
  

Lattices, Post-Quantum Security, 
and Fully Homomorphic Encryption

Daniele Micciancio
(UC San Diego)

April 2020



  

Encryption

● Secure communication over insecure channel

“Hi”

c=Encrypt(pk,“Hi”)

Decrypt(sk,c)=“Hi”
Alice says “Hi”.

 c = ???
Alice

Bob

Eve

pk
sk

sk

ciphertext



  

Modern Cryptography

● Hard mathematical Problem:
– Factoring: Given pq, find p and q

● Cryptographic Construction:
– Encryption scheme

● Proof of security:
If you can break

encryption
then you can 

factor numbers

the encryption
is secure

If factoring 
is hard 



  

Factoring and 
Quantum (In)Security

● Shor (1994):
– efficient quantum algorithm to factor numbers

● Assumption that factoring is hard does not hold 
in a “post-quantum” world

● Same holds for most other mathematical 
problems currently in use:
– discrete logarithm, elliptic curve, etc.

● Need for new mathematical problems that are 
not solvable by quantum algorithms 



  

 Subset-Sum Problem

● Given n integer numbers
– a₁,…,aₙ

and a target value 
– b

● Goal: 
– Find a subset that adds up to b

Σ {aᵢ | i ∈ S} = b

a1

a7

a6

a4

a10

a5

a8

a9

a3

a2

b=a2+a4+a5+a6+a8

weights



  

Subset-Sum / Knapsack
● Also known as the “Knapsack” problem

– Fill a knapsack of capacity b
– using a selection of items of size a₁,…,aₙ
– items can be used multiple times

image: CC BY-SA 2.5 
wikipedia:Knapsack_problem



  

Try it out!

https://xkcd.com/licence.html



  

Hardness of Subset-Sum
● NP-complete: no efficient algorithm 

unless P=NP (or NP ⊂ BQP)
● One of Karp 21 NP-complete problems

–  [Karp 1972] 

NP-hard problems:
 
   1. Set packing
   2. Vertex Cover
       … 
 18. Knapsack
       … 
 21. Max Cut



  

Lattice/Knapsack Cryptgraphy:
abridged (pre-)history

● Knapsack public key cryptosystem 
– [Merkle, Hellman 1978]

● Cryptanalysis
– [Shamir 1984],[Lagarias,Odlyzko 1985]

● Several variants kept being suggested for almost two 
decades, but invariably broken
– “The Rise and Fall of Knapsack Cryptosystems” [Odlyzko 1990]

● Turning point [Ajtai 1996]
– worst-case/average-case connection
– the “right” way to use knapsack/lattices for cryptography 



  

 Subset-Sum vs 
Lattice Problems

● Subset-sum over vectors aᵢ =    ∈ Zⁿ

● Essentially the same as the knapsack 
problem, just more convenient in 
cryptography applications

b=2a2+a4-3a5+2a6-a8

a₉

a₈
a₇

a₆
a₄

a₅

a₃

a₂

a₁

1
4
..
5

4
1
6
2
3

8
1
7
3
3

12
2
13
5
6

linear combination with 
small coefficients 

b= a2+a4+ a5+ a6+a8



  

Geometry of Lattices

Set of all integer linear combinations of basis 
vectors B = [b1,...,bn] ⊂ Rn

L(B)={Bx: x  Zn} ⊂ span(B)={Bx: x  Rn}

B
b1+3b2

b2

b1



  

Matrix-Vector multiplication

● A ∈ Zq
nxh, x∈Zq

h, b∈Zq
n

● fA(x) = Ax

● fA(x+y) = fA(x)+fA(y)

● Easy to compute and invert

A
…..

x

b=n

h

Linear functions

A,x   A,b     

matrix-vector multiplication

Gaussian elimination



  

● [Ajtai 1996] One-Way Function:
– fA(x) = Ax (mod q)

– A ∈ Zq
nxh, x∈{0,1}{0,1}h,b∈Zq

n

● Short Integer Solution Problem:
– Given [A,b] find a smallsmall x such that Ax=b
– More generally, ||x||<β

A

x

b=n

h

Short Integer Solution (SIS)

A,x   A,b     

f



  

Learning With Errors (LWE)

● LWE function family:
– Key: A ∈ Zq[nxh]

– LWEA (s,e)= As + e (mod q)

– Small |e|max< β = O(√n)
– q,m=poly(n)
– Injective version of Ajtai’s SIS function 

● [Regev 2005] assuming quantum hard lattice problems
– LWEA is one-way: Hard to recover (s,e) from [A,b]

– b=LWEA(s,e) is pseudorandom (≈ uniform over Zq[h] )

– [Peikert 2009], [BLPRS13] hard under classical reductions

A

s

e b=+h

n



  

Encrypting with LWE

● Idea: Use b=LWEA(s,e) as a one-time pad
● Private key encryption scheme:

– secret key: s ∈ Zq
n, 

– message: m ∈ Z
– encryption randomness: [A,e]
– Encs(m; [A,e]) = [A,b+m]

● [BFKL93],[GRS08]
– Learning Parity with Noise (LPN): q=2
– If LWEA is one-way, then b=As+e is pseudo-random

● Regev LWE: q → poly(n)

A

s

e b=+h

n



  

Decryption

● Encs(m;[A,e]) = [A,b+m] where b = As+e

● Decryption:
– Decs([A,b+m]) = (b+m) - As = m+e mod q

– Low order bits of m are corrupted by e

● Fix: scale m, and round: 

0                           q     +e

0            q/4          q/2         3q/4

q/4
q/8



  

(Fully) Homomorphic Encryption 

● Encryption: used to protect data at rest or 
in transit

● Fully Homomorphic Encryption: supports 
arbitrary computations on encrypted data

Enc( m )

Enc( m )

Enc( m )

Enc(  m  )

Enc(  F(m)  )



  

FHE Timeline

● Concept originally proposed by 
[Rivest, Adleman, Dertouzos 1978]

● [Gentry 2009] 
– First candidate solution
– Bootstrapping technique

● Much subsequent work (2010-2020 ...)
– Basing security on standard (lattice) assumptions

[BV11,B12,AP13,GSW13,BV14,...]

– Efficiency improvements
[GHS12,BGH13,AP13/14,DM15,CP16,CGGI16/17,CKKS17,BDF18,MS18,...]

– Implementations: 
HElib, SEAL, PALISADE, FHEW, TFHE, HEAAN, Λoλ, NFLlib, …



  

Homomorphic Addition
           Encs(m₁)      +      Encs(m₂)

= [A1,A1s+e1+m1]  + [A2,A2s+e2+m2]

= [(A1+A2),(A1+A2)s+(e1+e2)+ (m1+m2)]

Encs(m;β): encryption of m with error |e| < β

➢ Encs(m₁;β₁)+Encs(m₂;β₂) ⊂ Encs(m₁+m₂;β₁+β₂)
➢              c*Encs(m₁;β₁) ⊂ Encs(c*m₁;c*β₁)

Can take any linear comination of ciphertexts with small coefficients



  

Multiplication by any constant

● Enc’[m] = (Enc[m],Enc[2m],Enc[4m],…,Enc[2log(q)m])
● Multiplication by c ∈ Zq:

– Write c = Σi ci 2
i, where ci ∈ {0,1}

– Compute Σi ci Enc[2i m] = Enc[Σi ci 2
i m] = Enc[cm]

● c*Enc’[m] = Enc[cm]
● We can also compute Enc’[cm]:

c*Enc’[m]=(cEnc’[m], (2c)Enc’[m], .., (2log qc)Enc’[m])

               = (Enc[cm],  Enc[(2c)m], ..,  Enc[(2log qc)m]) 

               = Enc’[cm] 



  

Public Key Encryption

● Public Key: 
[A1,b1] = Encs(0), …, [An,bn]=Encs(0)

● Encrypt(m): (Σi ri * [Ai,bi]) + (O,m)
– Encs(0)+...+Encs(0)+Encs(m;0) = Encs(m)

● Decrypt normally using secret key
● [Regev05] LWE Public Key Encryption
● [Rothblum11]: any linear homomorphic 

encryption implies public key encryption 



  

Homomorphic Multiplication?

● Is it possible to multiply two ciphertexts?
– Encs(m₁;β₁)*Encs(m₂;β₂)⊂Encs(m₁*m₂;B(β₁,β₂))

● Any computation can be expressed in terms of 
addition and multiplication
– 0: False, 1: True
– 1-x = Not(x)
– x*y = x ∧ y
– x + y – x*y = x ∨ y



  

How to multiply two ciphertexts

● Linearity allows to multiply ciphertexts!
● Several multiplication methods:

1) Encryption Nesting [2008 …]

2) Ciphertext Tensoring [2011 …]

3) Homomorphic Decryption [2013 …]

4) Gate Bootstrapping [2015 …]

● Notes:
– Main difference between FHE schemes
– Only allows a bounded number of multiplication
– Basic Multiplication + Bootstrapping = FHE



  

(1) Homomorphic Multiplication by 

Encryption Nesting



  

Multiplication by 
Encryption Nesting

● C₀ = EncS0(m₀), C₁ = EncS1(m₁)
● Multiply C₀ homomorphically by C₁

– EncS0(m₀)*C₁ = EncS0(m₀*C₁)

– But m₀*C₁ = m₀*EncS1(m₁) = EncS1(m₀*m₁)

– So, end result is EncS0(EncS1(m₀*m₁))

● Decrypt by applying DecS0 and then DecS1

● (EncS0 . EncS1) is still linearly homomorphic
– Nested encryptions still support homomorphic addition

● Extends to more multiplications 
(EncS0(EncS1(EncS2(m₀*m₁*m₂)))), etc. 



  

Multiplication by 
Encryption Nesting

● Omitted several important details:
– Can only multiply by “small” constant C₁
– Can only left-multply by constants
– Ciphertexts get bigger, requiring |S0|>|S1|

● [Aguilar Melchor, Gaborit, Herranz, 2010]

– Can only multiply ciphertexts in sequence
– Limited (sublinear) number of multiplications
– Not enough to support bootstrapping 



  

(2) Multiplication by 

Ciphertext Tensoring



  

Trivial (Symbolic) Multiplication

● Symbolic homomorphic product
– Enc(m₀)*Enc(m₁) = (“*”, Enc(m₀), Enc(m₁))

● Decryption(“*”,C₀,C₁)
– Decrypt C₀ → m₀
– Decrypt C₁ → m₁
– Compute m₀ * m₁

● Applies to arbitary operations
● Trivial, uninteresting

– Ciphertext and Decryption grow with computation
– Compactness: decryption of f(Enc(m)) should be sublinear in |f|



  

Trivial (Symbolic) Multiplication

● Symbolic homomorphic product
– Enc(m₀)*Enc(m₁) = (“*”, Enc(m₀), Enc(m₁))

● C = (“*”,C₀,C₁) allows to compute any 
function of C₀  and C₁

● This seems unnecessary
– all we want to do is to decrypt C
– enough to compute decryption function on C
– what does the decryption function look like?



  

Decryption is linear

● Decs(A,b) =b – As = m+e

● Decryption is linear a linear function of 
the ciphertext C=(A,b)

● Remark:
– Only approx. decryption is linear
– Exact decryption involves non-linear rounding

● Decs(C₀)*Decs(C₁) is bilinear in C₀, C₁



  

Multiplication by Tensoring

● Tensor product of C₀, C₁:
– {C₀[i]*C₁[j] : i,j = 1..n}
– allows to compute any bilinar function of C₀ and C₁
– still an additive group, so tensor ciphertexts can be 

added homomorphically

● Several optimizations are possible:
– No need to compute arbitrary bilinear functions
– Only bilinear functions of the form 

(C₀,C₁) → Dec(C₀) * Dec(C₁)

– Can use a low rank subspace of tensor product



  

Multiplication by Tensoring

● C₀ = EncS0(m₀), C₁ = EncS1(m₁)

● Product C = C₀*C₁ = C₀ x C₁ (tensor product)
● [Brakerski, Vaikuntanathan 2011]

– C is larger than C₀,C₁
– Only limited number of multiplications
– Also introduces a “key switching” technique that 

allows to reduce the size of ciphertext
– Support “bootstrapping”, leading to a FHE



  

Tensoring and Key Switching

● Decryption: Decs(A,b) =b – As ≈ m
– Linear in the secret key s’=(-s,1)
– Decs’(A,b) = [A,b]s’ ≈ m

● Given two ciphertexts c₁ c₂:
– <c₁ , s’> ≈ m₁
– <c₂ , s’> ≈ m₂
– <c₁×c₂,s’×s’> = <c₁,s’><c₂,s’> ≈ m₁ m₂

● c₁×c₂ is an encryption of m₁m₂ w.r.t. s’×s’



  

Key Switching

● Key Switching: c=Encₛ(m) → c’=Encₜ(m)
● Linear decryption: Decₛ(c) = <c,s> ≈ m
● Linear Homomorphism:

– <c,Encₜ(s)> = Encₜ(<c,s>) ≈ Encₜ(m)

● Encₜ(s) allows to switch key: Encₛ(m) → Encₜ(m)
● Multiplication by tensoring:

– t = s (requires circular security assumption)
– <c₁×c₂,s×s> ≈ m₁m₂
– <c₁×c₂,Encₛ(s×s)> = Encₛ(m₁m₂)



  

(3) Multiplication by 

Homomorphic Decryption



  

Decryption is linear

● Decs(A,b) =b – As = m+e

● Linear in the ciphertext (A,b)
● Linear in the secret key s’=(-s,1)

– Decs’(A,b) = [A,b]s’=m+e

– Deccs’(A,b) = [A,b](cs’)=cm+ce

● Remark:
– Only approx. decryption is linear
– Exact decryption involves non-linear rounding



  

Multiplication via
Homomorphic Decryption

● Idea:
– Encryption Enc(m) = (A,As+e+m) is linearly homomorphic
– Decryption Dec(A,b) = b – As = m+e is linear in s’=(-s,1)
– We can decrypt homomorphically using an encryption of s’ 

● Details
– Given: Enc(m)=(a,b) and Enc(s’)=(Enc(-s),Enc(1))
– Compute Enc(m)*Enc(s’) = a*Enc(-s)+b*Enc(1)=Enc(m)

● More interesting: 
– Given Enc(m) and Enc(cs’)
– Compute Enc(m)*Enc(cs’) = Enc(cm)



  

Homomorphic 
“decrypt and multiply”

● Enc’’(c) = Enc’(cs’) = Enc’(“E(m)→c*m”) 
● Enc’’(c) = {Enc(αic)}i for some αi(s)

● Homomorphic Properties:
– Enc’’(m1) + Enc’’(m2) = Enc’’(m1+m2)

– Enc’’(m1)*Enc’’(m2) 

={Enc(αim1)*Enc’’(m2)}i

={Enc(αim1*m2)}

= Enc’’(m1*m2)



  

Relation to GSW encryption
● [Gentry,Sahai,Waters’13]

– FHE based on “approximate eigenvectors” intuition 

– C₁ = Encₛ(m₁),     C₂ = Encₛ(m₂)
– C₁ * s ≈ m₁ * s,    C₂ * s ≈ m₂ * s    
– (C₁ * C₂) * s ≈ C₁ * (C₂ * s) 

                   ≈ C₁ *  (m₂*s) ≈ m₂ * (C₁*s) ≈ (m₁m₂)*s

– C₁ * C₂ ≈ Encₛ(m₁m₂)

● GSW vs Enc’’(m)
– conceptually different
– technically equivalent: 

perform essentially the same operations



  

(4) Homomorphic Multiplication by 

Gate Bootstrapping



  

Bootstrapping and FHE

● Encryption scheme supporting
– Enc(m0)+Enc(m1) = Enc(m0+m1)

– Enc(m0)*Enc(m1) = Enc(m0*m1+e)

● Not quite a FHE yet:
– Enc can evaluate any arithmetic circuit
– But noise grows with computation

● Effectively:
– can only evaluate small circuits / branching programs

● Bootstrapping: technique to redude e by homomorphic 
decryption
– [Gentry 2009] FHE(Dec) → FHE(PTIME)



  

Bootstrapping

● Refresh: Enc(s,m;q/8) → Enc(s,m;q/16)
● Consider the function fc(s)=Dec(s,c)

● Compute fc homomorphically on [s]=Enc(s,s ; e)
– c = Enc(s,m;q/8),  [s] = Enc(s,s ; e)
– fc([s])= [fc(s)] = [Dec(s,c)] = [m] =Enc(s,m)

● [m]=Enc(s,m;e’) where e’ depends only on e and fc.
● Setting e’<q/16:

Enc(m₁;q/16) + Enc(m₂;q/16) = Enc(m₁+m₂;q/8)                           
                                               → Enc(m₁+m₂;q/16)

● Can perform any number of  additions!



  

FHEW: gate bootstrapping

● Bootstrapping:
Enc(s,m;q/8) → Enc(s,m;q/16)

● [Ducas, Micciancio, 2015]
– Use arithmetics modulo 4
– Bootstrapping + Compute:

Enc(s,m;q/8) → Enc(s,floor(m/2);q/16)

● Enough to compute arbitrary circuits:
– m₁, m₂ ∈ {0,1} ⊂ Z₄ = {0,1,2,3}
– MUL(m₁,m₂) = floor((m₁+m₂)/2)
– NOT(m) = 1-m

● Cannot do this working directly mod 2
– All unary gates mod 2 (0,1,id,not) are linear!

m₁ m₂ m₁+m₂ sum/2

0 0 0 0

0 1 1 0

1 0 1 0

1 1 2 1



  

Many other FHE variants

● Optimizations: [GHS12],[BGV12],[B/FV12] ...
● TFHE,HEAAN [CGGI16,17], [CKKS17]
● Bootstrapping algorithms: 

[AP13,BV14,AP14,GINX16,...]
● Libraries: HElib, SEAL, PALISADE, LoL, ...
● All share similar ideas, building blocks, techniques
● Complexity of bootstrapping still main efficiency 

bottleneck



  

Summary

● Lattice Based cryptography
– Post-quantum security
– Homomorphic addition

● Can also multiply ciphertexts
– FHE: arbitrary computations on encrypted data

● Active research area
– Efficiency
– Circular security: 

● can Encs(sxs) be safely revealed?



  

Additional References

● [BFKL93] Blum,Furst,Kearns,Lipton

● [GRS08] Gilbert,Robshaw,Seurin

● [BV11,14] Brakerski, Vaikuntanathan

● [GHS12] Gentry, Halevi, Smart

● [BGV12] Brakerski,Gentry,Vaikuntanathan

● [B/FV12] Brakerski / Fan,Vercauteren

● [BLPRS13] Brakerski,Langlois,Peikert,Regev,Stehle

● [AP13,14] Alperin-Sherif, Peikert

● [GINX16] Gama, Izabachene, Nguyen, Xie

● [CGGI16/17] Chilotti,Gama, Georgieva, Izabachene

● [CKKS17] Cheon,Kim,Kim,Song

Thank You!

Questions?
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