{0,1\}^{n}, b \in Z_{q}{ }^{n}
\end{aligned}
$$

- Short Integer Solution Problem:
- Given [A,b] find a smalld \times such that $A x=b$
- More generally, $\|x\|<\beta$

Learning With Errors (LWE)

- LWE function family:
- Key: $A \in Z_{q}[n x h]$
$-\operatorname{LWE}_{\mathrm{A}}(\mathrm{s}, \mathrm{e})=\mathrm{As}+\mathrm{e}(\bmod q)$
- Small $|e|_{\max }<\beta=O(\sqrt{ })$
- q,m=poly(n)

- Injective version of Ajtai's SIS function
- [Regev 2005] assuming quantum hard lattice problems
- $\mathrm{LWE}_{\mathrm{A}}$ is one-way: Hard to recover (s, e) from [A,b]
- $b=\operatorname{LWE}_{A}(s, e)$ is pseudorandom (\approx uniform over $Z_{q}[h]$)
- [Peikert 2009], [BLPRS13] hard under classical reductions

Encrypting with LWE

- Idea: Use $b=\operatorname{LWE}_{A}(s, e)$ as a one-time pad
- Private key encryption scheme:
- secret key: $s \in Z_{q}{ }^{n}$,
- message: $m \in Z$
- encryption randomness: [A,e]
- $\operatorname{Enc}_{5}(\mathrm{~m} ;[\mathrm{A}, \mathrm{e}])=[\mathrm{A}, \mathrm{b}+\mathrm{m}]$
- [BFKL93],[GRS08]

- Learning Parity with Noise (LPN): $q=2$
- If LWE $_{A}$ is one-way, then $b=A s+e$ is pseudo-random
- Regev LWE: $q \rightarrow \operatorname{poly}(n)$

Decryption

- $E n c_{s}(m ;[A, e])=[A, b+m]$ where $b=A s+e$
- Decryption:
$-\operatorname{Dec}_{s}([A, b+m])=(b+m)-A s=m+e \bmod q$

- Low order bits of m are corrupted by e

(Fully) Homomorphic Encryption

- Encryption: used to protect data at rest or in transit

- Fully Homomorphic Encryption: supports arbitrary computations on encrypted data

FHE Timeline

- Concept originally proposed by
[Rivest, Adleman, Dertouzos 1978]
- [Gentry 2009]
- First candidate solution
- Bootstrapping technique
- Much subsequent work (2010-2020 ...)
- Basing security on standard (lattice) assumptions
[BV11,B12,AP13,GSW13,BV14,...]
- Efficiency improvements
[GHS12,BGH13,AP13/14,DM15,CP16,CGGI16/17,CKKS17,BDF18,MS18,...]
- Implementations:

HElib, SEAL, PALISADE, FHEW, TFHE, HEAAN, ^০入, NFLlib, ...

$$
\begin{aligned}
& \text { Homomorphic Addition } \\
& \operatorname{Enc}_{5}\left(m_{1}\right)+\quad \text { Enc }_{5}\left(m_{2}\right) \\
= & {\left[A_{1}, A_{1} s+e_{1}+m_{1}\right]+\left[A_{2}, A_{2} s+e_{2}+m_{2}\right] } \\
= & {\left[\left(A_{1}+A_{2}\right),\left(A_{1}+A_{2}\right) s+\left(e_{1}+e_{2}\right)+\left(m_{1}+m_{2}\right)\right] }
\end{aligned}
$$

$E n c_{s}(m ; \beta)$: encryption of m with error $|e|<\beta$

- $\operatorname{Enc}_{s}\left(m_{1} ; \beta_{1}\right)+\operatorname{Enc}_{s}\left(m_{2} ; \beta_{2}\right) \subset \operatorname{Enc}_{s}\left(m_{1}+m_{2} ; \beta_{1}+\beta_{2}\right)$ $c^{*} \operatorname{Enc}_{s}\left(m_{1} ; \beta_{1}\right) \subset \operatorname{Enc}_{s}\left(c^{*} m_{1} ; c^{*} \beta_{1}\right)$

Can take any linear comination of ciphertexts with small coefficients

Multiplication by any constant

- Enc'[m] $=\left(E n c[m], E n c[2 m], E n c[4 m], \ldots, E n c\left[2^{\log (9)} m\right]\right)$
- Multiplication by $c \in Z_{q}$:
- Write $\mathrm{c}=\Sigma_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} 2^{i}$, where $\mathrm{c}_{\mathrm{i}} \in\{0,1\}$
- Compute $\Sigma_{i} c_{i} \operatorname{Enc}\left[2^{i} \mathrm{~m}\right]=\operatorname{Enc}\left[\Sigma_{i} c_{i} 2^{\prime} m\right]=\operatorname{Enc}[c m]$
- c^{*} Enc'[m] = Enc[cm]
- We can also compute Enc'[cm]:

$$
\begin{aligned}
& \left.c^{*} \text { Enc'[m]=(cEnc'[m], (2c)Enc'[m], .., (2 }{ }^{\text {log } 9} c\right) \text { Enc' }[m] \text {) } \\
& =\left(E n c[c m], \operatorname{Enc}[(2 c) m], . ., \operatorname{Enc}\left[\left(2^{\log ^{90}} \mathrm{c}\right) m\right]\right) \\
& \text { = Enc'[cm] }
\end{aligned}
$$

Public Key Encryption

- Public Key:

$$
\left[\mathrm{A}_{1}, \mathrm{~b}_{1}\right]=\operatorname{Enc}_{s}(0), \ldots,\left[\mathrm{A}_{n}, \mathrm{~b}_{n}\right]=\operatorname{Enc}_{s}(0)
$$

- $\operatorname{Encrypt}(m):\left(\Sigma_{i} r_{i} *\left[A_{i}, b_{i}\right]\right)+(0, m)$
$-E n c_{s}(0)+\ldots+\operatorname{Enc}_{s}(0)+\operatorname{Enc}_{s}(\mathrm{~m} ; 0)=\mathrm{Enc}_{\mathrm{s}}(\mathrm{m})$
- Decrypt normally using secret key
- [Regev05] LWE Public Key Encryption
- [Rothblum11]: any linear homomorphic encryption implies public key encryption

Homomorphic Multiplication?

- Is it possible to multiply two ciphertexts?
- $\operatorname{Enc}_{s}\left(m_{1} ; \beta_{1}\right) * \operatorname{Enc}_{5}\left(m_{2} ; \beta_{2}\right) \subset \operatorname{Enc}_{s}\left(m_{1} * m_{2} ; B\left(\beta_{1}, \beta_{2}\right)\right)$
- Any computation can be expressed in terms of addition and multiplication
- 0: False, 1: True
- 1-x $=\operatorname{Not}(x)$
$-x^{*} y=x \wedge y$
$-x+y-x^{*} y=x v y$

How to multiply two ciphertexts

- Linearity allows to multiply ciphertexts!
- Several multiplication methods:

1) Encryption Nesting [2008 ...]
2) Ciphertext Tensoring [2011 ...]
3) Homomorphic Decryption [2013 ...]
4) Gate Bootstrapping [2015 ...]

- Notes:
- Main difference between FHE schemes
- Only allows a bounded number of multiplication
- Basic Multiplication + Bootstrapping = FHE
(1) Homomorphic Multiplication by

Encryption Nesting

Multiplication by Encryption Nesting

- $\mathrm{C}_{0}=\mathrm{Enc}_{\mathrm{s} 0}\left(\mathrm{~m}_{0}\right), \mathrm{C}_{1}=\mathrm{Enc}_{\mathrm{s}_{1}}\left(\mathrm{~m}_{1}\right)$
- Multiply C_{0} homomorphically by C_{1}
- $\mathrm{Enc}_{50}\left(\mathrm{~m}_{0}\right) * \mathrm{C}_{1}=\mathrm{Enc}_{50}\left(\mathrm{~m}_{0} * \mathrm{C}_{1}\right)$
- But $m_{0}{ }^{*} C_{1}=m_{0} * \operatorname{Enc}_{s_{1}}\left(m_{1}\right)=E n c_{s_{1}}\left(m_{0}{ }^{*} m_{1}\right)$
- So, end result is $E n c_{50}\left(E n c_{s 1}\left(m_{0} * m_{1}\right)\right)$
- Decrypt by applying Dec_{50} and then $\mathrm{Dec}_{\mathrm{S} 1}$
- (Enc $\mathrm{s}_{\mathrm{s} 0}$. Enc sin_{1}) is still linearly homomorphic
- Nested encryptions still support homomorphic addition
- Extends to more multiplications $\left(E n c_{s 0}\left(E n c_{s 1}\left(E n c_{52}\left(m_{0}{ }^{*} m_{1} * m_{2}\right)\right)\right)\right.$), etc.

Multiplication by Encryption Nesting

- Omitted several important details:
- Can only multiply by "small" constant C_{1}
- Can only left-multply by constants
- Ciphertexts get bigger, requiring |SO|>|S1|
- [Aguilar Melchor, Gaborit, Herranz, 2010]
- Can only multiply ciphertexts in sequence
- Limited (sublinear) number of multiplications
- Not enough to support bootstrapping

(2) Multiplication by

Ciphertext Tensoring

Trivial (Symbolic) Multiplication

- Symbolic homomorphic product
- Enc(mo)*Enc(mis) = ("*", Enc(mo), Enc(m1))
- Decryption("*", $\mathrm{Co}_{0}, \mathrm{C}_{1}$)
- Decrypt Co \rightarrow mo
- Decrypt $\mathrm{C}_{1} \rightarrow \mathrm{~m}_{1}$
- Compute m_{0} * m_{1}
- Applies to arbitary operations
- Trivial, uninteresting
- Ciphertext and Decryption grow with computation
- Compactness: decryption of $f(\operatorname{Enc}(m))$ should be sublinear in $|f|$

Trivial (Symbolic) Multiplication

- Symbolic homomorphic product
- $\operatorname{Enc}\left(m_{0}\right) * \operatorname{Enc}\left(m_{1}\right)=\left(" * ", \operatorname{Enc}\left(m_{0}\right), \operatorname{Enc}\left(m_{1}\right)\right)$
- $\mathrm{C}=\left({ }^{* * ",} \mathrm{C}_{0}, \mathrm{C}_{1}\right)$ allows to compute any function of C_{0} and C_{1}
- This seems unnecessary
- all we want to do is to decrypt C
- enough to compute decryption function on C
- what does the decryption function look like?

Decryption is linear

- $\operatorname{Dec}_{s}(A, b)=b-A s=m+e$
- Decryption is linear a linear function of the ciphertext $C=(A, b)$
- Remark:
- Only approx. decryption is linear
- Exact decryption involves non-linear rounding
- $\mathrm{Dec}_{s}\left(\mathrm{C}_{0}\right) * \mathrm{Dec}_{5}\left(\mathrm{C}_{1}\right)$ is bilinear in $\mathrm{C}_{0}, \mathrm{C}_{1}$

Multiplication by Tensoring

- Tensor product of $\mathrm{C}_{0}, \mathrm{C}_{1}$:
- \{Co[i]*C1[j]: i,j=1..n\}
- allows to compute any bilinar function of Co_{0} and C_{1}
- still an additive group, so tensor ciphertexts can be added homomorphically
- Several optimizations are possible:
- No need to compute arbitrary bilinear functions
- Only bilinear functions of the form

$$
\left(C_{0}, C_{1}\right) \rightarrow \operatorname{Dec}\left(C_{0}\right) * \operatorname{Dec}\left(C_{1}\right)
$$

- Can use a low rank subspace of tensor product

Multiplication by Tensoring

- $\mathrm{C}_{0}=\mathrm{Enc}_{\mathrm{s} 0}\left(\mathrm{~m}_{0}\right), \mathrm{C}_{1}=\mathrm{Enc}_{\mathrm{s} 1}\left(\mathrm{~m}_{1}\right)$
- Product $C=C_{0}{ }^{*} \mathrm{C}_{1}=\mathrm{C}_{0} \times \mathrm{C}_{1}$ (tensor product)
- [Brakerski, Vaikuntanathan 2011]
- C is larger than $\mathrm{C}_{0}, \mathrm{C}_{1}$
- Only limited number of multiplications
- Also introduces a "key switching" technique that allows to reduce the size of ciphertext
- Support "bootstrapping", leading to a FHE

Tensoring and Key Switching

- Decryption: $\operatorname{Dec}_{s}(A, b)=b-A s \approx m$
- Linear in the secret key $\mathrm{s}^{\prime}=(-\mathrm{s}, 1)$
- $\operatorname{Dec}_{s^{\prime}}(\mathrm{A}, \mathrm{b})=[\mathrm{A}, \mathrm{b}] \mathrm{s}^{\prime} \approx \mathrm{m}$
- Given two ciphertexts C1 Cz:
- $\left\langle\mathrm{C}_{1}, \mathrm{~s}^{\prime}\right\rangle \approx \mathrm{m}_{1}$
- $\left\langle\mathrm{C}_{2}, \mathrm{~s}^{\prime}\right\rangle \approx \mathrm{m}_{2}$
$-\left\langle\mathrm{C}_{1} \times \mathrm{C}_{2}, \mathrm{~s}^{\prime} \times \mathrm{s}^{\prime}\right\rangle=\left\langle\mathrm{C}_{1}, \mathrm{~S}^{\prime}\right\rangle\left\langle\mathrm{C}_{2}, \mathrm{~s}^{\prime}\right\rangle \approx \mathrm{m}_{1} \mathrm{~m}_{2}$
- $c_{1} \times c_{2}$ is an encryption of $m_{1} m_{2}$ w.r.t. $s^{\prime} \times s^{\prime}$

Key Switching

- Key Switching: $c=\operatorname{Enc}_{s}(m) \rightarrow c^{\prime}=\operatorname{Enct}_{\mathrm{t}}(\mathrm{m})$
- Linear decryption: $\operatorname{Dec}_{s}(c)=<c, s>\approx m$
- Linear Homomorphism:
$\left.-<c, \operatorname{Enc}_{t}(s)\right\rangle=\operatorname{Enc}_{t}(\langle\mathrm{c}, \mathrm{s}\rangle) \approx \operatorname{Enct}_{\mathrm{t}}(\mathrm{m})$
- Enct (s) allows to $s w i t c h$ key: Encs $(m) \rightarrow E n c t_{(m)}$
- Multiplication by tensoring:
$-\mathrm{t}=\mathrm{s}$ (requires circular security assumption)
- < $\left.\mathrm{C}_{1} \times \mathrm{C}_{2}, \mathrm{~S} \times \mathrm{s}\right\rangle \approx \mathrm{m}_{1} \mathrm{~m}_{2}$
$\left.-<\mathrm{C}_{1} \times \mathrm{C}_{2}, \mathrm{Enc}_{\mathrm{s}}(\mathrm{s} \times \mathrm{s})\right\rangle=\operatorname{Enc}_{\mathrm{s}}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)$

(3) Multiplication by

Homomorphic Decryption

Decryption is linear

- $\operatorname{Dec}_{s}(A, b)=b-A s=m+e$
- Linear in the ciphertext (A,b)
- Linear in the secret key $\mathrm{s}^{\prime}=(-\mathrm{s}, 1)$
- $\operatorname{Dec}_{s^{\prime}}(\mathrm{A}, \mathrm{b})=[\mathrm{A}, \mathrm{b}] \mathrm{s}^{\prime}=\mathrm{m}+\mathrm{e}$
- $\operatorname{Dec}_{c s^{\prime}}(A, b)=[A, b]\left(c s^{\prime}\right)=c m+c e$
- Remark:
- Only approx. decryption is linear
- Exact decryption involves non-linear rounding

Multiplication via Homomorphic Decryption

- Idea:
- Encryption Enc(m) = (A,As+e+m) is linearly homomorphic
- Decryption $\operatorname{Dec}(A, b)=b-A s=m+e$ is linear in $s^{\prime}=(-s, 1)$
- We can decrypt homomorphically using an encryption of s'
- Details
- Given: $\operatorname{Enc}(m)=(\mathrm{a}, \mathrm{b})$ and $\operatorname{Enc}\left(\mathrm{s}^{\prime}\right)=(\operatorname{Enc}(-\mathrm{s}), \mathrm{Enc}(1))$
- Compute Enc(m)*Enc(s') = a*Enc(-s)+b*Enc(1)=Enc(m)
- More interesting:
- Given Enc(m) and Enc(cs')
- Compute Enc(m)*Enc(cs') $=\operatorname{Enc}(c m)$

Homomorphic

"decrypt and multiply"

- $E n c^{\prime \prime}(c)=E n c^{\prime}\left(c^{\prime}\right)=E n c^{\prime}\left(" E(m) \rightarrow c^{*} m^{\prime}\right)$
- Enc' ${ }^{\prime \prime}(c)=\left\{\operatorname{Enc}\left(\alpha_{i} c\right)\right\}_{i}$ for some $\alpha_{i}(s)$
- Homomorphic Properties:

$$
\begin{aligned}
& \text { - Enc'" }\left(m_{1}\right)+\operatorname{Enc}^{\prime \prime}\left(m_{2}\right)=\operatorname{Enc}^{\prime \prime}\left(m_{1}+m_{2}\right) \\
& \text { - Enc'" }\left(m_{1}\right) * \text { Enc' }^{\prime \prime}\left(m_{2}\right) \\
& =\left\{\operatorname{Enc}\left(\alpha_{i} m_{1}\right) * E n c^{\prime \prime}\left(m_{2}\right)\right\}_{i} \\
& =\left\{\operatorname{Enc}\left(\alpha_{i} m_{1} * m_{2}\right)\right\} \\
& =\operatorname{Enc}^{\prime \prime}\left(m_{1} * m_{2}\right)
\end{aligned}
$$

Relation to GSW encryption

- [Gentry,Sahai,Waters'13]
- FHE based on "approximate eigenvectors" intuition
$-\mathrm{C}_{1}=\operatorname{Enc}_{\mathrm{s}}\left(\mathrm{m}_{1}\right), \quad \mathrm{C}_{2}=\operatorname{Enc}_{\mathrm{s}}\left(\mathrm{m}_{2}\right)$
$-\mathrm{C}_{1} * \mathrm{~s} \approx \mathrm{~m}_{1} * \mathrm{~s}, \quad \mathrm{C}_{2} * \mathrm{~s} \approx \mathrm{~m}_{2} * \mathrm{~s}$
$-\left(C_{1} * C_{2}\right) * s \approx C_{1} *\left(C_{2} * s\right)$

$$
\approx \mathrm{C}_{1} *\left(\mathrm{~m}_{2} * \mathrm{~s}\right) \approx \mathrm{m}_{2} *\left(\mathrm{C}_{1} * \mathrm{~s}\right) \approx\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right) * \mathrm{~s}
$$

$-\mathrm{C}_{1} * \mathrm{C}_{2} \approx \mathrm{Enc}_{\mathrm{s}}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)$

- GSW vs Enc' ${ }^{\prime}(m)$
- conceptually different
- technically equivalent:
perform essentially the same operations

(4) Homomorphic Multiplication by

Gate Bootstrapping

Bootstrapping and FHE

- Encryption scheme supporting
$-\operatorname{Enc}\left(m_{0}\right)+\operatorname{Enc}\left(m_{1}\right)=\operatorname{Enc}\left(m_{0}+m_{1}\right)$
$-\operatorname{Enc}\left(m_{0}\right) * \operatorname{Enc}\left(m_{1}\right)=\operatorname{Enc}\left(m_{0} * m_{1}+e\right)$
- Not quite a FHE yet:
- Enc can evaluate any arithmetic circuit
- But noise grows with computation
- Effectively:
- can only evaluate small circuits / branching programs
- Bootstrapping: technique to redude e by homomorphic decryption
- [Gentry 2009] FHE(Dec) \rightarrow FHE(PTIME)

Bootstrapping

- Refresh: Enc(s,m;q/8) \rightarrow Enc(s,m;q/16)
- Consider the function $f_{c}(s)=\operatorname{Dec}(s, c)$
- Compute f_{c} homomorphically on [s]=Enc(s,s ; e)
$-\mathrm{c}=\operatorname{Enc}(\mathrm{s}, \mathrm{m} ; \mathrm{q} / 8), \quad[\mathrm{s}]=\operatorname{Enc}(\mathrm{s}, \mathrm{s} ; \mathrm{e})$
$-\mathrm{f}_{\mathrm{c}}([\mathrm{s}])=\left[\mathrm{f}_{\mathrm{c}}(\mathrm{s})\right]=[\operatorname{Dec}(\mathrm{s}, \mathrm{c})]=[\mathrm{m}]=\operatorname{Enc}(\mathrm{s}, \mathrm{m})$
- $[m]=\operatorname{Enc}\left(s, m ; e^{\prime \prime}\right)$ where e^{\prime} depends only on e and f_{c}.
- Setting e"<q/16:

$$
\begin{aligned}
\operatorname{Enc}\left(m_{1} ; q / 16\right)+\operatorname{Enc}\left(m_{2} ; q / 16\right) & =\operatorname{Enc}\left(m_{1}+m_{2} ; q / 8\right) \\
& \rightarrow \operatorname{Enc}\left(m_{1}+m_{2} ; q / 16\right)
\end{aligned}
$$

- Can perform any number of additions!

FHEW: gate bootstrapping

- Bootstrapping:

$$
\text { Enc(s,m;q/8) } \rightarrow \text { Enc(s,m;q/16) }
$$

- [Ducas, Micciancio, 2015]
- Use arithmetics modulo 4
- Bootstrapping + Compute:

m_{1}	m_{2}	$m_{1}+m_{2}$	sum/2
0	0	0	0
0	1	1	0
1	0	1	0
1	1	2	1

Enc(s,m;q/8) \rightarrow Enc(s,floor(m/2);q/16)

- Enough to compute arbitrary circuits:
$-m_{1}, m_{2} \in\{0,1\} \subset Z_{4}=\{0,1,2,3\}$
$-\operatorname{MUL}\left(m_{1}, m_{2}\right)=$ floor $\left(\left(m_{1}+m_{2}\right) / 2\right)$
- $\operatorname{NOT}(\mathrm{m})=1-\mathrm{m}$
- Cannot do this working directly mod 2
- All unary gates mod 2 (0,1,id,not) are linear!

Many other FHE variants

- Optimizations: [GHS12],[BGV12],[B/FV12] ...
- TFHE,HEAAN [CGGI16,17], [CKKS17]
- Bootstrapping algorithms: [AP13,BV14,AP14,GINX16,...]
- Libraries: HElib, SEAL, PALISADE, LoL, ...
- All share similar ideas, building blocks, techniques
- Complexity of bootstrapping still main efficiency bottleneck

Summary

- Lattice Based cryptography
- Post-quantum security
- Homomorphic addition
- Can also multiply ciphertexts
- FHE: arbitrary computations on encrypted data
- Active research area
- Efficiency
- Circular security:
- can $\mathrm{Enc}_{\mathrm{s}}(\mathrm{sxs})$ be safely revealed?

Additional References

- [BFKL93] Blum,Furst,Kearns,Lipton
- [GRS08] Gilbert,Robshaw,Seurin
- [BV11,14] Brakerski, Vaikuntanathan
- [GHS12] Gentry, Halevi, Smart
- [BGV12] Brakerski,Gentry,Vaikuntanathan

Thank You!

Questions?

- [B/FV12] Brakerski / Fan,Vercauteren
- [BLPRS13] Brakerski,Langlois,Peikert,Regev,Stehle
- [AP13,14] Alperin-Sherif, Peikert
- [GINX16] Gama, Izabachene, Nguyen, Xie
- [CGGI16/17] Chilotti,Gama, Georgieva, Izabachene
- [CKKS17] Cheon,Kim,Kim,Song

