Quantum Algorithms for Second Order Cone Programming

lordanis Kerenidis ${ }^{1,2}$ Anupam Prakash ${ }^{2}$ Dániel Szilágyi ${ }^{1}$

${ }^{1}$ CNRS, IRIF, Université Paris Diderot, Paris France
${ }^{2}$ QC Ware, Palo Alto, CA.
March 2, 2020

Second Order Cones

- Lorentz cone: The n-dimensional Lorentz cone, for $n \geq 1$ is defined as $\mathcal{L}^{n}:=\left\{\vec{x}=\left(x_{0} ; \vec{x}\right) \in \mathbb{R}^{n} \mid x_{0} \geq\|\vec{x}\|\right\}$.

Second Order Cones

- Lorentz cone: The n-dimensional Lorentz cone, for $n \geq 1$ is defined as $\mathcal{L}^{n}:=\left\{\vec{x}=\left(x_{0} ; \vec{x}\right) \in \mathbb{R}^{n} \mid x_{0} \geq\|\vec{x}\|\right\}$.

- $\mathcal{L}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z^{2} \geq x^{2}+y^{2}\right\}$.

Second Order Cones

- Lorentz cone: The n-dimensional Lorentz cone, for $n \geq 1$ is defined as $\mathcal{L}^{n}:=\left\{\vec{x}=\left(x_{0} ; \vec{x}\right) \in \mathbb{R}^{n} \mid x_{0} \geq\|\vec{x}\|\right\}$.

- $\mathcal{L}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z^{2} \geq x^{2}+y^{2}\right\}$.
- $\mathcal{L}^{1}=\left\{x \in \mathbb{R} \mid x^{2} \geq 0\right\}$.

Second Order Cones

- Lorentz cone: The n-dimensional Lorentz cone, for $n \geq 1$ is defined as $\mathcal{L}^{n}:=\left\{\vec{x}=\left(x_{0} ; \vec{x}\right) \in \mathbb{R}^{n} \mid x_{0} \geq\|\vec{x}\|\right\}$.

- $\mathcal{L}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z^{2} \geq x^{2}+y^{2}\right\}$.
- $\mathcal{L}^{1}=\left\{x \in \mathbb{R} \mid x^{2} \geq 0\right\}$.
- Second order cone programs (SOCPs) have constraints of the form $\vec{x} \in \mathcal{L}^{n}$.
I.Kerenidis, A.Prakash, D.Szilágyi

Simons Workshop, Berkeley, CA.

Second Order Cone Programs

- A SOCP (Second Order Cone Program) is an optimization problem of the following form,

$$
\begin{array}{rc}
\min _{\vec{x}_{1}, \ldots, \vec{x}_{r}} & \vec{c}_{1}^{T} \vec{x}_{1}+\cdots+\vec{c}_{r}^{T} \vec{x}_{r} \\
\text { s.t. } & A^{(1)} \vec{x}_{1}+\cdots+A^{(r)} \vec{x}_{r}=\vec{b} \\
& \vec{x}_{i} \in \mathcal{L}^{n_{i}}, \forall i \in[r] . \tag{1}
\end{array}
$$

Second Order Cone Programs

- A SOCP (Second Order Cone Program) is an optimization problem of the following form,

$$
\begin{array}{rc}
\min _{\vec{x}_{1}, \ldots, \vec{x}_{r}} & \vec{c}_{1}^{T} \vec{x}_{1}+\cdots+\vec{c}_{r}^{T} \vec{x}_{r} \\
\text { s.t. } & A^{(1)} \vec{x}_{1}+\cdots+A^{(r)} \vec{x}_{r}=\vec{b} \\
& \vec{x}_{i} \in \mathcal{L}^{n_{i}}, \forall i \in[r] . \tag{1}
\end{array}
$$

- Constraint matrices $A^{(i)} \in \mathbb{R}^{m \times n_{i}}$ for $i \in[r]$ and $b \in \mathbb{R}^{m}$.

Second Order Cone Programs

- A SOCP (Second Order Cone Program) is an optimization problem of the following form,

$$
\begin{array}{rc}
\min _{\vec{x}_{1}, \ldots, \vec{x}_{r}} & \vec{c}_{1}^{T} \vec{x}_{1}+\cdots+\vec{c}_{r}^{T} \vec{x}_{r} \\
\text { s.t. } & A^{(1)} \vec{x}_{1}+\cdots+A^{(r)} \vec{x}_{r}=\vec{b} \\
& \vec{x}_{i} \in \mathcal{L}^{n_{i}}, \forall i \in[r] . \tag{1}
\end{array}
$$

- Constraint matrices $A^{(i)} \in \mathbb{R}^{m \times n_{i}}$ for $i \in[r]$ and $b \in \mathbb{R}^{m}$.
- The number of Lorentz constraints r is the rank of the SOCP.

Second Order Cone Programs

- A SOCP (Second Order Cone Program) is an optimization problem of the following form,

$$
\begin{array}{rc}
\min _{\vec{x}_{1}, \ldots, \vec{x}_{r}} & \vec{c}_{1}^{T} \vec{x}_{1}+\cdots+\vec{c}_{r}^{T} \vec{x}_{r} \\
\text { s.t. } & A^{(1)} \vec{x}_{1}+\cdots+A^{(r)} \vec{x}_{r}=\vec{b} \\
& \vec{x}_{i} \in \mathcal{L}^{n_{i}}, \forall i \in[r] . \tag{1}
\end{array}
$$

- Constraint matrices $A^{(i)} \in \mathbb{R}^{m \times n_{i}}$ for $i \in[r]$ and $b \in \mathbb{R}^{m}$.
- The number of Lorentz constraints r is the rank of the SOCP.
- The sum of dimensions of the vectors, $n:=\sum_{i} n_{i}$ is the dimension of the SOCP.

Second Order Cone Programs

- The SOCP can be written as an optimization problem over $\mathcal{L}=\prod_{i \in[r]} \mathcal{L}^{n_{i}}$ by concatenating vectors x_{i}, c_{i} and matrices A^{i}.

Second Order Cone Programs

- The SOCP can be written as an optimization problem over $\mathcal{L}=\prod_{i \in[r]} \mathcal{L}^{n_{i}}$ by concatenating vectors x_{i}, c_{i} and matrices A^{i}.
- Standard form of primal and dual SOCP,

$$
\begin{array}{cl}
\min \vec{c}^{\top} \vec{x} & \max \vec{b}^{T} \vec{y} \\
A \vec{x}=\vec{b} & A^{T} \vec{y}+\vec{s}=\vec{c} \\
\vec{x} \in \mathcal{L} & \vec{s} \in \mathcal{L}, \vec{y} \in \mathbb{R}^{m}
\end{array}
$$

Second Order Cone Programs

- The SOCP can be written as an optimization problem over $\mathcal{L}=\prod_{i \in[r]} \mathcal{L}^{n_{i}}$ by concatenating vectors x_{i}, c_{i} and matrices A^{i}.
- Standard form of primal and dual SOCP,

$$
\begin{array}{cl}
\min \vec{c}^{\top} \vec{x} & \max \vec{b}^{T} \vec{y} \\
A \vec{x}=\vec{b} & A^{T} \vec{y}+\vec{s}=\vec{c} \\
\vec{x} \in \mathcal{L} & \vec{s} \in \mathcal{L}, \vec{y} \in \mathbb{R}^{m} \tag{2}
\end{array}
$$

- SOCPs generalize Linear Programs (LPs) and Convex Quadratic Programs (QPs).

Second Order Cone Programs

- The SOCP can be written as an optimization problem over $\mathcal{L}=\prod_{i \in[r]} \mathcal{L}^{n_{i}}$ by concatenating vectors x_{i}, c_{i} and matrices A^{i}.
- Standard form of primal and dual SOCP,

$$
\begin{array}{cl}
\min \vec{c}^{T} \vec{x} & \max \vec{b}^{T} \vec{y} \\
A \vec{x}=\vec{b} & A^{T} \vec{y}+\vec{s}=\vec{c} \\
\vec{x} \in \mathcal{L} & \vec{s} \in \mathcal{L}, \vec{y} \in \mathbb{R}^{m} \tag{2}
\end{array}
$$

- SOCPs generalize Linear Programs (LPs) and Convex Quadratic Programs (QPs).
- The running time for classical SOCP algorithms is given in terms of n, r and the duality gap ϵ.

Reducing SVM to SOCP

- Support Vector Machines (SVM) are one of the most important classification algorithms in Machine Learning.

Reducing SVM to SOCP

- Support Vector Machines (SVM) are one of the most important classification algorithms in Machine Learning.
- Standard form of the SVM,

$$
\begin{gather*}
\min \|w\|^{2}+C\|\xi\|_{1} \\
y_{i}\left(w^{\top} x_{i}+b\right) \geq 1-\xi_{i} \\
\xi \geq 0 \tag{3}
\end{gather*}
$$

Reducing SVM to SOCP

- Support Vector Machines (SVM) are one of the most important classification algorithms in Machine Learning.
- Standard form of the SVM,

$$
\begin{gather*}
\min \|w\|^{2}+C\|\xi\|_{1} \\
y_{i}\left(w^{T} x_{i}+b\right) \geq 1-\xi_{i} \\
\xi \geq 0 \tag{3}
\end{gather*}
$$

- The Lorentz constraint $\mathbf{t}:=(t+1, t, w) \in \mathcal{L}^{n+2}$ is equivalent to $(2 t+1) \geq\|w\|^{2}$, thus linearizing the quadratic constraint.

Reducing SVM to SOCP

- Support Vector Machines (SVM) are one of the most important classification algorithms in Machine Learning.
- Standard form of the SVM,

$$
\begin{gather*}
\min \|w\|^{2}+C\|\xi\|_{1} \\
y_{i}\left(w^{\top} x_{i}+b\right) \geq 1-\xi_{i} \\
\xi \geq 0 \tag{3}
\end{gather*}
$$

- The Lorentz constraint $\mathbf{t}:=(t+1, t, w) \in \mathcal{L}^{n+2}$ is equivalent to $(2 t+1) \geq\|w\|^{2}$, thus linearizing the quadratic constraint.
- The SVM reduces to an SOCP with variables $\mathbf{t} \in \mathcal{L}^{n+2}$ and $\xi_{i} \in \mathcal{L}^{1}$ with $r=n+m+2$.

Main Results

- (Ben Tal-Nemirovski) There is a classical SOCP interior point method (IPM) based SOCP solver with running time $O\left(\sqrt{r} n^{\omega} \log (n / \epsilon)\right)$.

Main Results

- (Ben Tal-Nemirovski) There is a classical SOCP interior point method (IPM) based SOCP solver with running time $O\left(\sqrt{r} n^{\omega} \log (n / \epsilon)\right)$.

Theorem

There is a quantum IPM for SOCPs with running time $O\left(n^{1.5} \sqrt{r} \frac{\kappa}{\delta^{2}} \log (1 / \epsilon)\right)$ where δ bounds the distance of the intermediate solutions from the cone boundary, κ is the condition number of intermediate matrices and ϵ is the duality gap.

Main Results

- (Ben Tal-Nemirovski) There is a classical SOCP interior point method (IPM) based SOCP solver with running time $O\left(\sqrt{r} n^{\omega} \log (n / \epsilon)\right)$.

Theorem

There is a quantum IPM for SOCPs with running time $O\left(n^{1.5} \sqrt{r} \frac{\kappa}{\delta^{2}} \log (1 / \epsilon)\right)$ where δ bounds the distance of the intermediate solutions from the cone boundary, κ is the condition number of intermediate matrices and ϵ is the duality gap.

- Experimental results on random SVM instances: The quantum algorithm scales as $O\left(n^{k}\right)$ where $k \in[2.56,2.62]$ with high probability while an external SOCP solver scales as $O\left(n^{3.31}\right)$.

Jordan Algebras: The Spin factor

- Formally real Jordan algebra satisfies the axioms: (i) $x y=y x$. (ii) $x^{p} x^{q}=x^{p+q}$. (ii) $\sum_{i} x_{i}^{2}=0 \Rightarrow x_{i}=0$.

Jordan Algebras: The Spin factor

- Formally real Jordan algebra satisfies the axioms: (i) $x y=y x$.
(ii) $x^{p} x^{q}=x^{p+q}$. (ii) $\sum_{i} x_{i}^{2}=0 \Rightarrow x_{i}=0$.
- (Jordan, Von Neumann, Wigner 34): Classified finite dimensional formally real Jordan algebras into 5 families.

Jordan Algebras: The Spin factor

- Formally real Jordan algebra satisfies the axioms: (i) $x y=y x$. (ii) $x^{p} x^{q}=x^{p+q}$. (ii) $\sum_{i} x_{i}^{2}=0 \Rightarrow x_{i}=0$.
- (Jordan, Von Neumann, Wigner 34): Classified finite dimensional formally real Jordan algebras into 5 families.
- Special Jordan algebra: Algebra of matrices with product defined as $x \circ y=(x y+y x) / 2$.

Jordan Algebras: The Spin factor

- Formally real Jordan algebra satisfies the axioms: (i) $x y=y x$.
(ii) $x^{p} x^{q}=x^{p+q}$. (ii) $\sum_{i} x_{i}^{2}=0 \Rightarrow x_{i}=0$.
- (Jordan, Von Neumann, Wigner 34): Classified finite dimensional formally real Jordan algebras into 5 families.
- Special Jordan algebra: Algebra of matrices with product defined as $x \circ y=(x y+y x) / 2$.
- The spin factor is a Jordan algebra on \mathbb{R}^{n} with product defined as,

$$
\vec{u} \circ \vec{v}=\left(u_{0}, \tilde{u}\right) \circ\left(v_{0}, \tilde{v}\right):=\left(\vec{u}^{T} \vec{v}, u_{0} \tilde{v}+v_{0} \tilde{u}\right)
$$

Jordan Algebras: The Spin factor

- Formally real Jordan algebra satisfies the axioms: (i) $x y=y x$. (ii) $x^{p} x^{q}=x^{p+q}$. (ii) $\sum_{i} x_{i}^{2}=0 \Rightarrow x_{i}=0$.
- (Jordan, Von Neumann, Wigner 34): Classified finite dimensional formally real Jordan algebras into 5 families.
- Special Jordan algebra: Algebra of matrices with product defined as $x \circ y=(x y+y x) / 2$.
- The spin factor is a Jordan algebra on \mathbb{R}^{n} with product defined as,

$$
\vec{u} \circ \vec{v}=\left(u_{0}, \tilde{u}\right) \circ\left(v_{0}, \tilde{v}\right):=\left(\vec{u}^{T} \vec{v}, u_{0} \tilde{v}+v_{0} \tilde{u}\right)
$$

- The identity element is $\vec{e}:=\left(1 ; 0^{n}\right)$.

Jordan product, Arrow matrices

- The Jordan product is a linear operation, it has a matrix representation,

$$
\vec{u} \circ \vec{v}=\left[\begin{array}{cc}
u_{0} & \tilde{u}^{T} \\
\tilde{u} & u_{0} I_{n-1}
\end{array}\right] \vec{v}:=\operatorname{Arw}(u) \vec{v}
$$

Jordan product, Arrow matrices

- The Jordan product is a linear operation, it has a matrix representation,

$$
\vec{u} \circ \vec{v}=\left[\begin{array}{cc}
u_{0} & \tilde{u}^{T} \\
\tilde{u} & u_{0} I_{n-1}
\end{array}\right] \vec{v}:=\operatorname{Arw}(u) \vec{v}
$$

- The Jordan product and the Arrow matrices can be extended blockwise,

$$
\left(\vec{u}_{1} ; \ldots ; \vec{u}_{r}\right) \circ\left(\vec{v}_{1} ; \ldots ; \vec{v}_{r}\right):=\left(\vec{u}_{1} \circ \vec{v}_{1} ; \ldots ; \vec{u}_{r} \circ \vec{v}_{r}\right) .
$$

Jordan product, Arrow matrices

- The Jordan product is a linear operation, it has a matrix representation,

$$
\vec{u} \circ \vec{v}=\left[\begin{array}{cc}
u_{0} & \tilde{u}^{T} \\
\tilde{u} & u_{0} I_{n-1}
\end{array}\right] \vec{v}:=\operatorname{Arw}(u) \vec{v}
$$

- The Jordan product and the Arrow matrices can be extended blockwise,

$$
\left(\vec{u}_{1} ; \ldots ; \vec{u}_{r}\right) \circ\left(\vec{v}_{1} ; \ldots ; \vec{v}_{r}\right):=\left(\vec{u}_{1} \circ \vec{v}_{1} ; \ldots ; \vec{u}_{r} \circ \vec{v}_{r}\right) .
$$

- The well structured arrow matrices make the linear systems that arise in the IPM for SOCPs simpler than those for SDPs.

Interior Point Method for SOCP

- The central path for the SOCP is parametrized by $\nu>0$ and is characterized by feasibility and complementary slackness conditions,

$$
\begin{align*}
A \vec{x} & =\vec{b} \\
A^{T} \vec{y}+\vec{s} & =\vec{c} \tag{4}\\
\vec{x} \circ \vec{s} & =\nu \vec{e},
\end{align*}
$$

Interior Point Method for SOCP

- The central path for the SOCP is parametrized by $\nu>0$ and is characterized by feasibility and complementary slackness conditions,

$$
\begin{align*}
A \vec{x} & =\vec{b} \\
A^{T} \vec{y}+\vec{s} & =\vec{c} \tag{4}\\
\vec{x} \circ \vec{s} & =\nu \vec{e},
\end{align*}
$$

- The central path converges to the optimal solution as $\nu \rightarrow 0$.

Interior Point Method for SOCP

- The central path for the SOCP is parametrized by $\nu>0$ and is characterized by feasibility and complementary slackness conditions,

$$
\begin{align*}
A \vec{x} & =\vec{b} \\
A^{T} \vec{y}+\vec{s} & =\vec{c} \tag{4}\\
\vec{x} \circ \vec{s} & =\nu \vec{e},
\end{align*}
$$

- The central path converges to the optimal solution as $\nu \rightarrow 0$.
- A single iteration of the IPM finds $\Delta \vec{x}, \Delta \vec{y}, \Delta \vec{s}$ such that $\vec{x}+\Delta \vec{x}, \vec{y}+\Delta \vec{y}$ and $\vec{s}+\Delta \vec{s}$ are close to the central path for $\nu^{\prime}=\sigma \nu$.

Interior Point Method for SOCP

- Linearizing the last equation and neglecting the term $\Delta \vec{x} \circ \Delta \vec{s}$ we get,

$$
\vec{x} \circ \vec{s}+\vec{x} \circ \Delta \vec{s}+\vec{s} \circ \Delta \vec{x}=\sigma \nu \vec{e} .
$$

Interior Point Method for SOCP

- Linearizing the last equation and neglecting the term $\Delta \vec{x} \circ \Delta \vec{s}$ we get,

$$
\vec{x} \circ \vec{s}+\vec{x} \circ \Delta \vec{s}+\vec{s} \circ \Delta \vec{x}=\sigma \nu \vec{e} .
$$

- We thus obtain the Newton linear system for SOCPs,

$$
\left[\begin{array}{ccc}
A & 0 & 0 \tag{5}\\
0 & A^{T} & l \\
\operatorname{Arw}(\vec{s}) & 0 & \operatorname{Arw}(\vec{x})
\end{array}\right]\left[\begin{array}{c}
\Delta \vec{x} \\
\Delta \vec{y} \\
\Delta \vec{s}
\end{array}\right]=\left[\begin{array}{c}
\vec{b}-A \vec{x} \\
\vec{c}-\vec{s}-A^{T} \vec{y} \\
\sigma \nu \vec{e}-\vec{x} \circ \vec{s}
\end{array}\right]
$$

Interior Point Method for SOCP

- Linearizing the last equation and neglecting the term $\Delta \vec{x} \circ \Delta \vec{s}$ we get,

$$
\vec{x} \circ \vec{s}+\vec{x} \circ \Delta \vec{s}+\vec{s} \circ \Delta \vec{x}=\sigma \nu \vec{e} .
$$

- We thus obtain the Newton linear system for SOCPs,

$$
\left[\begin{array}{ccc}
A & 0 & 0 \tag{5}\\
0 & A^{T} & l \\
\operatorname{Arw}(\vec{s}) & 0 & \operatorname{Arw}(\vec{x})
\end{array}\right]\left[\begin{array}{c}
\Delta \vec{x} \\
\Delta \vec{y} \\
\Delta \vec{s}
\end{array}\right]=\left[\begin{array}{c}
\vec{b}-A \vec{x} \\
\vec{c}-\vec{s}-A^{T} \vec{y} \\
\sigma \nu \vec{e}-\vec{x} \circ \vec{s}
\end{array}\right]
$$

- Analysis shows that if (x, y, s) is in a neighborhood \mathcal{N} of the central path at ν, then $\vec{x}+\Delta \vec{x}, \vec{y}+\Delta \vec{y}, \vec{s}+\Delta \vec{s}$ remains feasible and in \mathcal{N} at ν^{\prime}.

Quantum Interior Point Method

- Quantum IPM uses quantum linear system solver to solve the Newton linear system and tomography to reconstruct the solutions.

Quantum Interior Point Method

- Quantum IPM uses quantum linear system solver to solve the Newton linear system and tomography to reconstruct the solutions.
- (Quantum data structures) Efficient unitary block encodings $\left[\begin{array}{cc}A / \mu & . \\ . & .\end{array}\right]$ can be constructed/updated in linear time.

Quantum Interior Point Method

- Quantum IPM uses quantum linear system solver to solve the Newton linear system and tomography to reconstruct the solutions.
- (Quantum data structures) Efficient unitary block encodings $\left[\begin{array}{cc}A / \mu & . \\ . & .\end{array}\right]$ can be constructed/updated in linear time.
- (Chakraborty, Gilyén, Jeffery 18): Given block encodings for input matrix A, the quantum linear system can be solved in time $O(\sqrt{n} \kappa \log (1 / \epsilon))$.

Quantum Interior Point Method

- Quantum IPM uses quantum linear system solver to solve the Newton linear system and tomography to reconstruct the solutions.
- (Quantum data structures) Efficient unitary block encodings $\left[\begin{array}{cc}A / \mu & . \\ . & .\end{array}\right]$ can be constructed/updated in linear time.
- (Chakraborty, Gilyén, Jeffery 18): Given block encodings for input matrix A, the quantum linear system can be solved in time $O(\sqrt{n} \kappa \log (1 / \epsilon))$.
- (Kerenidis, P. 18): The output of quantum linear system $|x\rangle=\left|A^{-1} b\right\rangle$ can be reconstructed in time $O\left(n \log n / \epsilon^{2}\right)$ queries to obtain \tilde{x} such that $\|\tilde{x}-x\|_{2} \leq \epsilon\|x\|_{2}$.

Analysis of QIPM

- Jordan algebra provides a dictionary/framework to transfer concepts from the analysis for the SDP to the SOCP setting.

Analysis of QIPM

- Jordan algebra provides a dictionary/framework to transfer concepts from the analysis for the SDP to the SOCP setting.
- We can define a spectral decomposition for vectors,

$$
\vec{x}=\frac{1}{2}\left(x_{0}+\|\tilde{x}\|\right)\left[\begin{array}{c}
1 \tag{6}\\
\tilde{\tilde{x}} \| \\
\|x\|
\end{array}\right]+\frac{1}{2}\left(x_{0}-\|\tilde{x}\|\right)\left[\begin{array}{c}
1 \\
-\frac{\tilde{x}}{\|\tilde{x}\|}
\end{array}\right]
$$

Analysis of QIPM

- Jordan algebra provides a dictionary/framework to transfer concepts from the analysis for the SDP to the SOCP setting.
- We can define a spectral decomposition for vectors,

$$
\vec{x}=\frac{1}{2}\left(x_{0}+\|\tilde{x}\|\right)\left[\begin{array}{c}
1 \tag{6}\\
\tilde{x} \\
\|\tilde{x}\|
\end{array}\right]+\frac{1}{2}\left(x_{0}-\|\tilde{x}\|\right)\left[\begin{array}{c}
1 \\
-\frac{\tilde{x}}{\|\tilde{x}\|}
\end{array}\right]
$$

- We can thus define $\|x\|_{2},\|x\|_{F}$ and prove familiar inequalities like $\|x \circ y\|_{F} \leq\|x\|_{2}\|y\|_{F}$.

Analysis of QIPM

- Jordan algebra provides a dictionary/framework to transfer concepts from the analysis for the SDP to the SOCP setting.
- We can define a spectral decomposition for vectors,

$$
\vec{x}=\frac{1}{2}\left(x_{0}+\|\tilde{x}\|\right)\left[\begin{array}{c}
1 \tag{6}\\
\tilde{x} \\
\|\tilde{x}\|
\end{array}\right]+\frac{1}{2}\left(x_{0}-\|\tilde{x}\|\right)\left[\begin{array}{c}
1 \\
-\frac{\tilde{x}}{\|\tilde{x}\|}
\end{array}\right]
$$

- We can thus define $\|x\|_{2},\|x\|_{F}$ and prove familiar inequalities like $\|x \circ y\|_{F} \leq\|x\|_{2}\|y\|_{F}$.
- Matrix scaling $Y \rightarrow X Y X$ has the Jordan algebra analog $2 \operatorname{Arw}^{2}(x)-\operatorname{Arw}\left(x^{2}\right)$.

Experiments: Random SVM Instances

- Generate m points $\left\{\vec{x}_{i} \in \mathbb{R}^{n} \mid i \in[m]\right\}$ in the unit hypercube $[-1,1]^{n}$.
- Generate a random unit vector $\vec{w} \in \mathbb{R}^{n}$ and assign labels to the points as $y^{(i)}=\operatorname{sgn}\left(\vec{w}^{T} \vec{x}^{(i)}\right)$.
- Corrupt a fixed proportion p of the labels, by flipping the sign of each $y^{(i)}$ with probability p.
- Shift the entire dataset by a vector $\vec{d} \sim \mathcal{N}(0,2 I)$, where $\mathcal{N}(\mu, \Sigma)$ denotes the multivariate normal distribution with mean μ and covariance Σ.
- Generate instances from $\operatorname{SVM}(n, 2 n, p)$ with n uniform in $\left[2,2^{9}\right]$ and p uniform from $\{0,0.1, \cdots, 0.9,1\}$.

Experiments: Comparisons with classical ALGORITHMS

- We compare with classical algorithms on $\operatorname{SVM}(n, 2 n, p)$ instances for $\epsilon=0.1$ where these algorithms achieve high accuracy.
- SOCP solver (ECOS) scales empirically as $O\left(n^{3.314}\right)$, this is consistent with using a Strassen like algorithm with exponent 2.8.
- LIBSVM with linear kernel scales empirically as $O\left(n^{3.112}\right)$, it is consistent with state-of-the-art alternate approaches to SVM.
- The running time $\frac{n^{2} \kappa}{\delta^{2}}$ for the quantum IPM empirically scales as $O\left(n^{2.591}\right)$ with a 95% confidence interval $[2.56,2.62]$.

Experiments

- The classification accuracy for the quantum algorithm is similar to that of the classical algorithms.
I.Kerenidis, A.Prakash, D.Szilágyi

Simons Workshop, Berkeley, CA.

Conclusions

- Experiments indicate that the quantum IPM achieves a polynomial speedup for solving SOCPs with low and medium precision.
- For random SVM instances, it achieves a polynomial speedup with no detriment to the quality of the trained classifier.
- Similar results for the constrained portfolio optimization problem.
- Conclusion: Quantum optimization methods can achieve polynomial speedups for longer term algorithms.
- Open question: Improvements to the quantum IPM using tomography with ℓ_{∞} guarantees?

Portfolio Optimization

- Portfolio optimization is the theory of optimal investment of wealth in assets that differ in expected return and risk [Markovitz 1952].
- Let $R(t) \in \mathbb{R}^{m}$ be returns for m assets over time epochs $t \in[T]$. Then, expected reward and risk can be estimated as,

$$
\begin{aligned}
\mu & =\frac{1}{T} \sum_{t \in[T]} R(t) \\
\Sigma & =\frac{1}{T-1} \sum_{t \in[T]}(R(t)-\mu)(R(t)-\mu)^{T}
\end{aligned}
$$

- A portfolio is specified by $x \in \mathbb{R}^{m}$ with x_{j} being the investment in asset j.
- The expected reward and risk for x are $\mu^{T} x$ and $x^{T} \Sigma x$ respectively.
I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

Portfolio Optimization

- Unconstrained portfolio optimization: Find portfolio that minimizes risk for a given reward.
- Constrained portfolio optimization: There are positivity $x_{j} \geq 0$ and budget constraints $C x \geq d$. Introducing slack variables $s=C x-d, s \geq 0$.
- The Constrained Portfolio Optimization problem reduces to SOCP,

$$
\begin{array}{ll}
\min & x^{T} \Sigma x \\
\text { s.t. } & \mu^{T} x=R \tag{7}\\
& A x=b \\
& x \geq 0 .
\end{array}
$$

- (Lloyd-Rebentrost). The unconstrained problem is a least squares problem and has a closed form solution using a single linear system solver.
I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

Experiments: Constrained Portfolio Optimization

- cvxPortfolio dataset: Stocks for the S\&P-500 companies for each day over a period of 9 years (2007-2016).
- Subsample 100 companies and consider random interval of t days where t is uniform on $[10,500]$. Add positivity constraints on portfolio.
- Quantum algorithm can be simulated by adding Gaussian noise of magnitude δ, the duality gap $\epsilon=0.1$ due to market stochasticity.

Experiments

- Observed complexity for $\epsilon=0.1$ and power law fit for random portfolio optimization instances.

I.Kerenidis, A.Prakash, D.Szilágyi
Simons Workshop, Berkeley, CA.

