Overview of Quantum Algorithmic Tools

András Gilyén

Institute for Quantum Information and Matter

Quantum Cryptanalysis of Post-Quantum Cryptography Berkeley, 22nd February 2020

Block-encodings and

Quantum Singular Value Transformation

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (| 0 \rangle^b \otimes I).$$

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

One can efficiently construct block-encodings of

• an efficiently implementable unitary U,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

- an efficiently implementable unitary U,
- ► a sparse matrix with efficiently computable elements,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,
- a density operator ρ given a unitary preparing its purification.

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,
- a density operator ρ given a unitary preparing its purification.
- a POVM operator *M* given we can sample from the rand.var.: $Tr(\rho M)$,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

One can efficiently construct block-encodings of

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,
- a density operator ρ given a unitary preparing its purification.
- ▶ a POVM operator *M* given we can sample from the rand.var.: $Tr(\rho M)$,

Implementing arithmetic operations on block-encoded matrices

- Given block-encodings A_i we can implement convex combinations.
- Given block-encodings A, B we can implement block-encoding of AB.

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map.

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i \in i} |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix}$$

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i \leq i} |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i \geq i} P(\varsigma_i) |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix},$$

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i \in j} |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i \in P(S_i)} |w_i \rangle \langle v_i| & . \\ . & . \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i \in \mathcal{G}_i} |w_i| \langle v_i| & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i \in \mathcal{P}(\mathcal{G}_i)} |w_i| \langle v_i| & . \\ . & . \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Alternating phase modulation sequence $U_{\Phi} :=$

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i \in \mathcal{G}_i} |w_i| \langle v_i| & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i \in \mathcal{P}(\mathcal{G}_i)} |w_i| \langle v_i| & . \\ . & . \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Alternating phase modulation sequence $U_{\Phi} :=$

Simmilar result holds for even polynomials.

 Amplitude amplification and estimation

 Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

 Amplitude amplification problem: Given U such that

 $U|ar{0}
angle = \sqrt{p}|0
angle|\psi_{ ext{good}}
angle + \sqrt{1-p}|1
angle|\psi_{ ext{bad}}
angle, ext{ prepare }|\psi_{ ext{good}}
angle.$

Amplitude amplification and estimation Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014) Amplitude amplification problem: Given *U* such that $U|\bar{0}\rangle = \sqrt{p}|0\rangle|\psi_{qood}\rangle + \sqrt{1-p}|1\rangle|\psi_{bad}\rangle$, prepare $|\psi_{qood}\rangle$.

Amplitude amplification and estimation Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014) Amplitude amplification problem: Given *U* such that $U|\overline{0}\rangle = \sqrt{p}|0\rangle|\psi_{qood}\rangle + \sqrt{1-p}|1\rangle|\psi_{bad}\rangle, \quad \text{prepare }|\psi_{qood}\rangle.$

Note that $(|0\rangle\langle 0| \otimes I)U(|\overline{0}\rangle\langle \overline{0}|) = \sqrt{p}|0, \psi_{good}\rangle\langle \overline{0}|$; we can apply QSVT.

Amplitude amplification and estimation Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014) Amplitude amplification problem: Given *U* such that $U|\overline{0}\rangle = \sqrt{p}|0\rangle|\psi_{accd}\rangle + \sqrt{1-p}|1\rangle|\psi_{bad}\rangle, \quad \text{prepare }|\psi_{accd}\rangle.$

Amplification using QSVT (degree $\approx \log(1/\varepsilon)/\sqrt{p}$) Ideal Apx. polynomial \sqrt{p} 0.2 0.4 0.6 0.8

Detecting a bias in a quantum sampler

Suppose we are given U such that

 $|U|\bar{0}
angle = \sqrt{p'}|0
angle|\psi_{good}
angle + \sqrt{1-p'}|1
angle|\psi_{bad}
angle$, distinguish $p' \leq p - \delta$ vs. $p + \delta \leq p'$.

Detecting a bias in a quantum sampler

Suppose we are given U such that

 $|U|\bar{0}
angle = \sqrt{p'}|0
angle|\psi_{good}
angle + \sqrt{1-p'}|1
angle|\psi_{bad}
angle$, distinguish $p' \leq p - \delta$ vs. $p + \delta \leq p'$.

Can be solved by QSVT (or using amplitude estimation).

Detecting a bias in a quantum sampler

Suppose we are given U such that

 $|U|\bar{0}
angle = \sqrt{p'}|0
angle |\psi_{good}
angle + \sqrt{1-p'}|1
angle |\psi_{bad}
angle$, distinguish $p' \leq p - \delta$ vs. $p + \delta \leq p'$.

Can be solved by QSVT (or using amplitude estimation).

Bias detection using QSVT (degree $\approx \log(1/\varepsilon)/\delta$)

Sampling algorithm

Suppose we have a sampling algorithm sampling from a random variable X.

Sampling algorithm

Suppose we have a sampling algorithm sampling from a random variable X.

Classical complexity of estimation

We can estimate $\mathbb{E}[X]$ with ε precision using $\approx \frac{\sigma^2}{\varepsilon^2}$ samples.

Sampling algorithm

Suppose we have a sampling algorithm sampling from a random variable X.

Classical complexity of estimation

We can estimate $\mathbb{E}[X]$ with ε precision using $\approx \frac{\sigma^2}{\varepsilon^2}$ samples.

Quantum complexity of estimation

We can estimate $\mathbb{E}[X]$ with ε precision using $\approx \frac{\sigma}{\varepsilon}$ samples.

Sampling algorithm

Suppose we have a sampling algorithm sampling from a random variable X.

Classical complexity of estimation

We can estimate $\mathbb{E}[X]$ with ε precision using $\approx \frac{\sigma^2}{\varepsilon^2}$ samples.

Quantum complexity of estimation

We can estimate $\mathbb{E}[X]$ with ε precision using $\approx \frac{\sigma}{\varepsilon}$ samples.

- Implement sampler as a quantum circuit
- Replace random input seed with Hadamard gates
- Apply amplitude estimation + combine with other tricks

Quantum walks

Discrete-time random walk on a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. Transition probability in one step (stochastic matrix)

$$P_{vu} = \mathsf{Pr}(\mathsf{step to } v | \mathsf{being at } u) = rac{w_{vu}}{\sum_{v' \in U} w_{v'}}$$

Discrete-time random walk on a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. Transition probability in one step (stochastic matrix)

$${\sf P}_{{\sf v}u}={\sf Pr}({\sf step} \ {\sf to} \ {\sf v}$$
 | being at $u)=rac{{\sf W}_{{\sf v}u}}{\sum_{{\sf v}'\in U}{\sf W}_{{\sf v}'u}}$

Basic primitives – classical

(Setup) *S*: sample *v* with probability σ_v (Update) *U*: given *u* sample *v* with probability P_{vu} (Check) *C*: given *v* check if it is marked, i.e., $v \in M$?

Discrete-time random walk on a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. Transition probability in one step (stochastic matrix)

$${\sf P}_{{\sf v}u}={\sf Pr}({\sf step} \ {\sf to} \ {\sf v}\,|\, {\sf being} \ {\sf at} \ u)=rac{{\sf W}_{{\sf v}u}}{\sum_{{\sf v}'\in U}{\sf W}_{{\sf v}'u}}$$

Basic primitives – quantum

(Setup)
$$S : |0\rangle \mapsto \sum_{v \in V} \sqrt{\sigma_v} |v\rangle$$

(Update) $U : |0\rangle |u\rangle \mapsto \sum_{v \in V} \sqrt{P_{vu}} |v\rangle |u\rangle$
(Check) $C : |0\rangle |v\rangle \mapsto |v \in M\rangle |v\rangle$

Discrete-time random walk on a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. Transition probability in one step (stochastic matrix)

$${\sf P}_{{\sf v}{\sf u}}={\sf Pr}({\sf step} \ {\sf to} \ {\sf v}\,|\, {\sf being} \ {\sf at} \ {\sf u})=rac{{\sf W}_{{\sf v}{\sf u}}}{\sum_{{\sf v}'\in {\sf U}}{\sf W}_{{\sf v}'{\sf u}}}$$

Basic primitives – quantum

(Setup)
$$S: |0\rangle \mapsto \sum_{v \in V} \sqrt{\sigma_v} |v\rangle$$

(Update) $U: |0\rangle |u\rangle \mapsto \sum_{v \in V} \sqrt{P_{vu}} |v\rangle |u\rangle$
(Check) $C: |0\rangle |v\rangle \mapsto |v \in M\rangle |v\rangle$
Walk operator) $W: U^{\dagger} \cdot \text{SWAP} \cdot U = \begin{bmatrix} P & . \\ . & . \end{bmatrix}$

High-level explanation of quadratic speed-ups

Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

 $(\langle 0|\otimes I)V(|0\rangle\otimes I)\stackrel{\varepsilon}{\approx}P^{t}$

with using only $O\!\left(\sqrt{t \log(1/\varepsilon)}\right)$ quantum walk steps.

High-level explanation of quadratic speed-ups

Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

 $(\langle 0|\otimes I)V(|0\rangle\otimes I)\stackrel{\varepsilon}{\approx}P^{t}$

with using only $O\!\left(\sqrt{t \log(1/\varepsilon)}\right)$ quantum walk steps.

Proof:

$$x^t \approx \sum_{k=\sqrt{t}}^{\sqrt{t}} \binom{2t}{t+k} T_k(x)$$

Szegedy quantum walk based search

Suppose we have some unknown marked vertices $M \subset V$.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr. Starting from the quantum state $\sum_{v \in V} \sqrt{\pi_v} |v\rangle$ we can

- detect the presence of marked vertices $(M \neq 0)$ in time $O(\sqrt{HT})$ (Szegedy 2004)
- ▶ find a marked vertex in time $O\left(\frac{1}{\sqrt{\delta \varepsilon}}\right)$ (Magniez, Nayak, Roland, Sántha 2006)
- Find a marked vertex in time $\widetilde{O}(\sqrt{HT})$ (Ambainis, **G**, Jeffery, Kokainis 2019)

Szegedy quantum walk based search

Suppose we have some unknown marked vertices $M \subset V$.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr. Starting from the quantum state $\sum_{v \in V} \sqrt{\pi_v} |v\rangle$ we can

- detect the presence of marked vertices $(M \neq 0)$ in time $O(\sqrt{HT})$ (Szegedy 2004)
- ▶ find a marked vertex in time $O\left(\frac{1}{\sqrt{\delta c}}\right)$ (Magniez, Nayak, Roland, Sántha 2006)
- Find a marked vertex in time $\widetilde{O}(\sqrt{HT})$ (Ambainis, **G**, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution σ on some vertices we can

- detect marked vertices in square-root commute time $O(\sqrt{C_{\sigma,M}})$ (Belovs 2013)
- Find a marked vertex in time $\widetilde{O}(\sqrt{C_{\sigma,M}})$ (Piddock; Apers, **G**, Jeffery 2019)
Element Distinctness

- Black box: Computes f on inputs corresponding to elements of [n]
- Question: Are there any $i \neq j \in [n] \times [n]$ such that f(i) = f(j)?
- Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Element Distinctness

- Black box: Computes f on inputs corresponding to elements of [n]
- Question: Are there any $i \neq j \in [n] \times [n]$ such that f(i) = f(j)?
- Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Triangle Finding

[(2014) non-walk algorithm by Le Gall: $\widetilde{O}(n^{5/4})$]

- ▶ Black box: For any pair $u, v \in V \times V$ tells whether there is an edge uv
- Question: Is there any triangle in G?
- Query complexity: O(n^{13/10}) (Magniez, Sántha, Szegedy 2003)

Element Distinctness

- Black box: Computes f on inputs corresponding to elements of [n]
- Question: Are there any $i \neq j \in [n] \times [n]$ such that f(i) = f(j)?
- Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Triangle Finding

[(2014) non-walk algorithm by Le Gall: $\widetilde{O}(n^{5/4})$]

- ▶ Black box: For any pair $u, v \in V \times V$ tells whether there is an edge uv
- Question: Is there any triangle in G?
- Query complexity: O(n^{13/10}) (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification

- Black box: Tells any entry of the $n \times n$ matrices A, B or C.
- Question: Does AB = C hold?
- Query complexity: $O(n^{5/3})$ (Buhrman, Špalek 2004)

Are there k distinct elements mapped to the same image?

Are there k distinct elements mapped to the same image?

Quantum algorithms (using QRAM)

Ambainis (2003) – Johnson graph based quantum walk

 $O(n^{k/(k+1)})$

Are there k distinct elements mapped to the same image?

Quantum algorithms (using QRAM)

Ambainis (2003) – Johnson graph based quantum walk

 $O(n^{k/(k+1)})$

Belovs et al. (2013) – 3-distinctness – Electric network based analysis

 $O(n^{5/7})$

Are there k distinct elements mapped to the same image?

Quantum algorithms (using QRAM)

Ambainis (2003) – Johnson graph based quantum walk

 $O(n^{k/(k+1)})$

- ▶ Belovs et al. (2013) 3-distinctness Electric network based analysis $O(n^{5/7})$
- ► Belovs (2012) Learning graph based algorithm (time-complexity???) $O(n^{1-2^{k-2}/(2^{k}-1)})$

Are there k distinct elements mapped to the same image?

Quantum algorithms (using QRAM)

Ambainis (2003) – Johnson graph based quantum walk

 $O(n^{k/(k+1)})$

Belovs et al. (2013) – 3-distinctness – Electric network based analysis

 $O(n^{5/7})$

► Belovs (2012) – Learning graph based algorithm (time-complexity???) $O(n^{1-2^{k-2}/(2^{k}-1)})$

Quantum time-space trade-offs?

Hamoudi & Magniez (arXiv: yesterday) Progress towards conjectured

 $T^2 S \geq \widetilde{\Omega}(n^2)$

Quantum linear equation solving (HHL)

Ax = b: solve the regression problem in a quantum sense – output $|x\rangle \propto A^+|b\rangle$

Ax = b: solve the regression problem in a quantum sense – output $|x\rangle \propto A^+|b\rangle$

Singular value decomposition and pseudoinverse

Suppose $A = \sum_{i \leq i} |w_i \rangle \langle v_i| \in \mathbb{C}^{n \times m}$ is a singular value decomposition. Then the pseudoinverse of A is $A^+ = \sum_i 1/s_i |v_i \rangle \langle w_i|$

Ax = b: solve the regression problem in a quantum sense – output $|x\rangle \propto A^+|b\rangle$ Singular value decomposition and pseudoinverse

Suppose $A = \sum_{i \leq i} |w_i \rangle \langle v_i| \in \mathbb{C}^{n \times m}$ is a singular value decomposition. Then the pseudoinverse of A is $A^+ = \sum_i \frac{1}{|S_i|} |v_i \rangle \langle w_i|$ (note $A^{\dagger} = \sum_i \frac{1}{|S_i|} |v_i \rangle \langle w_i|$).

Ax = b: solve the regression problem in a quantum sense – output $|x\rangle \propto A^+|b\rangle$ Singular value decomposition and pseudoinverse

Suppose $A = \sum_{i \leq i} |w_i \rangle \langle v_i| \in \mathbb{C}^{n \times m}$ is a singular value decomposition. Then the pseudoinverse of A is $A^+ = \sum_i \frac{1}{S_i} |v_i \rangle \langle w_i|$ (note $A^{\dagger} = \sum_i \frac{1}{S_i} |v_i \rangle \langle w_i|$).

Ax = b: solve the regression problem in a quantum sense – output $|x\rangle \propto A^+|b\rangle$ Singular value decomposition and pseudoinverse

Suppose $A = \sum_{i \leq i} |w_i \rangle \langle v_i| \in \mathbb{C}^{n \times m}$ is a singular value decomposition. Then the pseudoinverse of A is $A^+ = \sum_i \frac{1}{|S_i|} |v_i \rangle \langle w_i|$ (note $A^{\dagger} = \sum_i \frac{1}{|S_i|} |v_i \rangle \langle w_i|$).

Ax = b: solve the regression problem in a quantum sense – output $|x\rangle \propto A^+|b\rangle$

Singular value decomposition and pseudoinverse

Suppose $A = \sum_{i \leq i} |w_i \rangle \langle v_i| \in \mathbb{C}^{n \times m}$ is a singular value decomposition. Then the pseudoinverse of A is $A^+ = \sum_i \frac{1}{S_i} |v_i \rangle \langle w_i|$ (note $A^{\dagger} = \sum_i \frac{1}{S_i} |v_i \rangle \langle w_i|$).

Implementation cost (s = sparsity, κ =condition number, ε = precision)

 $O(T \cdot s \cdot \kappa \cdot \operatorname{polylog}(nm\kappa/\varepsilon)),$

assuming in time T we can

• prepare $|b\rangle$,

find and compute non-zero elements in a row / column of A.
Potentially exponential speed-ups?

 f_i multi-linear polynomials in $\mathbb{Z}_2[x_1, \ldots, x_n]$, solve the system $f_i(x_1, \ldots, x_n) = 0$: $i \in [c]$

 f_i multi-linear polynomials in $\mathbb{Z}_2[x_1, ..., x_n]$, solve the system $f_i(x_1, ..., x_n) = 0$: $i \in [c]$ Convert to a complex linear equation system (rough sketch)

▶ Set $D > \max_i \deg(f_i)$, and denote by m_D be the set of degree $\leq D$ monomials

 f_i multi-linear polynomials in $\mathbb{Z}_2[x_1, ..., x_n]$, solve the system $f_i(x_1, ..., x_n) = 0$: $i \in [c]$ Convert to a complex linear equation system (rough sketch)

- ▶ Set $D > \max_i \deg(f_i)$, and denote by m_D be the set of degree $\leq D$ monomials
- ▶ Add trivial constraints $x_i^2 x_i = 0$ & handle mod 2 freedom by $f \leftarrow f + \sum_j 2^j y_j^{(f)}$

 f_i multi-linear polynomials in $\mathbb{Z}_2[x_1, ..., x_n]$, solve the system $f_i(x_1, ..., x_n) = 0$: $i \in [c]$ Convert to a complex linear equation system (rough sketch)

- ▶ Set $D > \max_i \deg(f_i)$, and denote by m_D be the set of degree $\leq D$ monomials
- ▶ Add trivial constraints $x_i^2 x_i = 0$ & handle mod 2 freedom by $f \leftarrow f + \sum_j 2^j y_i^{(f)}$
- For every constraint *f* include all degree $\leq D$ polynomial from $f \cdot m_D$

 f_i multi-linear polynomials in $\mathbb{Z}_2[x_1, ..., x_n]$, solve the system $f_i(x_1, ..., x_n) = 0$: $i \in [c]$ Convert to a complex linear equation system (rough sketch)

- ▶ Set $D > \max_i \deg(f_i)$, and denote by m_D be the set of degree $\leq D$ monomials
- ▶ Add trivial constraints $x_i^2 x_i = 0$ & handle mod 2 freedom by $f \leftarrow f + \sum_j 2^j y_i^{(f)}$
- For every constraint f include all degree $\leq D$ polynomial from $f \cdot m_D$
- ▶ Treat each monomial in m_D as a variable and solve the linear system over \mathbb{C}

 f_i multi-linear polynomials in $\mathbb{Z}_2[x_1, ..., x_n]$, solve the system $f_i(x_1, ..., x_n) = 0$: $i \in [c]$ Convert to a complex linear equation system (rough sketch)

- ▶ Set $D > \max_i \deg(f_i)$, and denote by m_D be the set of degree $\leq D$ monomials
- ▶ Add trivial constraints $x_i^2 x_i = 0$ & handle mod 2 freedom by $f \leftarrow f + \sum_j 2^j y_i^{(f)}$
- For every constraint f include all degree $\leq D$ polynomial from $f \cdot m_D$
- ▶ Treat each monomial in m_D as a variable and solve the linear system over \mathbb{C}

Suppose there is a unique Boolean solution – good news

For large enough *D* there is a unique solution over \mathbb{C}

 f_i multi-linear polynomials in $\mathbb{Z}_2[x_1, ..., x_n]$, solve the system $f_i(x_1, ..., x_n) = 0$: $i \in [c]$ Convert to a complex linear equation system (rough sketch)

- ▶ Set $D > \max_i \deg(f_i)$, and denote by m_D be the set of degree $\leq D$ monomials
- ▶ Add trivial constraints $x_i^2 x_i = 0$ & handle mod 2 freedom by $f \leftarrow f + \sum_j 2^j y_i^{(f)}$
- For every constraint f include all degree $\leq D$ polynomial from $f \cdot m_D$
- ▶ Treat each monomial in m_D as a variable and solve the linear system over \mathbb{C}

Suppose there is a unique Boolean solution – good news

- ▶ For large enough *D* there is a unique solution over ℂ
- b contains at most c non-zero (1) elements (coming from constants in original f_i-s)

 f_i multi-linear polynomials in $\mathbb{Z}_2[x_1, ..., x_n]$, solve the system $f_i(x_1, ..., x_n) = 0$: $i \in [c]$ Convert to a complex linear equation system (rough sketch)

- ▶ Set $D > \max_i \deg(f_i)$, and denote by m_D be the set of degree $\leq D$ monomials
- ▶ Add trivial constraints $x_i^2 x_i = 0$ & handle mod 2 freedom by $f \leftarrow f + \sum_j 2^j y_i^{(f)}$
- For every constraint f include all degree $\leq D$ polynomial from $f \cdot m_D$
- ▶ Treat each monomial in m_D as a variable and solve the linear system over \mathbb{C}

Suppose there is a unique Boolean solution - good news

- For large enough *D* there is a unique solution over \mathbb{C}
- **b** contains at most *c* non-zero (1) elements (coming from constants in original f_i -s)
- $x = A^+ b$ is the indicator of monomials evaluating to 1 for the Boolean solution

 f_i multi-linear polynomials in $\mathbb{Z}_2[x_1, ..., x_n]$, solve the system $f_i(x_1, ..., x_n) = 0$: $i \in [c]$ Convert to a complex linear equation system (rough sketch)

- ▶ Set $D > \max_i \deg(f_i)$, and denote by m_D be the set of degree $\leq D$ monomials
- ▶ Add trivial constraints $x_i^2 x_i = 0$ & handle mod 2 freedom by $f \leftarrow f + \sum_j 2^j y_i^{(f)}$
- For every constraint *f* include all degree $\leq D$ polynomial from $f \cdot m_D$
- ▶ Treat each monomial in m_D as a variable and solve the linear system over \mathbb{C}

Suppose there is a unique Boolean solution – good news

- ▶ For large enough *D* there is a unique solution over ℂ
- **b** contains at most *c* non-zero (1) elements (coming from constants in original f_i -s)
- $x = A^+ b$ is the indicator of monomials evaluating to 1 for the Boolean solution

Bad news: $\kappa^2 \ge ||x||^2 / ||b||^2 \ge \frac{\#\{\text{non-zero variables}\}}{c} = \frac{\binom{k+D-1}{k-1}}{c} \approx \left(\frac{eD}{k}\right)^k$ Classical brute-force: $\sum_{j=0}^k \binom{n}{k} \approx \left(\frac{en}{k}\right)^k \implies \text{Does not seem to be useful if } D \ge n$

Summary of some relevant quantum speed-ups

Optimization

In general we want to find the best solution $\min_{x \in X} f(x)$

• Unstructured: can be solved with $O(\sqrt{|X|})$ queries (Dürr & Høyer 1996)

Optimization

In general we want to find the best solution $\min_{x \in X} f(x)$

• Unstructured: can be solved with $O(\sqrt{|X|})$ queries (Dürr & Høyer 1996)

Discrete structures:

- Finding the shortest path in a graph $O(n^2)$ (Dijkstra 1956); quantum $\widetilde{O}(n^{3/2})$ (Dürr, Heiligman, Høyer, Mhalla 2004)
- Matching and flow problems: Polynomial speed-ups, typically based on Grover search

Optimization

In general we want to find the best solution $\min_{x \in X} f(x)$

• Unstructured: can be solved with $O(\sqrt{|X|})$ queries (Dürr & Høyer 1996)

Discrete structures:

- Finding the shortest path in a graph $O(n^2)$ (Dijkstra 1956); quantum $\widetilde{O}(n^{3/2})$ (Dürr, Heiligman, Høyer, Mhalla 2004)
- Matching and flow problems: Polynomial speed-ups, typically based on Grover search
- ► NP-hard problems:

Quadratic speed-ups for Schöning's algorithm for 3-SAT (Ampl. ampl.) Quadratic speed-ups for backtracking (Montanaro '15, Ambainis & Kokainis '17) Polynomial speed-ups for dynamical programming, e.g., TSP $2^n \rightarrow 1.73^n$ (Ambainis, Balodis, Iraids, Kokainis, Prūsis, Vihrovs 2018)

Convex optimization

Regression / Linear equation solving (HHL, with quantum output):
 O(κspolylog(nmκ/ε)) (Harrow et al.; Ambainis; Childs et al.; Chakraborty et al.)

Convex optimization

- Regression / Linear equation solving (HHL, with quantum output):
 O(κspolylog(nmκ/ε)) (Harrow et al.; Ambainis; Childs et al.; Chakraborty et al.)
- Linear programs, semidefinite programs SDPs: Õ((√n + √m)sγ⁵) (Brandão et al., van Apeldoorn et al. 2016-18) LPs: Õ((√n + √m)γ³), Õ(sγ^{3.5}) (van Apeldoorn & G 2019) Zero-sum games: Õ((√n + √m)/ε³), Õ(s/ε^{3.5}) (van Apeldoorn & G 2019)
 Quantum interior point method (Kerenidis & Prakash 2018)

Convex optimization

- Regression / Linear equation solving (HHL, with quantum output):
 O(κspolylog(nmκ/ε)) (Harrow et al.; Ambainis; Childs et al.; Chakraborty et al.)
- ► Linear programs, semidefinite programs SDPs: $\widetilde{O}((\sqrt{n} + \sqrt{m})s\gamma^5)$ (Brandão et al., van Apeldoorn et al. 2016-18) LPs: $\widetilde{O}((\sqrt{n} + \sqrt{m})\gamma^3), \widetilde{O}(s\gamma^{3.5})$ (van Apeldoorn & G 2019) Zero-sum games: $\widetilde{O}((\sqrt{n} + \sqrt{m})/\varepsilon^3), \widetilde{O}(s/\varepsilon^{3.5})$ (van Apeldoorn & G 2019)
- Quantum interior point method (Kerenidis & Prakash 2018)
- Exponential speed-up for implementing separation oracles of convex bodies (van Apeldoorn et al. 2018; Chakrabarti et al. 2018)

Convex optimization

- Regression / Linear equation solving (HHL, with quantum output):
 O(κspolylog(nmκ/ε)) (Harrow et al.; Ambainis; Childs et al.; Chakraborty et al.)
- ► Linear programs, semidefinite programs SDPs: $\widetilde{O}((\sqrt{n} + \sqrt{m})s\gamma^5)$ (Brandão et al., van Apeldoorn et al. 2016-18) LPs: $\widetilde{O}((\sqrt{n} + \sqrt{m})\gamma^3), \widetilde{O}(s\gamma^{3.5})$ (van Apeldoorn & G 2019) Zero-sum games: $\widetilde{O}((\sqrt{n} + \sqrt{m})/\varepsilon^3), \widetilde{O}(s/\varepsilon^{3.5})$ (van Apeldoorn & G 2019)
- Quantum interior point method (Kerenidis & Prakash 2018)
- Exponential speed-up for implementing separation oracles of convex bodies (van Apeldoorn et al. 2018; Chakrabarti et al. 2018)
- Polynomial speed-up for estimating volumes of convex bodies (Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

Statistics and stochastic estimation algorithms

Quadratic speed-up for Monte-Carlo methods $O\left(\frac{\sigma}{\varepsilon}\right)$ (Montanaro 2015) Generalizes amplitude estimation (Brassard, Høyer, Mosca, Tapp 1998)

Statistics and stochastic estimation algorithms

- Quadratic speed-up for Monte-Carlo methods O(^σ/_ε) (Montanaro 2015)
 Generalizes amplitude estimation (Brassard, Høyer, Mosca, Tapp 1998)
- Testing equality of a distribution on [n] (with query complexity)
 To an unknown distribution O(n^{1/2}) (Bravyi, Hassidim, Harrow 2009; G, Li 2019)
 To a known distribution O(n^{1/3}) (Chakraborty, Fischer, Matsliah, de Wolf 2010)
- Estimating the (Shannon / von Neumann) entropy of a distribution on [n] Classical distribution: query complexity O(n^{1/2}) (Li & Wu 2017) Density operator: query complexity O(n) (G & Li 2019)

Statistics and stochastic estimation algorithms

- Quadratic speed-up for Monte-Carlo methods O(^σ/_ε) (Montanaro 2015)
 Generalizes amplitude estimation (Brassard, Høyer, Mosca, Tapp 1998)
- Testing equality of a distribution on [n] (with query complexity)
 To an unknown distribution O(n^{1/2}) (Bravyi, Hassidim, Harrow 2009; G, Li 2019)
 To a known distribution O(n^{1/3}) (Chakraborty, Fischer, Matsliah, de Wolf 2010)
- Estimating the (Shannon / von Neumann) entropy of a distribution on [n] Classical distribution: query complexity O(n^{1/2}) (Li & Wu 2017) Density operator: query complexity O(n) (G & Li 2019)
- Estimating the histogram to ε-precision
 Query and time complexity O(1/ε) (Apeldoorn 2020)