Multivariate Public Key Cryptography and its **Cryptanalysis**

Jintai Ding

University of Cincinnati

Jintai.Ding@gmail.com

Quantum Cryptanalysis, Simons Institute, 02.2020

Jintai Ding **Cambridge Community Community Community** Community Communit

 298

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

1 [Introductory – Post-Quantum Cryptography](#page-2-0)

2 [General Construction of MPKC signature scheme](#page-5-0)

- 3 [Oil Vinegar Signature Scheme](#page-11-0)
- **[Cryptanalysis Tools](#page-19-0)**
- 5 [Quantum attack and HHL](#page-29-0)

 298

化重新分量

- Quantum computer: using quantum mechanics principles to perform computations.
- **Peter Shor's Algorithm to defeat RSA and ECC.**
- Post-quantum cryptography, new cryptosystems that can resist quantum attacks.

 Ω

4 何 ト 4 ヨ ト 4 ヨ ト

NIST Call for Post-Quantum Cryptography Standardization

- NIST call for proposals of new, post-quantum cryptosystems (Dec 2016)
- Three criteria: Security, Cost, Algorithm and Implementation **Characteristics**
- Nine signature schemes left in Round 2

Among them, 4 of them are multivariate signatures.

Short signatures (Rainbow: 48 bytes), fastest signing and verifying, relatively large public key size (tens of Kbs) (except MQDSS).

B. Ω

4 0 8 4 6 8 4 9 8 4 9 8 1

Mathematical scheme for verifying the authenticity of digital messages or documents.

- Key generation: private key, public key.
- Signing: given a message and a private key, produces a signature.
- Verifying: given the message, public key and signature, either accepts or rejects the message's claim to authenticity.

 Ω

4 何 ト 4 ヨ ト 4 ヨ ト

- • **Public key**: $\mathcal{P}(x_1, \dots, x_n) = (p_1(x_1, \dots, x_n), \dots, p_m(x_1, \dots, x_n)).$ Here *pⁱ* are multivariate polynomials over a finite field.
- **Private key** A way to compute \mathcal{P}^{-1} .
- **Signing a hash of a document:** $(x_1, \dots, x_n) \in \mathcal{P}^{-1}(y_1, \dots, y_m).$
- **Verifying:**

$$
(y_1,\cdots,y_m)\stackrel{?}{=}\mathcal{P}(x_1,\cdots,x_n)
$$

 Ω

 $-1 - 1 - 1 = 1$

• Direct attack is to solve the set of equations:

$$
G(M) = G(x_1, ..., x_n) = (y'_1, ..., y'_m).
$$

- Solving a set of n randomly chosen equations (nonlinear) with n variables is NP-complete, though this does not necessarily ensure the security of the systems.

A quick historic overview

Single variable quadratic equation – Babylonian around 1800 to 1600 BC

• Cubic and quartic equation – around 1500

Tartaglia **MIII KSOL** Cardano

Multivariate system– 1964-1965 Buchberger : Gröobner Basis Hironaka: Standard basis

The hardness of the problem

• Single variable case – Galois's work.

Newton method – continuous system Berlekamp's algorithm – finite field and low degree

Multivariate case: NP-complete, the generic systems. Numerical solvers – continuous systems **Finite field case**

Quadratic Constructions

1) Efficiency considerations lead to mainly quadratic constructions.

$$
G_l(x_1,..x_n)=\sum_{i,j}\alpha_{lij}x_ix_j+\sum_i\beta_{li}x_i+\gamma_l.
$$

2) Mathematical structure consideration: Any set of high degree polynomial equations can be reduced to a set of quadratic equations.

$$
x_1x_2x_3=5,
$$

is equivalent to

$$
x_1x_2 - y = 0
$$

$$
yx_3 = 5.
$$

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B} \rightarrow \mathcal{A} \supseteq \mathcal{B}$

The view from the history of Mathematics(Diffie in Paris)

- RSA Number Theory the 18th century mathematics
- ECC Theory of Elliptic Curves the 19th century mathematics
- \bullet Multivariate Public key cryptosystem Algebraic Geometry the 20th century mathematics Algebraic Geometry – Theory of Polynomial Rings

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

- • Introduced by J. Patarin, 1997
- **•** Inspired by linearization attack to Matsumoto-Imai cryptosystem
- $\mathbf{P} = \mathcal{F} \circ \mathcal{T}$.
	- ${\mathcal F}$: nonlinear, easy to compute ${\mathcal F}^{-1}.$
	- T : invertible linear, to hide the structure of T .

Jintai Ding **Calculation Cryptanalysis, Simons Institute**, 02.2020 12 / 402/2020 12 / 402/2020 12 / 402/2020 12 / 402/2020 12 / 402/2020 12 / 402/2020 12 / 402/2020 12 / 402/2020 12 / 402/2020 12 / 402/2020 12 / 402/2020 1

 $\mathcal{F} = (f_1(x_1, \dots, x_0, x'_1, \dots, x'_v), \dots, f_0(x_1, \dots, x_0, x'_1, \dots, x'_v)).$ $f_k = \sum \pmb{a}_{i,j,k} \pmb{x}_i \pmb{x}_j' + \sum \pmb{b}_{i,j,k} \pmb{x}_i' \pmb{x}_j' + \sum \pmb{c}_{i,k} \pmb{x}_i + \sum \pmb{d}_{i,k} \pmb{x}_i' + \pmb{e}_k$

 \bullet Oil variables: x_1, \cdots, x_n

Vinegar variables: x'_1, \cdots, x'_v .

• Public Key: $P = F \circ T$. **Private Key: 7.**

 Ω

э.

 $\left\{ \left. \left. \left. \left. \left. \left(\left. \left. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \left. \right. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left.$

- $\mathcal{P}^{-1}=\mathcal{T}^{-1}\circ \mathcal{F}^{-1}$
- Fix values for vinegar variables x'_1, \dots, x'_v .
- $f_k = \sum \pmb{a}_{i,j,k} \pmb{x}_i \pmb{x}_j' + \sum \pmb{b}_{i,j,k} \pmb{x}_i' \pmb{x}_j' + \sum \pmb{c}_{i,k} \pmb{x}_i + \sum \pmb{d}_{i,k} \pmb{x}_i' + \pmb{e}_k$
- \bullet F: Linear system in oil variables x_1, \dots, x_n .

 Ω

œ.

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

Example I

Parameters: $o = v = 2$, $n = 6$, Field is \mathbb{F}_7 . Here are the central map $\mathcal F$ and the change of basis $\mathcal T$ in matrix form:

$$
\mathcal{F}(\mathbf{x}) = \begin{cases} f_1(\mathbf{x}) = x_1x_3 + 4x_2x_3 + 3x_2x_4 + 3x_2 + 5x_3x_4 + 6x_3 + 3x_4 + 1, \\ f_2(\mathbf{x}) = 5x_1x_3 + 3x_1x_4 + 6x_2x_3 + 3x_2x_4 + 6x_2 + 2x_3^2 + x_3x_4 \\ + x_3 + x_4^2 + x_4 + 3 \end{cases}
$$

$$
\mathcal{T} = \begin{bmatrix} 5 & 4 & 6 & 2 \\ 1 & 0 & 6 & 2 \\ 4 & 6 & 2 & 0 \\ 0 & 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}
$$

 299

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

And here is $P = \mathcal{F} \circ \mathcal{T}$

$$
P(\mathbf{x}) = \begin{cases} \tilde{f}_1(\mathbf{x}) = x_1^2 + 3x_1x_2 + 6x_1x_3 + 5x_1x_4 + 6x_1 + 6x_2^2 + 6x_2x_4 + 2x_2 \\ + 4x_3^2 + 2x_3x_4 + 6x_4 + 1, \\ \tilde{f}_2(\mathbf{x}) = 2x_1^2 + 3x_1x_2 + 5x_1x_3 + 4x_1x_4 + 3x_1 + 6x_2^2 + 2x_2x_3 \\ + 3x_2x_4 + 4x_2 + x_3x_4 + 5x_4 + 3 \end{cases}
$$

Note that this appears to be a random quadratic system, but it is not!

 299

∍

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

 $(1 - 1)$

 $V = 0$

Defeated by Kipnis and Shamir using invariant subspace (1998).

v >> *o*

Finding a solution is generally easy

 $v = 20.30$

Direct attack does not work – the complexity is the same as if solving a random system!

- Reconcilation attack finding keys is converted into a polynomial solving problem
- **•** Less efficient Signature is at least twice the size of the document

 Ω

4 何 ト 4 ヨ ト 4 ヨ ト

- Rainbow, J. Ding, D. Schmidt (2004) Multilayer version of UOV.
- **Public Key:** $P = S \circ F \circ T$.

Private Key: T, S, F .

Reduces number of variables in the public key smaller key sizes smaller signatures

- **A new MinRank attack** a problem to find linear combinations of a set of matrices to achieve the minimum rank.
- Rainbow is a NIST round 2 candidate.

-4 B +

- A modification of the original unbalanced oilvinegar scheme designed in 2017.
- Coefficients of the public key are from \mathbb{F}_2
- Shorten the size of public key.
- A NIST round 2 candidate but we broke the original submission to NIST with Subfield Differential attack.

 299

AD > 3 B > 3 B

- • Direct attack
- **Reconciliation attack**
- **MinRank Attack**
- Subfield Differential attack All of them are reduced to solving polynomial equations.

Jintai Ding **Cambridge Community Community Community** Community Communit

 Ω

同 ト ィヨ ト

How to solve multivariate systems?

We would like to solve:

$$
F_1=y_1,...,F_m=y_m
$$

• We in general like to look at

$$
F_1 - y_1 = ,..., F_m - y_m = 0
$$

Over the function ring: $k[x_1, ..., x_n]/ < x_1^q - x_1, ..., x_n^q - x_n$, we need to find: $x_i - a_i = 0$.

- The first general method is Groebner basis method in 1960s, but the same idea was discussed by Hironaka earlier. S polynomial from leading terms of the polynomials
- Later the idea of using linear algebra Lazard etc Dense Linear Algebra

 Ω

 $4 - 3 - 4 - 5 - 6$

A different from the point of ideal and linear algebra

The view of algebraic geometry for the case with only one solution: $\mathsf{Ideal} < F_1 - y_1, ..., F_m - y_m > = \{h | h = \sum g_i (F_i - y_i)\} = \mathsf{Ideal} <$ $X_1 - a_1, ..., X_n - a_n >$. Over the function ring: $k[x_1, ..., x_n]/ < x_1^q - x_1, ..., x_n^q - x_n$, we need to find:

$$
x_i-a_i=\sum g_i(F_i-y_i).
$$

The significance of the field equations: $x_i^q = x_i$. *Solutions over the finite field or its algebraic closure?*

 Ω

(何) (ヨ) (ヨ)

A different from the point of ideal and linear algebra

• The computation strategy: look for the desired polynomials through elements in the ideal via linear algebra Matrix with:

a row – a polynomial, a column – a monomial

Gaussian elimination on rows and essentially solve the equation: $MX = b'$, where

 $X = (x_1, x_2, \ldots, x_n, x_1x_2, \ldots,$ (list of all monomials)), M, the polynomial coefficient matrix, *b'*, the constant terms of the plynomials.

 \bullet The complexity – the size of the largest matrix

G.

 Ω

 \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{B} \rightarrow \mathcal{A} \mathcal{B} \rightarrow \mathcal{B}

How to solve multivariate systems?

The simplest and the most direct way – the XL algorithm:

• Rethinking the formula:

$$
x_i-a_i=\sum g_i(\bar{F}_i-y_i).
$$

The degree of the L.F.S. must go down!

- The implication of degree fall certain degeneration of the system: mutant
- The implication of mutant: Mutant XL and its variants.

3 E X 3 E

Mutants

The degree must go down: **mutants** and mutant XL

重

 299

K ロ × K 御 × K 唐 × K 唐 × 1

- The solving degree: the degree at which the maximum matrix size is achieved.
- The mutant degree: the lowest degree at which a mutant appears
- The degeneration degree: the lowest degree where there is non-trivial degeneration of the top level of the polynomial system.
- Are they really different? *SD* ≥ *MD* ≥ *DD* The convention: *for non-degenerate systems, they are essentially the same.* A work of Ding and Schmidt: *SD* − *DD* ≤ 2.

∍

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

- For a regular system: Degree of Regularity
- The name change: Degeneration Degree
- A hard problem:

bounds on the DD – complexity analysis Many works done in the area to lay a solid foundation for the security analysis of MPKCs. Degree of regularity of HFE systems by Ding, Hodges, Kleinjung, Yang etc **Theory and experiments match very well !! Optimal choice of parameters.**

 Ω

 $\left\{ \left| \left| \mathbf{e} \right| \right| \leq \left| \mathbf{e} \right| \leq \left| \mathbf{e} \right| \right\}$

- For XL, the linear system is sparse!
- One can Wiedemann or block Wiedemann method by Yang etc

-4 B Jintai Ding **Cambridge Community Community Community** Community Communit

 299

同下 イヨト

- • Square root speed up
- Relative large key size Large number of quantum bits.

Jintai Ding **Cambridge Community Community Community** Community Communit

 Ω

同 ト ィヨ ト

HHL

Harrow, Hassidim, and Lloyd 2009 Solving a sparse linear system $AX - b$ over real numbers

• Assumptions:

1) Efficient way to compute or access none-zero terms in A and b

2) The matrix A must be Hermitian

3) The complexity depends on the condition number κ which is the ratio of the max and the min of the eigenvalues of A.

The best complexity: O(*d*κpoly(log(*d*κ/ε))), where *d* is the sparseness of A, and ε is the precision.

 Ω

(何) (ヨ) (ヨ)

The idea of Gao etc

• Add modular part back

 $F(X) = 0$ mod 2

becomes $F(X) = 2z$

This idea was already developed by Ding, Schmidt etc in 2012. (https://eprint.iacr.org/2012/094.pdf)

• Then add

 $\prod_{a < i < b} (z - i) = 0$

Very important to ensure the solution is unique otherwise we will have solution from extension field!

• Symmetrization of the Macauley matrix

 $MX = b$ M^T *MX* = *Mb*.

• Then apply HHL

The complexity is polynomial in terms of log of matrix size and conditional number.

If the condition number is polynomial in *n*, we have polynomial algorithm. A + + B + + B + \equiv

 QQ

The degree of regularity is high for MPKC is hight and the range of *z* is the same.

For a random system, we expect the degree of be *n*/8 The range of *z* is in general $[-8/n, 8/n]$.

As long as the conditional number is small, we have a fast quantum algorithm.

 Ω

A + + = + + = +

 $s = 15.18424$

A new way to estimate the conditional number $-$ joint work with Vlad Gheorghiu

• we divide the system (M) into two parts 1) the original equations: small coefficient: $0, 1, -1$ 2) the modular part: large and small coefficients: $\prod_{-n/8\leq i\leq n/8} (z-i) = 0$ has 1, and $((n/8)!)^2 \geq 2^n$

 Ω

AD > 3 B > 3 B

A new way to estimate the conditional number – joint work with Vlad Gheorghiu

- M^TM is (semi)positive definite with large and small entries in the diagonal.
- Min(Eigenvalue of $M^{\mathcal{T}}) \leq$ diagonal entries $\leq n^2/2$ Max(Eigenvalue of $M^{\mathcal{T}}) \geq$ diagonal entries \geq 2 n The conditional number is exponential in general.

 Ω

AD > 3 B > 3 B

- Can we rescale the coefficients to reduce the large entries in *M^T M* Our analysis shows that it is not the case because of the large spread of the the coefficients and re-scaling could cause very serious problems because the system becomes unstable.
- We can apply the same analysis to other attacks by Gao etc.

Thank you!

Questions to Jintai.Ding@gmail.com

Supported by Taft Fund, NIST and NSF

Jintai Ding **Cambridge Community Community Community** Community Communit

 Ω

∍

医单位 医单

AD 15