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The Threat of Quantum Computers

Quantum computer: using quantum mechanics principles to
perform computations.
Peter Shor’s Algorithm to defeat RSA and ECC.
Post-quantum cryptography, new cryptosystems that can resist
quantum attacks.

Jintai Ding Quantum Cryptanalysis, Simons Institute, 02.2020 3 / 40



NIST Call for Post-Quantum Cryptography
Standardization

NIST call for proposals of new, post-quantum cryptosystems (Dec
2016)
Three criteria: Security, Cost, Algorithm and Implementation
Characteristics
Nine signature schemes left in Round 2

Among them, 4 of them are multivariate signatures.

Short signatures (Rainbow: 48 bytes), fastest signing and
verifying, relatively large public key size (tens of Kbs) (except
MQDSS).

Jintai Ding Quantum Cryptanalysis, Simons Institute, 02.2020 4 / 40



Signature Schemes

Mathematical scheme for verifying the authenticity of digital messages
or documents.

Key generation: private key, public key.
Signing: given a message and a private key, produces a signature.
Verifying: given the message, public key and signature, either
accepts or rejects the message’s claim to authenticity.
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Multivariate Signature schemes

Public key: P(x1, · · · , xn) = (p1(x1, · · · , xn), · · · ,pm(x1, · · · , xn)).
Here pi are multivariate polynomials over a finite field.
Private key A way to compute P−1.
Signing a hash of a document:
(x1, · · · , xn) ∈ P−1(y1, · · · , ym).
Verifying:
(y1, · · · , ym)

?
= P(x1, · · · , xn)
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Theoretical Foundation

Direct attack is to solve the set of equations:

G(M) = G(x1, ..., xn) = (y ′1, ..., y
′
m).

- Solving a set of n randomly chosen equations (nonlinear) with n
variables is NP-complete, though this does not necessarily ensure
the security of the systems.

Jintai Ding Quantum Cryptanalysis, Simons Institute, 02.2020 7 / 40



A quick historic overview

Single variable quadratic equation – Babylonian around 1800 to
1600 BC

Cubic and quartic equation – around 1500

Tartaglia Cardano
Multivariate system– 1964-1965
Buchberger : Gröobner Basis
Hironaka: Standard basis
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The hardness of the problem

Single variable case – Galois’s work.

Newton method – continuous system
Berlekamp’s algorithm – finite field and low degree
Multivariate case: NP-complete, the generic systems.
Numerical solvers – continuous systems
Finite field case
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Quadratic Constructions

1) Efficiency considerations lead to mainly quadratic
constructions.

Gl(x1, ..xn) =
∑
i,j

αlijxixj +
∑

i

βlixi + γl .

2) Mathematical structure consideration: Any set of high degree
polynomial equations can be reduced to a set of quadratic
equations.

x1x2x3 = 5,

is equivalent to

x1x2 − y = 0
yx3 = 5.
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The view from the history of Mathematics(Diffie in
Paris)

RSA – Number Theory – the 18th century mathematics
ECC – Theory of Elliptic Curves – the 19th century mathematics
Multivariate Public key cryptosystem – Algebraic Geometry – the
20th century mathematics
Algebraic Geometry – Theory of Polynomial Rings
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Oil Vinegar Signature Scheme

Introduced by J. Patarin, 1997
Inspired by linearization attack to Matsumoto-Imai cryptosystem
P = F ◦ T .
F : nonlinear, easy to compute F−1.
T : invertible linear, to hide the structure of F .
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Oil Vinegar Signature Scheme

F = (f1(x1, · · · , x0, x ′1, · · · , x ′v ), · · · , fo(x1, · · · , x0, x ′1, · · · , x ′v )).

fk =
∑

ai,j,kxix ′j +
∑

bi,j,kx ′i x
′
j +

∑
ci,kxi +

∑
di,kx ′i + ek

Oil variables: x1, · · · , xo

Vinegar variables: x ′1, · · · , x ′v .
Public Key: P = F ◦ T .
Private Key: T .
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Oil Vinegar Signature Scheme

P−1 = T −1 ◦ F−1

Fix values for vinegar variables x ′1, · · · , x ′v .
fk =

∑
ai,j,kxix ′j +

∑
bi,j,kx ′i x

′
j +

∑
ci,kxi +

∑
di,kx ′i + ek

F : Linear system in oil variables x1, · · · , xo.
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Example I

Parameters: o = v = 2, n = 6, Field is F7.
Here are the central map F and the change of basis T in matrix form:

F(x) =


f1(x) = x1x3 + 4x2x3 + 3x2x4 + 3x2 + 5x3x4 + 6x3 + 3x4 + 1,
f2(x) = 5x1x3 + 3x1x4 + 6x2x3 + 3x2x4 + 6x2 + 2x2

3 + x3x4

+x3 + x2
4 + x4 + 3

T =


5 4 6 2
1 0 6 2
4 6 2 0
0 5 4 0




x1
x2
x3
x4
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Example II

And here is P = F ◦ T

P(x) =


f̃1(x) = x2

1 + 3x1x2 + 6x1x3 + 5x1x4 + 6x1 + 6x2
2 + 6x2x4 + 2x2

+4x2
3 + 2x3x4 + 6x4 + 1,

f̃2(x) = 2x2
1 + 3x1x2 + 5x1x3 + 4x1x4 + 3x1 + 6x2

2 + 2x2x3

+3x2x4 + 4x2 + x3x4 + 5x4 + 3

Note that this appears to be a random quadratic system, but it is not!
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Security Analysis and Efficiency

v = o
Defeated by Kipnis and Shamir using invariant subspace (1998).
v >> o
Finding a solution is generally easy
v = 2o,3o
Direct attack does not work – the complexity is the same as if
solving a random system!
Reconcilation attack – finding keys is converted into a polynomial
solving problem
Less efficient
Signature is at least twice the size of the document
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Modifications

Rainbow, J. Ding, D. Schmidt (2004)
Multilayer version of UOV.
Public Key: P = S ◦ F ◦ T .
Private Key: T ,S,F .
Reduces number of variables in the public key
smaller key sizes
smaller signatures
A new MinRank attack
a problem to find linear combinations of a set of matrices to
achieve the minimum rank.
Rainbow is a NIST round 2 candidate.
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LUOV

A modification of the original unbalanced oilvinegar scheme
designed in 2017.
Coefficients of the public key are from F2

Shorten the size of public key.
A NIST round 2 candidate but we broke the original submission to
NIST with Subfield Differential attack.
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Cryptanalysis Tools

Direct attack
Reconciliation attack
MinRank Attack
Subfield Differential attack
All of them are reduced to solving polynomial equations.
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How to solve multivariate systems?

We would like to solve:

F1 = y1, ...,Fm = ym

We in general like to look at

F1 − y1 =, ...,Fm − ym = 0

Over the function ring: k [x1, ..., xn]/ < xq
1 − x1, ..., x

q
n − xn >, we

need to find: xi − ai = 0.
The first general method is Groebner basis method in 1960s, but
the same idea was discussed by Hironaka earlier.
S polynomial from leading terms of the polynomials
Later the idea of using linear algebra
Lazard etc
Dense Linear Algebra
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How to solve multivariate systems?

A different from the point of ideal and linear algebra
The view of algebraic geometry for the case with only one solution:
Ideal < F1 − y1, ...,Fm − ym >= {h|h =

∑
gi(Fi − yi)} = Ideal <

x1 − a1, .., xn − an > .
Over the function ring: k [x1, ..., xn]/ < xq

1 − x1, ..., x
q
n − xn >, we

need to find:

xi − ai =
∑

gi(Fi − yi).

The significance of the field equations: xq
i = xi .

Solutions over the finite field or its algebraic closure?
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How to solve multivariate systems?

A different from the point of ideal and linear algebra
The computation strategy:
look for the desired polynomials through elements in the ideal via
linear algebra
Matrix with:
a row – a polynomial, a column – a monomial
Gaussian elimination on rows and essentially solve the equation:
MX = b′, where
X = (x1, x2, ...xn, x1x2, ...., (list of all monomials)), M, the
polynomial coefficient matrix, b′, the constant terms of the
plynomials.
The complexity – the size of the largest matrix

Jintai Ding Quantum Cryptanalysis, Simons Institute, 02.2020 23 / 40



How to solve multivariate systems?

The simplest and the most direct way – the XL algorithm:
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The degree fall

Rethinking the formula:

xi − ai =
∑

gi(F̄i − yi).

The degree of the L.F.S. must go down!
The implication of degree fall — certain degeneration of the
system:
mutant
The implication of mutant:
Mutant XL and its variants.

Jintai Ding Quantum Cryptanalysis, Simons Institute, 02.2020 25 / 40



Mutants

The degree must go down: mutants and mutant XL
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The key concepts

The solving degree: the degree at which the maximum matrix size
is achieved.
The mutant degree: the lowest degree at which a mutant appears
The degeneration degree: the lowest degree where there is
non-trivial degeneration of the top level of the polynomial system.
Are they really different?
SD ≥ MD ≥ DD
The convention: for non-degenerate systems, they are essentially
the same. A work of Ding and Schmidt: SD − DD ≤ 2.
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Degeneration Degree?

For a regular system:
Degree of Regularity
The name change:
Degeneration Degree
A hard problem:
bounds on the DD – complexity analysis
Many works done in the area to lay a solid foundation for the
security analysis of MPKCs. Degree of regularity of HFE systems
by Ding, Hodges, Kleinjung, Yang etc
Theory and experiments match very well !!
Optimal choice of parameters.
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Sparsity

For XL, the linear system is sparse!
One can Wiedemann or block Wiedemann method by Yang etc
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Quantum attacks – Grover’s Algorithm

Square root speed up
Relative large key size
Large number of quantum bits.
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HHL and Gao groups’s work

HHL
Harrow, Hassidim, and Lloyd 2009
Solving a sparse linear system
AX = b
over real numbers
Assumptions:
1) Efficient way to compute or access none-zero terms in A and b
2) The matrix A must be Hermitian
3) The complexity depends on the condition number κ which is the
ratio of the max and the min of the eigenvalues of A.
The best complexity: O(dκpoly(log(dκ/ε))), where d is the
sparseness of A, and ε is the precision.
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The idea of Gao etc

Add modular part back
F (X ) = 0 mod 2
becomes F (X ) = 2z
This idea was already developed by Ding, Schmidt etc in 2012.
(https://eprint.iacr.org/2012/094.pdf)
Then add∏

a<i<b(z − i) = 0
Very important to ensure the solution is unique otherwise we will
have solution from extension field!
Symmetrization of the Macauley matrix
MX = b
MT MX = Mb.
Then apply HHL
The complexity is polynomial in terms of log of matrix size and
conditional number.
If the condition number is polynomial in n, we have polynomial
algorithm.
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The complexity

The degree of regularity is high for MPKC is hight and the range of
z is the same.
For a random system, we expect the degree of be n/8
The range of z is in general [−8/n,8/n].
As long as the conditional number is small, we have a fast
quantum algorithm.
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A new way to estimate the conditional number – joint
work with Vlad Gheorghiu

we divide the system (M) into two parts
1) the original equations: small coefficient:
0, 1, -1
2) the modular part: large and small coefficients:∏
−n/8≤i≤n/8(z − i) = 0

has 1, and ((n/8)!)2 ≥ 2n
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A new way to estimate the conditional number – joint
work with Vlad Gheorghiu

MT M is (semi)positive definite with large and small entries in the
diagonal.
Min(Eigenvalue of MT ) ≤ diagonal entries ≤ n2/2
Max(Eigenvalue of MT ) ≥ diagonal entries ≥ 2n

The conditional number is exponential in general.
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The complexity

Can we rescale the coefficients to reduce the large entries in MT M
Our analysis shows that it is not the case because of the large
spread of the the coefficients and re-scaling could cause very
serious problems because the system becomes unstable.
We can apply the same analysis to other attacks by Gao etc.
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The end

Thank you!

Questions to Jintai.Ding@gmail.com
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