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Second Order Cones

Lorentz cone: The n-dimensional Lorentz cone, for n ≥ 1 is
defined as Ln := {~x = (x0; ~x) ∈ Rn | x0 ≥ ‖~x‖}.

L3 = {(x , y , z) ∈ R3 | z2 ≥ x2 + y2}.
L1 = {x ∈ R | x2 ≥ 0}.
Second order cone programs (SOCPs) have constraints of the
form ~x ∈ Ln.
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Second Order Cone Programs

A SOCP (Second Order Cone Program) is an optimization
problem of the following form,

min
~x1,...,~xr

~cT1 ~x1 + · · ·+ ~cTr ~xr

s.t. A(1)~x1 + · · ·+ A(r)~xr = ~b

~xi ∈ Lni , ∀i ∈ [r ]. (1)

Constraint matrices A(i) ∈ Rm×ni for i ∈ [r ] and b ∈ Rm.

The number of Lorentz constraints r is the rank of the SOCP.

The sum of dimensions of the vectors, n :=
∑

i ni is the
dimension of the SOCP.
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I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.



Second Order Cone Programs

A SOCP (Second Order Cone Program) is an optimization
problem of the following form,

min
~x1,...,~xr

~cT1 ~x1 + · · ·+ ~cTr ~xr

s.t. A(1)~x1 + · · ·+ A(r)~xr = ~b

~xi ∈ Lni , ∀i ∈ [r ]. (1)

Constraint matrices A(i) ∈ Rm×ni for i ∈ [r ] and b ∈ Rm.

The number of Lorentz constraints r is the rank of the SOCP.

The sum of dimensions of the vectors, n :=
∑

i ni is the
dimension of the SOCP.
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Second Order Cone Programs

The SOCP can be written as an optimization problem over
L =

∏
i∈[r ] Lni by concatenating vectors xi , ci and matrices Ai .

Standard form of primal and dual SOCP,

min ~cT~x max ~bT~y

A~x = ~b AT~y + ~s = ~c

~x ∈ L ~s ∈ L, ~y ∈ Rm (2)

SOCPs generalize Linear Programs (LPs) and Convex
Quadratic Programs (QPs).

The running time for classical SOCP algorithms is given in
terms of n, r and the duality gap ε.
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Reducing SVM to SOCP

Support Vector Machines (SVM) are one of the most
important classification algorithms in Machine Learning.

Standard form of the SVM,

min ‖w‖2 + C ‖ξ‖1

yi (w
T xi + b) ≥ 1− ξi

ξ ≥ 0 (3)

The Lorentz constraint t := (t + 1, t,w) ∈ Ln+2 is equivalent
to (2t + 1) ≥ ‖w‖2, thus linearizing the quadratic constraint.

The SVM reduces to an SOCP with variables t ∈ Ln+2 and
ξi ∈ L1 with r = n + m + 2.
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Main Results

(Ben Tal-Nemirovski) There is a classical SOCP interior point
method (IPM) based SOCP solver with running time
O(
√
rnω log(n/ε)).

Theorem

There is a quantum IPM for SOCPs with running time
O(n1.5√r κ

δ2 log(1/ε)) where δ bounds the distance of the
intermediate solutions from the cone boundary, κ is the condition
number of intermediate matrices and ε is the duality gap.

Experimental results on random SVM instances: The quantum
algorithm scales as O(nk) where k ∈ [2.56, 2.62] with high
probability while an external SOCP solver scales as O(n3.31).
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Jordan Algebras: The Spin factor

Formally real Jordan algebra satisfies the axioms: (i) xy = yx .
(ii) xpxq = xp+q. (ii)

∑
i x

2
i = 0⇒ xi = 0.

(Jordan, Von Neumann, Wigner 34): Classified finite
dimensional formally real Jordan algebras into 5 families.

Special Jordan algebra: Algebra of matrices with product
defined as x ◦ y = (xy + yx)/2.

The spin factor is a Jordan algebra on Rn with product
defined as,

~u ◦ ~v = (u0, ũ) ◦ (v0, ṽ) := (~uT~v , u0ṽ + v0ũ)

The identity element is ~e := (1; 0n).
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Jordan product, Arrow matrices

The Jordan product is a linear operation, it has a matrix
representation,

~u ◦ ~v =

[
u0 ũT

ũ u0In−1

]
~v := Arw(u)~v

The Jordan product and the Arrow matrices can be extended
blockwise,

(~u1; . . . ; ~ur ) ◦ (~v1; . . . ; ~vr ) := (~u1 ◦ ~v1; . . . ; ~ur ◦ ~vr ).

The well structured arrow matrices make the linear systems
that arise in the IPM for SOCPs simpler than those for SDPs.
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Interior Point Method for SOCP

The central path for the SOCP is parametrized by ν > 0 and
is characterized by feasibility and complementary slackness
conditions,

A~x = ~b

AT~y + ~s = ~c (4)

~x ◦ ~s = ν~e,

The central path converges to the optimal solution as ν → 0.

A single iteration of the IPM finds ∆~x ,∆~y ,∆~s such that
~x + ∆~x , ~y + ∆~y and ~s + ∆~s are close to the central path for
ν ′ = σν.
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Interior Point Method for SOCP

Linearizing the last equation and neglecting the term ∆~x ◦∆~s
we get,

~x ◦ ~s + ~x ◦∆~s + ~s ◦∆~x = σν~e.

We thus obtain the Newton linear system for SOCPs, A 0 0
0 AT I

Arw(~s) 0 Arw(~x)

∆~x
∆~y
∆~s

 =

 ~b − A~x
~c − ~s − AT~y
σν~e − ~x ◦ ~s

 (5)

Analysis shows that if (x , y , s) is in a neighborhood N of the
central path at ν, then ~x + ∆~x , ~y + ∆~y , ~s + ∆~s remains
feasible and in N at ν ′.
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Quantum Interior Point Method

Quantum IPM uses quantum linear system solver to solve the
Newton linear system and tomography to reconstruct the
solutions.

(Quantum data structures) Efficient unitary block encodings[
A/µ .
. .

]
can be constructed/updated in linear time.

(Chakraborty, Gilyén, Jeffery 18 ): Given block encodings for
input matrix A, the quantum linear system can be solved in
time O(

√
nκ log(1/ε)).

(Kerenidis, P. 18): The output of quantum linear system
|x〉 = |A−1b〉 can be reconstructed in time O(n log n/ε2)
queries to obtain x̃ such that ‖x̃ − x‖2 ≤ ε ‖x‖2.
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Analysis of QIPM

Jordan algebra provides a dictionary/framework to transfer
concepts from the analysis for the SDP to the SOCP setting.

We can define a spectral decomposition for vectors,

~x =
1

2
(x0 + ‖x̃‖)

[
1
x̃
‖x̃‖

]
+

1

2
(x0 − ‖x̃‖)

[
1

− x̃
‖x̃‖

]
(6)

We can thus define ‖x‖2, ‖x‖F and prove familiar inequalities
like ‖x ◦ y‖F ≤ ‖x‖2 ‖y‖F .

Matrix scaling Y → XYX has the Jordan algebra analog
2Arw2(x)− Arw(x2).
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I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.



Analysis of QIPM

Jordan algebra provides a dictionary/framework to transfer
concepts from the analysis for the SDP to the SOCP setting.

We can define a spectral decomposition for vectors,
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Experiments: Random SVM Instances

Generate m points {~xi ∈ Rn | i ∈ [m]} in the unit hypercube
[−1, 1]n.

Generate a random unit vector ~w ∈ Rn and assign labels to
the points as y (i) = sgn(~wT~x (i)).

Corrupt a fixed proportion p of the labels, by flipping the sign
of each y (i) with probability p.

Shift the entire dataset by a vector ~d ∼ N (0, 2I ), where
N (µ,Σ) denotes the multivariate normal distribution with
mean µ and covariance Σ.

Generate instances from SVM(n, 2n, p) with n uniform in
[2, 29] and p uniform from {0, 0.1, · · · , 0.9, 1}.
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Experiments: Comparisons with classical
algorithms

We compare with classical algorithms on SVM(n, 2n, p)
instances for ε = 0.1 where these algorithms achieve high
accuracy.

SOCP solver (ECOS) scales empirically as O(n3.314), this is
consistent with using a Strassen like algorithm with exponent
2.8.

LIBSVM with linear kernel scales empirically as O(n3.112), it is
consistent with state-of-the-art alternate approaches to SVM.

The running time n2κ
δ2 for the quantum IPM empirically scales

as O(n2.591) with a 95% confidence interval [2.56, 2.62].
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Experiments

The classification accuracy for the quantum algorithm is
similar to that of the classical algorithms.
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Conclusions

Experiments indicate that the quantum IPM achieves a
polynomial speedup for solving SOCPs with low and medium
precision.

For random SVM instances, it achieves a polynomial speedup
with no detriment to the quality of the trained classifier.

Similar results for the constrained portfolio optimization
problem.

Conclusion: Quantum optimization methods can achieve
polynomial speedups for longer term algorithms.

Open question: Improvements to the quantum IPM using
tomography with `∞ guarantees?
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Portfolio Optimization

Portfolio optimization is the theory of optimal investment of
wealth in assets that differ in expected return and risk
[Markovitz 1952].

Let R(t) ∈ Rm be returns for m assets over time epochs
t ∈ [T ]. Then, expected reward and risk can be estimated as,

µ =
1

T

∑
t∈[T ]

R(t)

Σ =
1

T − 1

∑
t∈[T ]

(R(t)− µ)(R(t)− µ)T

A portfolio is specified by x ∈ Rm with xj being the
investment in asset j .

The expected reward and risk for x are µT x and xTΣx
respectively.
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Portfolio Optimization

Unconstrained portfolio optimization: Find portfolio that
minimizes risk for a given reward.

Constrained portfolio optimization: There are positivity xj ≥ 0
and budget constraints Cx ≥ d . Introducing slack variables
s = Cx − d , s ≥ 0.

The Constrained Portfolio Optimization problem reduces to
SOCP,

min xTΣx
s.t. µT x = R

Ax = b
x ≥ 0.

(7)

(Lloyd-Rebentrost). The unconstrained problem is a least
squares problem and has a closed form solution using a single
linear system solver.
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Experiments: Constrained Portfolio
Optimization

cvxPortfolio dataset: Stocks for the S&P-500 companies for
each day over a period of 9 years (2007-2016).

Subsample 100 companies and consider random interval of t
days where t is uniform on [10,500]. Add positivity constraints
on portfolio.

Quantum algorithm can be simulated by adding Gaussian
noise of magnitude δ, the duality gap ε = 0.1 due to market
stochasticity.
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Experiments

Observed complexity for ε = 0.1 and power law fit for random
portfolio optimization instances.
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