Drinfeld Modules vs Isogeny-based Crypto

Simons Institute - Feb 24, 2020

(joint work with Anand K. Naranayan)

Isog-based crypto

- Focuses about maps (isogenies)
 between curves
- @ No emphasis on points
- @ Paths in the isogeny graph

Drinfeld Modules (of rank 2)

- @ « Analogues » of EC
- Many similarities
- @ Exception: no natural « points »

 $K\langle \tau \rangle$ Ring of skewed polynomials Ells of $K\langle \tau \rangle$ give endomorphisms

$K = \mathbb{F}_{q^n}$ defined as $\mathbb{F}_q[x]/f(x)$

 $au^{2n} - \phi(t_{\phi}(x))\tau^n + \epsilon_{\phi}\phi(f) = 0$ $t_{\phi}(x)$ is called the Trace of ϕ/K ϕ/K supersingular is $t_{\phi}(x) = 0$

Drinfeld Modules Isogeny

 $\iota \in K\langle \tau \rangle$ isogeny $\phi/K \rightarrow \psi/K$

 $iff \quad \iota \circ \phi = \psi \circ \iota$

We just need to check on x

Example

Field: $K = \mathbb{F}_{p^p} = \mathbb{F}_p[x]/(x^p - x + 1) = \mathbb{F}_p[\omega]$ Supersing Module: ϕ/K with $\phi(x) = x + \tau^2$ $\tau^{2n} + \epsilon_{\phi}\phi(f) = 0$ In fact $\phi(f) = \tau^{2n}$

Thus $\prod_{\alpha \in \mathbb{F}_p} \phi(x - \alpha) = \tau^{2n} - 1$

Example Low-Degree Isogenies from Torsion $\phi_{x+\alpha} = \phi(x+\alpha) = x + \alpha + \tau^2$ $\phi_{x+\alpha}(Y) = 0 \iff Y^{p^2} + (\omega + \alpha)Y = 0$

V-space Each line gives: $Y^p - \theta Y = 0 \text{ with } \theta \in \mathbb{F}_{p^{2p}}$

Isogeny: $\iota = \tau - \theta$

Isogeny: $i = \tau - \theta$ **Dual:** $\hat{i} = \tau - (\omega + \alpha)/\theta$

We have: $\hat{\iota} \circ \iota = \phi(x) + \alpha$ Let $\psi = \iota \circ \hat{\iota} - \alpha$

 $\hat{\imath} \circ \imath \circ \hat{\imath} - \alpha \hat{\imath} = \phi \circ \hat{\imath} = \hat{\imath} \circ \psi$

Thus: Low-Degree isogeny

 $\phi(x) = \omega + g_{\phi}\tau + \tau^2$

 $i^{+} = \tau - \theta^{+} \quad \text{where}$ $Y^{p} - \theta^{+}Y = \gcd(Y^{p^{2}} + g_{\phi}Y^{p} + (\omega + \alpha)Y, Y^{p^{p}} - Y)$ $i^{-} = \tau - \theta^{-} \quad \text{where}$ $Y^{p} - \theta^{-}Y = \gcd(Y^{p^{2}} + g_{\phi}Y^{p} + (\omega + \alpha)Y, Y^{p^{p}} + Y)$

 $l^- \qquad l^+ \qquad \qquad l^+$

p=3

Adapting (C)SIDH	
$(p+1)$ isogs $\iota = \tau - \theta$) for each $x + \alpha$
SIDH	CSIDH
All values θ	Only $\theta \in \mathbb{F}_{p^p}$ and dual
Non commutative	Isogs (α, θ) commutes
Need A/B split	
Need Ker images	
Larger graph	Smaller graph

Base of the allack Given ϕ/K and ψ/K $\iota \circ \phi = \psi \circ \iota$ Find $\iota = \sum i_k \tau^k$ Where: k=0

For SIDH: Simple linear algebra!

