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Block-encodings and

Quantum Singular Value Transformation



Block-encoding
A way to represent large matrices on a quantum computer efficiently

U =

[
A .
. .

]
⇐⇒ A = (〈0|a ⊗ I)U

(
|0〉b ⊗ I

)
.

One can efficiently construct block-encodings of

I an efficiently implementable unitary U,
I a sparse matrix with efficiently computable elements,
I a matrix stored in a clever data-structure in a QRAM,
I a density operator ρ given a unitary preparing its purification.
I a POVM operator M given we can sample from the rand.var.: Tr(ρM),

Implementing arithmetic operations on block-encoded matrices

I Given block-encodings Aj we can implement convex combinations.
I Given block-encodings A ,B we can implement block-encoding of AB.
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Quantum Singular Value Transformation (QSVT)
Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let P : [−1, 1]→ [−1, 1] be a degree-d odd polynomial map.

Suppose that

U =

[
A .
. .

]
=

[ ∑
i ςi |wi〉〈vi | .

. .

]
=⇒ UΦ =

[ ∑
i P(ςi)|wi〉〈vi | .

. .

]
,

where Φ(P) ∈ Rd is efficiently computable and UΦ is the following circuit:

Alternating phase modulation sequence UΦ :=

H e−iφ1σz e−iφ2σz · · · e−iφdσz H

U U†

· · ·

· · ·

|0〉⊗a

· · ·

· · ·

· · ·

Simmilar result holds for even polynomials.
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Amplitude amplification and estimation
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that

U|0̄〉 =
√

p|0〉|ψgood〉+
√

1 − p|1〉|ψbad〉, prepare |ψgood〉.
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Note that (|0〉〈0| ⊗ I)U(|0̄〉〈0̄|) =

√
p|0, ψgood〉〈0̄|; we can apply QSVT.
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Amplitude amplification and estimation
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that

U|0̄〉 =
√

p|0〉|ψgood〉+
√

1 − p|1〉|ψbad〉, prepare |ψgood〉.

Amplification using QSVT (degree ≈ log(1/ε)/
√

p)

0.2 0.4 0.6 0.8 1

Ideal
Apx. polynomial

√
p

1 − ε
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Detecting a bias in a quantum sampler
Suppose we are given U such that

U|0̄〉 =
√

p′|0〉|ψgood〉+
√

1 − p′|1〉|ψbad〉, distinguish p′ ≤ p − δ vs. p + δ ≤ p′.
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√

1 − p′|1〉|ψbad〉, distinguish p′ ≤ p − δ vs. p + δ ≤ p′.

Can be solved by QSVT (or using amplitude estimation).

Bias detection using QSVT (degree ≈ log(1/ε)/δ)

√
p

1

0.2 0.4 0.6 0.8 1

Ideal
Apx. polynomial
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Speeding up Monte Carlo methods (Montanaro 2015)

Sampling algorithm

Suppose we have a sampling algorithm sampling from a random variable X .

Classical complexity of estimation

We can estimate E[X ] with ε precision using ≈ σ2

ε2 samples.

Quantum complexity of estimation

We can estimate E[X ] with ε precision using ≈ σ
ε

samples.

I Implement sampler as a quantum circuit
I Replace random input seed with Hadamard gates
I Apply amplitude estimation + combine with other tricks
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Quantum walks



Discrete-time random / quantum walks

Discrete-time random walk on a weighted graph

Let G = (V ,E) be a finite simple graph, with non-negative edge-weights w : E → R+.
Transition probability in one step (stochastic matrix)

Pvu = Pr(step to v | being at u) =
wvu∑

v′∈U wv′u
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Let G = (V ,E) be a finite simple graph, with non-negative edge-weights w : E → R+.
Transition probability in one step (stochastic matrix)

Pvu = Pr(step to v | being at u) =
wvu∑

v′∈U wv′u

Basic primitives – classical

(Setup) S : sample v with probability σv

(Update) U : given u sample v with probability Pvu

(Check) C : given v check if it is marked, i.e., v ∈ M?
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√
σv |v〉

(Update) U : |0〉|u〉 7→
∑
v∈V

√
Pvu|v〉|u〉

(Check) C : |0〉|v〉 7→ |v ∈ M〉|v〉

(Walk operator) W : U† · SWAP · U =

[
P .
. .

]
6 / 15



High-level explanation of quadratic speed-ups

Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

(〈0| ⊗ I)V(|0〉 ⊗ I)
ε
≈ P t

with using only O
( √

t log(1/ε)
)

quantum walk steps.

Proof:

x t ≈

√
t∑

k−
√

t

(
2t

t + k

)
Tk (x)
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Szegedy quantum walk based search
Suppose we have some unknown marked vertices M ⊂ V .

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state

∑
v∈V
√
πv |v〉 we can

I detect the presence of marked vertices (M , 0) in time O
(√

HT
)

(Szegedy 2004)

I find a marked vertex in time O
(

1
√
δε

)
(Magniez, Nayak, Roland, Sántha 2006)

I find a marked vertex in time Õ
(√

HT
)

(Ambainis, G, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution σ on some vertices we can
I detect marked vertices in square-root commute time O

( √
Cσ,M

)
(Belovs 2013)

I find a marked vertex in time Õ
( √

Cσ,M

)
(Piddock; Apers, G, Jeffery 2019)
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Walks on the Johnson graph (Sántha arXiv:0808.0059 )
Vertices: {S ⊂ N : |S | = K }; Edges: {(S,S ′) : |S4S ′| = 2}

Element Distinctness
I Black box: Computes f on inputs corresponding to elements of [n]

I Question: Are there any i , j ∈ [n] × [n] such that f(i) = f(j)?
I Query complexity: O(n2/3) (Ambainis 2003) Ω(n2/3) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: Õ(n5/4)]
I Black box: For any pair u, v ∈ V × V tells whether there is an edge uv
I Question: Is there any triangle in G?
I Query complexity: O(n13/10) (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification
I Black box: Tells any entry of the n × n matrices A ,B or C.
I Question: Does AB = C hold?
I Query complexity: O(n5/3) (Buhrman, Špalek 2004)
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k -distinctness
Are there k distinct elements mapped to the same image?

Quantum algorithms (using QRAM)
I Ambainis (2003) – Johnson graph based quantum walk

O
(
nk/(k+1)

)
I Belovs et al. (2013) – 3-distinctness – Electric network based analysis

O
(
n5/7

)
I Belovs (2012) – Learning graph based algorithm (time-complexity???)

O
(
n1−2k−2/(2k−1)

)
Quantum time-space trade-offs?
I Hamoudi & Magniez (arXiv: yesterday) Progress towards conjectured

T2S ≥ Ω̃(n2)
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Quantum linear equation solving
(HHL)



Direct implementation of the pseudoinverse (HHL)

Ax = b : solve the regression problem in a quantum sense – output |x〉 ∝ A+|b〉

Singular value decomposition and pseudoinverse

Suppose A =
∑

i ςi |wi〉〈vi | ∈ C
n×m is a singular value decomposition.

Then the pseudoinverse of A is A+ =
∑

i 1/ςi |vi〉〈wi | (note A † =
∑

i ςi |vi〉〈wi |).
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Suppose A =
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i ςi |wi〉〈vi | ∈ C
n×m is a singular value decomposition.

Then the pseudoinverse of A is A+ =
∑

i 1/ςi |vi〉〈wi | (note A † =
∑

i ςi |vi〉〈wi |).

Implementation cost (s = sparsity, κ =condition number, ε = precision)

O(T · s · κ · polylog(nmκ/ε)),

assuming in time T we can
I prepare |b〉,
I find and compute non-zero elements in a row / column of A .

Potentially exponential speed-ups?

11 / 15



Application for Boolean equations – Chen & Gao 2017
fi multi-linear polynomials in Z2[x1, . . . , xn], solve the system fi(x1, . . . , xn) = 0 : i ∈ [c]

Convert to a complex linear equation system (rough sketch)
I Set D > maxi deg(fi), and denote by mD be the set of degree ≤ D monomials

I Add trivial constraints x2
i − xi = 0 & handle mod 2 freedom by f ← f +

∑
j 2jy(f)

j

I For every constraint f include all degree ≤ D polynomial from f ·mD

I Treat each monomial in mD as a variable and solve the linear system over C

Suppose there is a unique Boolean solution – good news
I For large enough D there is a unique solution over C
I b contains at most c non-zero (1) elements (coming from constants in original fi-s)
I x = A+b is the indicator of monomials evaluating to 1 for the Boolean solution

Bad news: κ2 ≥ ‖x‖2/‖b‖2 ≥ #{non-zero variables}
c =

(k+D−1
k−1 )

c ≈ (eD
k )k

Classical brute-force:
∑k

j=0 (n
k) ≈ (en

k )k =⇒ Does not seem to be useful if D ≥ n
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Summary of some relevant quantum
speed-ups



Optimization
In general we want to find the best solution minx∈X f(x)

I Unstructured: can be solved with O
(√
|X |

)
queries (Dürr & Høyer 1996)

Discrete structures:
I Finding the shortest path in a graph

O
(
n2

)
(Dijkstra 1956); quantum Õ

(
n3/2

)
(Dürr, Heiligman, Høyer, Mhalla 2004)

I Matching and flow problems:
Polynomial speed-ups, typically based on Grover search

I NP−hard problems:
Quadratic speed-ups for Schöning’s algorithm for 3-SAT (Ampl. ampl.)
Quadratic speed-ups for backtracking (Montanaro ’15, Ambainis & Kokainis ’17)
Polynomial speed-ups for dynamical programming, e.g., TSP 2n → 1.73n

(Ambainis, Balodis, Iraids, Kokainis, Prūsis, Vihrovs 2018)

13 / 15



Optimization
In general we want to find the best solution minx∈X f(x)

I Unstructured: can be solved with O
(√
|X |

)
queries (Dürr & Høyer 1996)

Discrete structures:
I Finding the shortest path in a graph

O
(
n2

)
(Dijkstra 1956); quantum Õ
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Continuous optimization

Convex optimization

I Regression / Linear equation solving (HHL, with quantum output):
O(κspolylog(nmκ/ε)) (Harrow et al.; Ambainis; Childs et al.; Chakraborty et al.)

I Linear programs, semidefinite programs
SDPs: Õ

(
(
√

n +
√

m )sγ5
)

(Brandão et al., van Apeldoorn et al. 2016-18)

LPs: Õ
(
(
√

n +
√

m)γ3
)
, Õ

(
sγ3.5

)
(van Apeldoorn & G 2019)

Zero-sum games: Õ
(
(
√

n +
√

m )/ε3
)
, Õ

(
s/ε3.5

)
(van Apeldoorn & G 2019)

I Quantum interior point method (Kerenidis & Prakash 2018)
I Exponential speed-up for implementing separation oracles of convex bodies

(van Apeldoorn et al. 2018; Chakrabarti et al. 2018)
I Polynomial speed-up for estimating volumes of convex bodies

(Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)
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(
s/ε3.5

)
(van Apeldoorn & G 2019)

I Quantum interior point method (Kerenidis & Prakash 2018)

I Exponential speed-up for implementing separation oracles of convex bodies
(van Apeldoorn et al. 2018; Chakrabarti et al. 2018)

I Polynomial speed-up for estimating volumes of convex bodies
(Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

14 / 15



Continuous optimization

Convex optimization

I Regression / Linear equation solving (HHL, with quantum output):
O(κspolylog(nmκ/ε)) (Harrow et al.; Ambainis; Childs et al.; Chakraborty et al.)

I Linear programs, semidefinite programs
SDPs: Õ
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Statistics and stochastic estimation algorithms
I Quadratic speed-up for Monte-Carlo methods O

(
σ
ε

)
(Montanaro 2015)

Generalizes amplitude estimation (Brassard, Høyer, Mosca, Tapp 1998)

I Testing equality of a distribution on [n] (with query complexity)
To an unknown distribution Õ

(
n1/2

)
(Bravyi, Hassidim, Harrow 2009; G, Li 2019)

To a known distribution Õ
(
n1/3

)
(Chakraborty, Fischer, Matsliah, de Wolf 2010)

I Estimating the (Shannon / von Neumann) entropy of a distribution on [n]

Classical distribution: query complexity Õ
(
n1/2

)
(Li & Wu 2017)

Density operator: query complexity Õ(n) (G & Li 2019)

I Estimating the histogram to ε-precision
Query and time complexity Õ(1/ε) (Apeldoorn 2020)
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