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Elliptic curves

Definition
An elliptic curve over a field F is
a nonsingular curve E of the form

E:y?>=x3+ax+b,

for fixed constants a, b € F.

The set of projective points on
an elliptic curve forms a group,
with identity co = [0:1:0].




Isogenies

Definition
An isogeny is a morphism ¢ of algebraic varieties between two
elliptic curves, such that ¢ is a group homomorphism.

Concretely:
¢ E— E
¢(X7y) - (¢x(XvY)7¢y(X7Y))
o fl(X7y)
¢X(X7y) - fz(X,y)
_alxy)
¢Y(X7y) - g2(X,}/)

where fi, f», g1, and g are all polynomials. The degree of an
isogeny is its degree as an algebraic map.



Development of isogeny-based cryptography

Hash functions
CGL: Charles, Goren, Lauter (https://ia.cr/2006/021).

Public-key cryptosystems
CRS: Couveignes (http://ia.cr/2006/291), Rostovstev
and Stolbunov (http://ia.cr/2006/145).
SIDH: Supersingular Isogeny Diffie-Hellman — Jao and
De Feo (http://ia.cr/2011/506).

CSIDH: Commutative SIDH — Castryck, Lange, Martindale,
Panny, Renes (http://ia.cr/2018/383).


https://ia.cr/2006/021
http://ia.cr/2006/291
http://ia.cr/2006/145
http://ia.cr/2011/506
http://ia.cr/2018/383

Diagram of isogeny-based public-key cryptosystems

Uses complex multiplication Uses supersingular curves



Constructing isogenies

Every isogeny is a group homomorphism and thus has a kernel
ker¢p ={P € E : ¢(P) = o0}.

Given an elliptic curve E and a finite subgroup K of E, one can
show that there exists a unique (up to isomorphism) separable
isogeny ¢k E — E/K such that ker o = K and deg o = |K].

Vélu's formulas (1971) give an explicit construction of ¢-.



Isogenies of degree 2

» Let E:y? =x3+ax+ b.

» Suppose K = {oo, P}. Then P+ P = o0, so P = (xp,0) with
X,?S +axp+ b=0.

» We have

E/K :y?> =x34 (a—5(3x3 + a))x + (b — Txp(3x3 + a))

B 3x2 +a y(3x3 + a)




Isogenies of degree 3

» Let E:y? =x3+ax+b.

» Suppose K = {00, P, —P}. Then P = (xp, yp) with
3x,‘§ + 6ax,2J — a% + 12bxp = 0 and y,% = x,33 + axp + b.

» We have

E/K :y?=x*4 (a—10(3x3 + a))x +
(b — 28y3 — 14xp(3x3 + a))
23x3 +a 4y?
onn) = (x4 2022, e
X — Xp (x — xp)

_ 8yp 2y(3xp + a))
(x=xp)*  (x—xp)?




Isogenies of degree 2¢ in SIDH

» Evaluating an isogeny of degree d using Vélu's formulas
directly takes O(d) operations, too slow when d is large.

> Instead, we use isogenies of prime power degree, and evaluate
them step by step.

» Suppose K = Z/2¢Z. Then the subgroup tower
0cz/jeZzcz/AzcC---CZ/2°Z

allows us to factor ¢x: E — E/K into the composition of
isogenies

E — E/(2)2Z) — E/(Z/4Z) — --- — E/(Z/2°Z)

» Each individual isogeny has degree 2 and is easy to compute.

» The composition of all the isogenies is ¢k, of degree 2°€.

v

A similar trick works for any prime power £¢ where ¢ is small.



SIDH overview

1. Public parameters: Supersingular elliptic curve E over F .

2. Alice chooses a kernel A C E(F2) of size 2¢ and sends E/A.
3. Bob chooses a kernel B C E(F,2) of size 3" and sends E/B.
4

. The shared secret is

E/(A,B) = (E/A)/¢a(B) = (E/B)/¢B(A).

Diffie-Hellman (DH) SIDH
g g E—" L E/A

L Js |

gy — g E/B—— E/(A,B)



Attacks
Hard problem: Given E and E/A, find A.

Fastest known (passive) attack is a meet-in-the-middle collision
search or claw search on a search space of size deg(¢).

_ En
A
/ Ei \
 Ex
E — B o EJA
\ E22 /
_ Ex
Es . .
E3>

More details: Jaques and Schanck (https://ia.cr/2019/103)


https://ia.cr/2019/103

Complex multiplication action

For an ordinary elliptic curve E/Fp, there is a free and transitive
group action

«: CI(End(E)) x ELL(F,) — ELL(F,)

where
» End(E) is the ring of endomorphisms of E
» CI(End(E)) denotes the ideal class group of End(E)

» ELL(Fp) is the set of isomorphism classes of elliptic curves
over F, with endomorphism ring isomorphic to End(E)

defined by
[a] *E=E/kera=E/{P € E:V ¢ €a, ¢(P)= o0}
= E/ () ker¢.

¢€a



Couveignes-Rostovstev-Stolbunov (CRS)

Public parameters: Ordinary elliptic curve E/F, and complex
multiplication action *: CI(End(E)) x ELL(F,) — ELL(Fp).

1. Alice chooses a group element a € G and sends a * E.
2. Bob chooses a group element b € G and sends b * E.
3. The shared secret is (ab) * E =ax (b E) = b x (ax E).

ELa*E

| |

bxE — (ab) x E

CSIDH uses the same group action, but over a supersingular curve.



From isogenies to hidden subgroups

» The hard problem in CRS and CSIDH is to compute group
action inverses: Given G x X — X and xg,x1 € X, findy € G
such that yvx; = xg.

> Let ¢: Z/2 — Aut(G) be given by ¢(b)(g) = g=1".
» Consider the function f: G x4 Z/2 = X, f(g,b) = gxp.

» Since the group action is free, we have

f(g1,b1) = f(g2, b2) <= b1 =0,bp =1, and g; ‘o =
or by =1,bp =0, and gz_lglzv
or by=byand g1 =&

Hence f hides the subgroup {(0,0),(v,1)} C G x4 Z/2.

> If we solve the hidden subgroup problem for f, then we will
have found ~.



Dihedral hidden subgroup problem

Reference: Kuperberg, arXiv:quant-ph/0302112
» For simplicity, suppose G =Z/N and Dy =Z/N x Z/2.
Suppose f hides the subgroup H = {(0,0),(vy,1)} C Dy.

Form the state

v

v

d) |£(d))
TNU;N‘ ) 1£(d)

Measure the second register and discard the result to obtain

v

z,0)) +[(z+7,1))

valcs VI 0H de(z O)H ﬁ

in the first register, for some random coset (z,0)H. By abuse
of notation, denote this "coset state” by |(z,0)H).

v

We can generate lots of these coset states, for random cosets.
(We have no control over which cosets we obtain.)


https://arxiv.org/abs/quant-ph/0302112

Quantum Fourier transform
» Apply the quantum Fourier transform to the first coordinate:

(2. 0)H) = —=(I(2.0)) + |(z +7.1)))

V2

' mz 0)) + G 1k 1)
keZy
kezzc )@ (10} + 7 11)

» Measure the first register to obtain |k) for some random k.
The second register is

\f(\0>+C 1))

Denote this quantum state by |¢x). We can generate lots of
these states for random k, with no control over k (but we do
know the value of k for each such quantum state).



Overall strategy

We now assume for (further!) simplicity that N is a power of 2.
The strategy is as follows:

» If we could construct
1 key
9) = 5010+ €7 1)

for k of our choice, then (for example) we could find

[imz2) = 25(10) + (-1)7 1)),

> Measure |¢hy2) w.r.t. {%(ym +11)), 25(10) - \1))} to
obtain the least significant bit of ~.

» Reduce to Dy, and use induction to find 7.



Combining states

We can exert limited control over |¢x) by combining states:

|Vpy Yg) = (|o 0) + CB|1,0) + ¢ [0,1) + ¢ |1, 1)

C”‘“uo 0) + CB7L,1) + I 10.1) + ¢+ |1,0)

1
- $(|¢p+q,0> + (W [¥p-q,1))

We now measure the second register.
> If we get |0), then the first register is |1p1q).
> If we get |1), then the first register is (J |¥p—q) = [¢p—q)-

We can't control which of [¢)p+q) we get, but we know which one
we got.



Kuperberg sieve

1. Create A =~ 4V'°e N quantum states 9, for random k € Zy.

2. Group the quantum states into buckets according to their last
V/log N bits (least significant bits). On average each bucket
has A/2m quantum states and there are 2V°&N buckets.

3. Combine pairs of states in each bucket, with the goal of

zeroing out the last v/log N bits.

» On average, combining states succeeds half the time.

> If successful, we destroy two states and create one new state.
> If unsuccessful, we lose two states and create nothing.

» On average, we have 1/4 as many states as we had before.

4. We get A/4 quantum states, whose last v/log N bits are zero.

5. Repeat this bucket sorting process on the next y/log N bits, to
obtain A/4% quantum states, whose last 2,/log N bits are zero.

6. ... Eventually we obtain A/4V'°8N ~ 1 quantum states, with
all but the most significant bit zero.



