Overview of Quantum Algorithmic Tools

Andras Gilyén

Institute for Quantum Information and Matter

Caltech

Quantum Cryptanalysis of Post-Quantum Cryptography
Berkeley, 22nd February 2020

Block-encodings and

Quantum Singular Value Transformation

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U:['f\ :] = A=(0PeU(0y)

1/15

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U:['f\ :] = A=(0PeU(0y)

One can efficiently construct block-encodings of

1/15

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U:['f\ :] = A=(0PeU(0y)

One can efficiently construct block-encodings of

» an efficiently implementable unitary U,

1/15

Block-encoding
A way to represent large matrices on a quantum computer efficiently
A . a b
U:[] = A=(0PeU(0y)

One can efficiently construct block-encodings of

» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,

1/15

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U:[f‘ :] = A=(0PeU(0y)

One can efficiently construct block-encodings of

» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,
> a matrix stored in a clever data-structure in a QRAM,

1/15

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u:[/.‘ :] = A=(0PeU(0y)

One can efficiently construct block-encodings of

» an efficiently implementable unitary U,

> a sparse matrix with efficiently computable elements,

> a matrix stored in a clever data-structure in a QRAM,

> a density operator p given a unitary preparing its purification.

1/15

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u:[/.‘ :] = A=(0PeU(0y)

One can efficiently construct block-encodings of

» an efficiently implementable unitary U,

> a sparse matrix with efficiently computable elements,

> a matrix stored in a clever data-structure in a QRAM,

> a density operator p given a unitary preparing its purification.

» a POVM operator M given we can sample from the rand.var.: Tr(pM),

1/15

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U= [A] = A=(0PeU(0y)
One can efficiently construct block-encodings of

» an efficiently implementable unitary U,

> a sparse matrix with efficiently computable elements,

> a matrix stored in a clever data-structure in a QRAM,

> a density operator p given a unitary preparing its purification.

» a POVM operator M given we can sample from the rand.var.: Tr(pM),

Implementing arithmetic operations on block-encoded matrices

» Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

1/15

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map.

2/15

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

M N

2/15

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U— [A .]: [2isilwiXvil .]: Us — [i P(si)lwixvil .

2/15

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U— [A .]: [2isilwiXvil .]: Us — [i P(si)lwiXvil

where ®(P) € RY is efficiently computable and Us is the following circuit:

2/15

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U— [A .]: [2isilwiXvil .]: U = [i P(si)lwiXvil

where ®(P) € RY is efficiently computable and Uy is the following circuit:

Alternating phase modulation sequence Uy :=

2/15

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U— [A .]: [2isilwiXvil .]: U = [i P(si)lwiXvil

where ®(P) € RY is efficiently computable and Uy is the following circuit:

Alternating phase modulation sequence Uy :=

U U

Simmilar result holds for even polynomials. 2115

Amplitude amplification and estimation
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that
U|6> — ‘/5|0>|wgood> + V1 - p”)lwbad), prepare |wgood>-

3/15

Amplitude amplification and estimation
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that

U|6> — ‘/5|0>|wgood> + V1 - p|1>|¢bad>’ prepare |wgood>-

: \/ﬁw good

© © © Ygood

3/15

Amplitude amplification and estimation
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that
U|6> — ‘/5|0>|wgood> + V1 - p|1>|wbad>, prepare |¢good>-

: \/F_M good

© © © Ygood

Note that (|0X0| ® I)U(I0X0]) = +/pl0, ¥/g00aXOl; We can apply QSVT.

3/15

Amplitude amplification and estimation
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that

UI0) = VPIO)¥gooa) + V1 = PIT)baa),

prepare |l//good>-

Amplification using QSVT (degree ~ log(1/£)/A/p)

— Ideal
— Apx. polynomial

02 04 06 08 1

3/15

Detecting a bias in a quantum sampler

Suppose we are given U such that

UI0) = vP'I0)Wgooa) + V1 = PI1)Wbaa), distinguish p’ < p—6 vs. p+5<p'.

4/15

Detecting a bias in a quantum sampler

Suppose we are given U such that
UI0) = /P’ 10)¥gooa) + VT = P'11)¥baa), distinguish p’ < p -6 vs. p+6<p'.

Can be solved by QSVT (or using amplitude estimation).

4/15

Detecting a bias in a quantum sampler
Suppose we are given U such that

UI0) = P’ 10Wgoos) + V1 — P'I1)lbaa). distinguish p’ < p -6 vs. p+6 < p'.

Can be solved by QSVT (or using amplitude estimation).

Bias detection using QSVT (degree ~ log(1/¢)/6)

1 £
— Ideal
—— Apx. polynomial

|

02 y504 06 08 1

4/15

Speeding up Monte Carlo methods (Montanaro 2015)

Sampling algorithm

Suppose we have a sampling algorithm sampling from a random variable X.

5/15

Speeding up Monte Carlo methods (Montanaro 2015)

Sampling algorithm

Suppose we have a sampling algorithm sampling from a random variable X.

Classical complexity of estimation

We can estimate E[X] with & precision using = f—z samples.

5/15

Speeding up Monte Carlo methods (Montanaro 2015)

Sampling algorithm

Suppose we have a sampling algorithm sampling from a random variable X.

Classical complexity of estimation

We can estimate E[X] with & precision using = 22_2 samples.

Quantum complexity of estimation

We can estimate E[X] with & precision using ~ < samples.

5/15

Speeding up Monte Carlo methods (Montanaro 2015)

Sampling algorithm

Suppose we have a sampling algorithm sampling from a random variable X.

Classical complexity of estimation

We can estimate E[X] with & precision using = f—z samples.

Quantum complexity of estimation

We can estimate E[X] with & precision using ~ < samples.

» Implement sampler as a quantum circuit
» Replace random input seed with Hadamard gates
> Apply amplitude estimation + combine with other tricks

5/15

Quantum walks

Discrete-time random / quantum walks

Discrete-time random walk on a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E —» R,.
Transition probability in one step (stochastic matrix)

Wy

e = PifsiE o v lEE AL =
velU Wviu

6/15

Discrete-time random / quantum walks

Discrete-time random walk on a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E —» R,.
Transition probability in one step (stochastic matrix)

Wy

e = PifsiE o v lEE AL =
velU Wviu

Basic primitives — classical

(Setup) S: sample v with probability o,
(Update) U: given u sample v with probability P,,
(Check) C: given v check if it is marked, i.e., v € M?

6/15

Discrete-time random / quantum walks

Discrete-time random walk on a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E —» R,.
Transition probability in one step (stochastic matrix)

Wy

e = PifsiE o v lEE AL =
velU Wviu

Basic primitives — quantum

(Setup) S:10) - > Vo Iv)

veV

(Update) U: [0)lu) = > y/Pulv)lu)

veV

(Check) C: |0)|v) > |v € M)|v)

6/15

Discrete-time random / quantum walks

Discrete-time random walk on a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E — R,

Transition probability in one step (stochastic matrix)

VVVU

P,, = Pr(step to v| being at u) = S W
vieU YYv'u

Basic primitives — quantum

(Setup) S: [0) > > VIv)

veV

(Update) U: [0)lu) = > VPulv)iu)

veV

(Check) C: |0)|v) = |v € M)|v)

(Walk operator) W: U™ - SWAP - U = [=]

6/15

High-level explanation of quadratic speed-ups

Quantum fast-forwarding (Apers & Sarlette 2018)
We can implement a unitary V such that

((0l® NV(0)® I) = P!
with using only O(tlog(1 /s)) guantum walk steps.

7/15

High-level explanation of quadratic speed-ups

Quantum fast-forwarding (Apers & Sarlette 2018)
We can implement a unitary V such that

((0l® NV(0)® I) = P!
with using only O(tlog(1 /s)) guantum walk steps.

Proof:
Vit

SN

7/15

Szegedy quantum walk based search
Suppose we have some unknown marked vertices M c V.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state }’,.,, +/7,|v) we can

» detect the presence of marked vertices (M # 0) in time O(\/HT) (Szegedy 2004)
» find a marked vertex in time O(%) (Magniez, Nayak, Roland, Santha 2006)
» find a marked vertex in time 5(\/HT) (Ambainis, G, Jeffery, Kokainis 2019)

8/15

Szegedy quantum walk based search
Suppose we have some unknown marked vertices M c V.
Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state }’,.,, +/7,|v) we can

» detect the presence of marked vertices (M # 0) in time O(\/HT) (Szegedy 2004)
» find a marked vertex in time O(ﬁ) (Magniez, Nayak, Roland, Santha 2006)
» find a marked vertex in time 5(\/HT) (Ambainis, G, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution o~ on some vertices we can
> detect marked vertices in square-root commute time O(CU,M) (Belovs 2013)

» find a marked vertex in time 5(\/C(,,M) (Piddock; Apers, G, Jeffery 2019)

8/15

Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}

9/15

Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}
Element Distinctness

> Black box: Computes f on inputs corresponding to elements of [n]

> Question: Are there any i # j € [n] x [n] such that (i) = f(j)?

> Query complexity: O(n?’®) (Ambainis 2003) Q(n*®) (Aaronson & Shi 2001)

9/15

Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}
Element Distinctness

> Black box: Computes f on inputs corresponding to elements of [n]

> Question: Are there any i # j € [n] x [n] such that f(i) = f(j)?

> Query complexity: O(n?’®) (Ambainis 2003) Q(n*®) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: O(n**)]
» Black box: For any pair u, v € V x V tells whether there is an edge uv
» Question: Is there any triangle in G?
> Query complexity: O(n'®1%) (Magniez, Santha, Szegedy 2003)

9/15

Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}
Element Distinctness

> Black box: Computes f on inputs corresponding to elements of [n]

> Question: Are there any i # j € [n] x [n] such that f(i) = f(j)?

> Query complexity: O(n?’®) (Ambainis 2003) Q(n*®) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: O(n**)]
» Black box: For any pair u, v € V x V tells whether there is an edge uv
» Question: Is there any triangle in G?
> Query complexity: O(n'®1%) (Magniez, Santha, Szegedy 2003)

Matrix Product Verification
» Black box: Tells any entry of the n x n matrices A, B or C.
» Question: Does AB = C hold?
> Query complexity: O(n®?) (Buhrman, Spalek 2004)

9/15

k-distinctness
Are there k distinct elements mapped to the same image?

10/15

k-distinctness
Are there k distinct elements mapped to the same image?

Quantum algorithms (using QRAM)
» Ambainis (2003) — Johnson graph based quantum walk

O(nk/(k-H))

10/15

k-distinctness
Are there k distinct elements mapped to the same image?

Quantum algorithms (using QRAM)
» Ambainis (2003) — Johnson graph based quantum walk

O(nk/(k+1))
> Belovs et al. (2013) — 3-distinctness — Electric network based analysis
o(n°")

10/15

k-distinctness
Are there k distinct elements mapped to the same image?

Quantum algorithms (using QRAM)
» Ambainis (2003) — Johnson graph based quantum walk

O(nk/(k—H))
> Belovs et al. (2013) — 3-distinctness — Electric network based analysis
O(ns/ 7)
> Belovs (2012) — Learning graph based algorithm (time-complexity???)
O(n1—2k-2/(2‘<—1))

10/15

k-distinctness
Are there k distinct elements mapped to the same image?

Quantum algorithms (using QRAM)
» Ambainis (2003) — Johnson graph based quantum walk

O(nk/(k—H))
> Belovs et al. (2013) — 3-distinctness — Electric network based analysis
O(ns/ 7)
> Belovs (2012) — Learning graph based algorithm (time-complexity???)
O(n1—2k-2/(2‘<—1))

Quantum time-space trade-offs?
» Hamoudi & Magniez (arXiv: yesterday) Progress towards conjectured
T2S > Q(n?)

10/15

Quantum linear equation solving
(HHL)

Direct implementation of the pseudoinverse (HHL)

Ax = b: solve the regression problem in a quantum sense — output |x) o« A*|b)

11/15

Direct implementation of the pseudoinverse (HHL)

Ax = b: solve the regression problem in a quantum sense — output |x) cc AT|b)

Singular value decomposition and pseudoinverse

Suppose A = Y gilw;Xv;| € C™™ is a singular value decomposition.
Then the pseudoinverse of A is AT = Y 1/¢lviXwi

11/15

Direct implementation of the pseudoinverse (HHL)

Ax = b: solve the regression problem in a quantum sense — output |x) o« A*|b)
Singular value decomposition and pseudoinverse

Suppose A =) ¢ilw;Xvj| € C™™ is a singular value decomposition.
Then the pseudoinverse of A is At = 3, 1/¢/|viXwj| (note AT = 3, ¢;lviXwil).

Implementing the pseudoinverse using QSVT

¥

_ _05 05 -

11/15

Direct implementation of the pseudoinverse (HHL)

Ax = b: solve the regression problem in a quantum sense — output |x) o« A*|b)
Singular value decomposition and pseudoinverse

Suppose A =) ¢ilw;Xvj| € C™™ is a singular value decomposition.
Then the pseudoinverse of A is At = 3, 1/¢/|viXwj| (note AT = 3, ¢;lviXwil).

Implementing the pseudoinverse using QSVT

_ _05 05 -

11/15

Direct implementation of the pseudoinverse (HHL)

Ax = b: solve the regression problem in a quantum sense — output |x) o« A*|b)
Singular value decomposition and pseudoinverse

Suppose A =) ¢ilw;Xvj| € C™™ is a singular value decomposition.
Then the pseudoinverse of A is At = 3, 1/¢/|viXwj| (note AT = 3, ¢;lviXwil).

Implementing the pseudoinverse using QSVT

¥

11/15

Direct implementation of the pseudoinverse (HHL)

Ax = b: solve the regression problem in a quantum sense — output |x) cc AT|b)

Singular value decomposition and pseudoinverse
Suppose A = Y gilw;Xv;| € C™™ is a singular value decomposition.
Then the pseudoinverse of A is AT = 3. 1/¢,lviXwi| (note AT = 3, ¢/|viXwi).

Implementation cost (s = sparsity, « =condition number, £ = precision)

O(T - s - k - polylog(nmk/¢)),
assuming in time T we can
> prepare |b),
» find and compute non-zero elements in a row / column of A.
Potentially exponential speed-ups?

11/15

Application for Boolean equations — Chen & Gao 2017

f; multi-linear polynomials in Zy[x4, ..., X,|, solve the system fi(xy,...,x,) = 0: i € [C]

12/15

Application for Boolean equations — Chen & Gao 2017
f; multi-linear polynomials in Zy[x4, ..., X,|, solve the system fi(xy,...,x,) = 0: i € [C]
Convert to a complex linear equation system (rough sketch)
> Set D > max; deg(f;), and denote by mp be the set of degree < D monomials

12/15

Application for Boolean equations — Chen & Gao 2017
f; multi-linear polynomials in Zy[x4, ..., X,|, solve the system fi(xy,...,x,) = 0: i € [C]
Convert to a complex linear equation system (rough sketch)
> Set D > max; deg(f;), and denote by mp be the set of degree < D monomials
> Add trivial constraints x* — x; = 0 & handle mod 2 freedom by f « f 4 }; 2fyj(f)

12/15

Application for Boolean equations — Chen & Gao 2017
f; multi-linear polynomials in Zy[x4, ..., X,|, solve the system fi(xy,...,x,) = 0: i € [C]
Convert to a complex linear equation system (rough sketch)
> Set D > max; deg(f;), and denote by mp be the set of degree < D monomials

> Add trivial constraints x* — x; = 0 & handle mod 2 freedom by f « f 4 }; 2fyj(f)
» For every constraint f include all degree < D polynomial from f - mp

12/15

Application for Boolean equations — Chen & Gao 2017
f; multi-linear polynomials in Zy[x4, ..., X,|, solve the system fi(xy,...,x,) = 0: i € [C]
Convert to a complex linear equation system (rough sketch)
> Set D > max; deg(f;), and denote by mp be the set of degree < D monomials
> Add trivial constraints x? — x; = 0 & handle mod 2 freedom by f « f + 3, 2fyj(f)

» For every constraint f include all degree < D polynomial from f - mp
» Treat each monomial in mp as a variable and solve the linear system over C

12/15

Application for Boolean equations — Chen & Gao 2017
f; multi-linear polynomials in Zy[x4, ..., X,|, solve the system fi(xy,...,x,) = 0: i € [C]
Convert to a complex linear equation system (rough sketch)
> Set D > max; deg(f;), and denote by mp be the set of degree < D monomials
> Add trivial constraints x? — x; = 0 & handle mod 2 freedom by f « f + 3, 2fyj(f)

» For every constraint f include all degree < D polynomial from f - mp
» Treat each monomial in mp as a variable and solve the linear system over C

Suppose there is a unique Boolean solution — good news
» For large enough D there is a unique solution over C

12/15

Application for Boolean equations — Chen & Gao 2017
f; multi-linear polynomials in Zy[x4, ..., X,|, solve the system fi(xy,...,x,) = 0: i € [C]
Convert to a complex linear equation system (rough sketch)
> Set D > max; deg(f;), and denote by mp be the set of degree < D monomials
> Add trivial constraints x,? — x; = 0 & handle mod 2 freedom by f « f + 3'; 2fyj(f)

» For every constraint f include all degree < D polynomial from f - mp
» Treat each monomial in mp as a variable and solve the linear system over C

Suppose there is a unique Boolean solution — good news
» For large enough D there is a unique solution over C
> b contains at most ¢ non-zero (1) elements (coming from constants in original f-s)

12/15

Application for Boolean equations — Chen & Gao 2017
f: multi-linear polynomials in Z,[xi, . .., X»], solve the system fi(x1,...,x,) = 0: i € [c]
Convert to a complex linear equation system (rough sketch)
> Set D > max; deg(f;), and denote by mp be the set of degree < D monomials
> Add trivial constraints x,? — x; = 0 & handle mod 2 freedom by f « f + 3'; 2/'yj(f)

» For every constraint f include all degree < D polynomial from f - mp
» Treat each monomial in mp as a variable and solve the linear system over C

Suppose there is a unique Boolean solution — good news
» For large enough D there is a unique solution over C
> b contains at most ¢ non-zero (1) elements (coming from constants in original f-s)
» x = A*b is the indicator of monomials evaluating to 1 for the Boolean solution

12/15

Application for Boolean equations — Chen & Gao 2017
f: multi-linear polynomials in Z,[xi, . .., X»], solve the system fi(x1,...,x,) = 0: i € [c]
Convert to a complex linear equation system (rough sketch)
> Set D > max; deg(f;), and denote by mp be the set of degree < D monomials
> Add trivial constraints x,? — x; = 0 & handle mod 2 freedom by f « f + 3'; 2/'yj(f)

» For every constraint f include all degree < D polynomial from f - mp
» Treat each monomial in mp as a variable and solve the linear system over C

Suppose there is a unique Boolean solution — good news
» For large enough D there is a unique solution over C
> b contains at most ¢ non-zero (1) elements (coming from constants in original f-s)
» x = A*b is the indicator of monomials evaluating to 1 for the Boolean solution

. k+D—1
Bad news: k2 > ||X||2/||b||2 > #{non-zerg variables) __ (k: ~ (%)k

Classical brute-force: Z,’-(:o (}) ~ (82)k = Does not seem to be useful if D > n

12/15

Summary of some relevant quantum
speed-ups

Optimization
In general we want to find the best solution minyex f(x)
» Unstructured: can be solved with O(|X|) queries (Durr & Hoyer 1996)

13/15

Optimization
In general we want to find the best solution minyex f(x)
» Unstructured: can be solved with O(|X|) queries (Durr & Hoyer 1996)

Discrete structures:

> Finding the shortest path in a graph_
O(n?) (Dijkstra 1956); quantum O(n®2) (Diirr, Heiligman, Hoyer, Mhalla 2004)

» Matching and flow problems:
Polynomial speed-ups, typically based on Grover search

13/15

Optimization
In general we want to find the best solution minyex f(x)
» Unstructured: can be solved with O(|X|) queries (Durr & Hoyer 1996)

Discrete structures:

> Finding the shortest path in a graph_

O(n?) (Dijkstra 1956); quantum O(n®2) (Dilrr, Heiligman, Hayer, Mhalla 2004)
» Matching and flow problems:

Polynomial speed-ups, typically based on Grover search

» NP-hard problems:
Quadratic speed-ups for Schéning’s algorithm for 3-SAT (Ampl. ampl.)
Quadratic speed-ups for backtracking (Montanaro '15, Ambainis & Kokainis '17)
Polynomial speed-ups for dynamical programming, e.g., TSP 2" — 1.73"
(Ambainis, Balodis, Iraids, Kokainis, Prusis, Vihrovs 2018)

13/15

Continuous optimization
Convex optimization

» Regression / Linear equation solving (HHL, with quantum output):
O(kspolylog(nmk/e)) (Harrow et al.; Ambainis; Childs et al.; Chakraborty et al.)

14/15

Continuous optimization
Convex optimization

» Regression / Linear equation solving (HHL, with quantum output):
O(kspolylog(nmk/e)) (Harrow et al.; Ambainis; Childs et al.; Chakraborty et al.)

» Linear programs, semidefinite programs
SDPs: 5((Vn + \/ﬁ)saﬁ) (Brandao et al., van Apeldoorn et al. 2016-18)
LPs: 5((vVn+ \/5)73), 5(8)/3-5) (van Apeldoorn & G 2019)
Zero-sum games: 5((\Vn+ \/ﬁ)/s?’), 5(8/83'5) (van Apeldoorn & G 2019)
» Quantum interior point method (Kerenidis & Prakash 2018)

14/15

Continuous optimization
Convex optimization

» Regression / Linear equation solving (HHL, with quantum output):
O(kspolylog(nmk/e)) (Harrow et al.; Ambainis; Childs et al.; Chakraborty et al.)

» Linear programs, semidefinite programs
SDPs: 5((Vn + \/ﬁ)sf) (Brandao et al., van Apeldoorn et al. 2016-18)
LPs: 5((vVn+ \/5)73), 5(8)/3-5) (van Apeldoorn & G 2019)
Zero-sum games: 5((\Vn+ \/ﬁ)/ss), 5(8/83'5) (van Apeldoorn & G 2019)
» Quantum interior point method (Kerenidis & Prakash 2018)

» Exponential speed-up for implementing separation oracles of convex bodies
(van Apeldoorn et al. 2018; Chakrabarti et al. 2018)

14/15

Continuous optimization
Convex optimization

» Regression / Linear equation solving (HHL, with quantum output):
O(kspolylog(nmk/e)) (Harrow et al.; Ambainis; Childs et al.; Chakraborty et al.)

» Linear programs, semidefinite programs
SDPs: 5((Vn + \/ﬁ)sf) (Brandao et al., van Apeldoorn et al. 2016-18)
LPs: 5((vVn+ \/5)73), 5(8)/3-5) (van Apeldoorn & G 2019)
Zero-sum games: 5((\Vn+ \/ﬁ)/se’), 5(3/835) (van Apeldoorn & G 2019)
Quantum interior point method (Kerenidis & Prakash 2018)

Exponential speed-up for implementing separation oracles of convex bodies
(van Apeldoorn et al. 2018; Chakrabarti et al. 2018)

» Polynomial speed-up for estimating volumes of convex bodies
(Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

A\ /

14/15

Statistics and stochastic estimation algorithms

» Quadratic speed-up for Monte-Carlo methods O(%) (Montanaro 2015)
Generalizes amplitude estimation (Brassard, Hoyer, Mosca, Tapp 1998)

15/15

Statistics and stochastic estimation algorithms

» Quadratic speed-up for Monte-Carlo methods O(%) (Montanaro 2015)
Generalizes amplitude estimation (Brassard, Hoyer, Mosca, Tapp 1998)

> Testing equality of a distribution on [n] (with query complexity)
To an unknown distribution 5(n‘/2) (Bravyi, Hassidim, Harrow 2009; G, Li 2019)
To a known distribution 5(n‘/3) (Chakraborty, Fischer, Matsliah, de Wolf 2010)
> Estimating the (Shannon / von Neumann) entropy of a distribution on [n]
Classical distribution: query complexity 5(n”2) (Li & Wu 2017)
Density operator: query complexity O(n) (G & Li 2019)

15/15

Statistics and stochastic estimation algorithms

» Quadratic speed-up for Monte-Carlo methods O(%) (Montanaro 2015)
Generalizes amplitude estimation (Brassard, Hoyer, Mosca, Tapp 1998)

> Testing equality of a distribution on [n] (with query complexity)
To an unknown distribution 5(n‘/2) (Bravyi, Hassidim, Harrow 2009; G, Li 2019)
To a known distribution 5(n‘/3) (Chakraborty, Fischer, Matsliah, de Wolf 2010)
> Estimating the (Shannon / von Neumann) entropy of a distribution on [n]
Classical distribution: query complexity 5(n”2) (Li & Wu 2017)
Density operator: query complexity O(n) (G & Li 2019)

> Estimating the histogram to &-precision
Query and time complexity O(1/¢) (Apeldoorn 2020)

15/15

