QUANTUM ALGORITHMS FOR SECOND ORDER CONE PROGRAMMING

Iordanis Kerenidis^{1,2} Anupam Prakash² Dániel Szilágyi¹

¹CNRS, IRIF, Université Paris Diderot, Paris France

²QC Ware, Palo Alto, CA.

March 2, 2020

イロト 不得 トイヨト イヨト 三日

Lorentz cone: The *n*-dimensional Lorentz cone, for n ≥ 1 is defined as Lⁿ := {x = (x₀; x) ∈ ℝⁿ | x₀ ≥ ||x||}.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

э

Lorentz cone: The *n*-dimensional Lorentz cone, for n ≥ 1 is defined as Lⁿ := {x = (x₀; x) ∈ ℝⁿ | x₀ ≥ ||x||}.

э

•
$$\mathcal{L}^3 = \{(x, y, z) \in \mathbb{R}^3 \mid z^2 \ge x^2 + y^2\}.$$

Lorentz cone: The *n*-dimensional Lorentz cone, for n ≥ 1 is defined as Lⁿ := {x = (x₀; x) ∈ ℝⁿ | x₀ ≥ ||x||}.

• $\mathcal{L}^3 = \{(x, y, z) \in \mathbb{R}^3 \mid z^2 \ge x^2 + y^2\}.$ • $\mathcal{L}^1 = \{x \in \mathbb{R} \mid x^2 \ge 0\}.$

I.Kerenidis, A.Prakash, D.Szilágyi

Simons Workshop, Berkeley, CA.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

э

Lorentz cone: The n-dimensional Lorentz cone, for n ≥ 1 is defined as Lⁿ := {x = (x₀; x) ∈ ℝⁿ | x₀ ≥ ||x||}.

- $\mathcal{L}^3 = \{(x, y, z) \in \mathbb{R}^3 \mid z^2 \ge x^2 + y^2\}.$
- $\mathcal{L}^1 = \{ x \in \mathbb{R} \mid x^2 \ge 0 \}.$
- Second order cone programs (SOCPs) have constraints of the form $\vec{x} \in \mathcal{L}^n$.

I.Kerenidis, A.Prakash, D.Szilágyi

Simons Workshop, Berkeley, CA.

• A SOCP (Second Order Cone Program) is an optimization problem of the following form,

$$\begin{array}{ll} \min_{\vec{x}_1,\dots,\vec{x}_r} & \vec{c}_1^T \vec{x}_1 + \dots + \vec{c}_r^T \vec{x}_r \\ \text{s.t.} & A^{(1)} \vec{x}_1 + \dots + A^{(r)} \vec{x}_r = \vec{b} \\ & \vec{x}_i \in \mathcal{L}^{n_i}, \ \forall i \in [r]. \end{array}$$
(1)

イロト 不得 トイヨト イヨト 二日

• A SOCP (Second Order Cone Program) is an optimization problem of the following form,

$$\begin{array}{ll} \min_{\vec{x}_{1},\ldots,\vec{x}_{r}} & \vec{c}_{1}^{T}\vec{x}_{1}+\cdots+\vec{c}_{r}^{T}\vec{x}_{r} \\ \text{s.t.} & A^{(1)}\vec{x}_{1}+\cdots+A^{(r)}\vec{x}_{r}=\vec{b} \\ & \vec{x}_{i}\in\mathcal{L}^{n_{i}}, \ \forall i\in[r]. \end{array} \tag{1}$$

イロト イボト イヨト イヨト

3

• Constraint matrices $A^{(i)} \in \mathbb{R}^{m \times n_i}$ for $i \in [r]$ and $b \in \mathbb{R}^m$.

• A SOCP (Second Order Cone Program) is an optimization problem of the following form,

$$\begin{array}{ll} \min_{\vec{x}_{1},\ldots,\vec{x}_{r}} & \vec{c}_{1}^{T}\vec{x}_{1}+\cdots+\vec{c}_{r}^{T}\vec{x}_{r} \\ \text{s.t.} & A^{(1)}\vec{x}_{1}+\cdots+A^{(r)}\vec{x}_{r}=\vec{b} \\ & \vec{x}_{i}\in\mathcal{L}^{n_{i}}, \ \forall i\in[r]. \end{array} \tag{1}$$

- Constraint matrices $A^{(i)} \in \mathbb{R}^{m \times n_i}$ for $i \in [r]$ and $b \in \mathbb{R}^m$.
- The number of Lorentz constraints r is the rank of the SOCP.

• A SOCP (Second Order Cone Program) is an optimization problem of the following form,

$$\begin{array}{ll} \min_{\vec{x}_{1},\ldots,\vec{x}_{r}} & \vec{c}_{1}^{T}\vec{x}_{1}+\cdots+\vec{c}_{r}^{T}\vec{x}_{r} \\ \text{s.t.} & A^{(1)}\vec{x}_{1}+\cdots+A^{(r)}\vec{x}_{r}=\vec{b} \\ & \vec{x}_{i}\in\mathcal{L}^{n_{i}}, \ \forall i\in[r]. \end{array} \tag{1}$$

イロト 不得 トイヨト イヨト 二日

- Constraint matrices $A^{(i)} \in \mathbb{R}^{m \times n_i}$ for $i \in [r]$ and $b \in \mathbb{R}^m$.
- The number of Lorentz constraints r is the rank of the SOCP.
- The sum of dimensions of the vectors, $n := \sum_{i} n_i$ is the dimension of the SOCP.

• The SOCP can be written as an optimization problem over $\mathcal{L} = \prod_{i \in [r]} \mathcal{L}^{n_i}$ by concatenating vectors x_i, c_i and matrices A^i .

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

(人間) シスヨン スヨン ヨ

 The SOCP can be written as an optimization problem over *L* = ∏_{i∈[r]} *L*^{n_i} by concatenating vectors x_i, c_i and matrices Aⁱ.

 Standard form of primal and dual SOCP,

min $\vec{c}^T \vec{x}$	$\max \vec{b}^T \vec{y}$	
$A\vec{x} = \vec{b}$	$A^T \vec{y} + \vec{s} = \vec{c}$	
$ec{x} \in \mathcal{L}$	$ec{s} \in \mathcal{L}, ec{y} \in \mathbb{R}^m$	(2)

(人間) シスヨン スヨン ヨ

 The SOCP can be written as an optimization problem over *L* = ∏_{i∈[r]} *L*^{n_i} by concatenating vectors x_i, c_i and matrices Aⁱ.

 Standard form of primal and dual SOCP,

$$\begin{array}{ll} \min \vec{c}^T \vec{x} & \max \vec{b}^T \vec{y} \\ A \vec{x} = \vec{b} & A^T \vec{y} + \vec{s} = \vec{c} \\ \vec{x} \in \mathcal{L} & \vec{s} \in \mathcal{L}, \vec{y} \in \mathbb{R}^m \end{array}$$
(2)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• SOCPs generalize Linear Programs (LPs) and Convex Quadratic Programs (QPs).

 The SOCP can be written as an optimization problem over *L* = ∏_{i∈[r]} *L*^{n_i} by concatenating vectors x_i, c_i and matrices Aⁱ.

 Standard form of primal and dual SOCP,

$$\min \vec{c}^T \vec{x} \qquad \max \vec{b}^T \vec{y} \\ A \vec{x} = \vec{b} \qquad A^T \vec{y} + \vec{s} = \vec{c} \\ \vec{x} \in \mathcal{L} \qquad \vec{s} \in \mathcal{L}, \vec{y} \in \mathbb{R}^m$$
(2)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- SOCPs generalize Linear Programs (LPs) and Convex Quadratic Programs (QPs).
- The running time for classical SOCP algorithms is given in terms of *n*, *r* and the duality gap *ε*.

• Support Vector Machines (SVM) are one of the most important classification algorithms in Machine Learning.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

イロト イボト イヨト イヨト

3

- Support Vector Machines (SVM) are one of the most important classification algorithms in Machine Learning.
- Standard form of the SVM,

$$\min \|w\|^{2} + C \|\xi\|_{1} y_{i}(w^{T}x_{i} + b) \geq 1 - \xi_{i} \xi \geq 0$$
 (3)

イロト イボト イヨト イヨト

3

- Support Vector Machines (SVM) are one of the most important classification algorithms in Machine Learning.
- Standard form of the SVM,

$$\min \|w\|^{2} + C \|\xi\|_{1} y_{i}(w^{T}x_{i} + b) \geq 1 - \xi_{i} \xi \geq 0$$
 (3)

イロト イボト イヨト イヨト

 The Lorentz constraint t := (t + 1, t, w) ∈ Lⁿ⁺² is equivalent to (2t + 1) ≥ ||w||², thus linearizing the quadratic constraint.

- Support Vector Machines (SVM) are one of the most important classification algorithms in Machine Learning.
- Standard form of the SVM,

$$\min \|w\|^{2} + C \|\xi\|_{1} y_{i}(w^{T}x_{i} + b) \geq 1 - \xi_{i} \xi \geq 0$$
 (3)

イロト イポト イヨト イヨト 三日

- The Lorentz constraint $\mathbf{t} := (t + 1, t, w) \in \mathcal{L}^{n+2}$ is equivalent to $(2t + 1) \ge ||w||^2$, thus linearizing the quadratic constraint.
- The SVM reduces to an SOCP with variables $\mathbf{t} \in \mathcal{L}^{n+2}$ and $\xi_i \in \mathcal{L}^1$ with r = n + m + 2.

MAIN RESULTS

• (Ben Tal-Nemirovski) There is a classical SOCP interior point method (IPM) based SOCP solver with running time $O(\sqrt{r}n^{\omega}\log(n/\epsilon)).$

イロト イポト イヨト イヨト 三日

MAIN RESULTS

 (Ben Tal-Nemirovski) There is a classical SOCP interior point method (IPM) based SOCP solver with running time O(√rn^ω log(n/ε)).

Theorem

There is a quantum IPM for SOCPs with running time $O(n^{1.5}\sqrt{r\frac{\kappa}{\delta^2}}\log(1/\epsilon))$ where δ bounds the distance of the intermediate solutions from the cone boundary, κ is the condition number of intermediate matrices and ϵ is the duality gap.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MAIN RESULTS

 (Ben Tal-Nemirovski) There is a classical SOCP interior point method (IPM) based SOCP solver with running time O(√rn^ω log(n/ε)).

Theorem

There is a quantum IPM for SOCPs with running time $O(n^{1.5}\sqrt{r}\frac{\kappa}{\delta^2}\log(1/\epsilon))$ where δ bounds the distance of the intermediate solutions from the cone boundary, κ is the condition number of intermediate matrices and ϵ is the duality gap.

• Experimental results on random SVM instances: The quantum algorithm scales as $O(n^k)$ where $k \in [2.56, 2.62]$ with high probability while an external SOCP solver scales as $O(n^{3.31})$.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

• Formally real Jordan algebra satisfies the axioms: (i) xy = yx. (ii) $x^p x^q = x^{p+q}$. (ii) $\sum_i x_i^2 = 0 \Rightarrow x_i = 0$.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

イロト イポト イヨト イヨト 三日

- Formally real Jordan algebra satisfies the axioms: (i) xy = yx. (ii) $x^p x^q = x^{p+q}$. (ii) $\sum_i x_i^2 = 0 \Rightarrow x_i = 0$.
- (Jordan, Von Neumann, Wigner 34): Classified finite dimensional formally real Jordan algebras into 5 families.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

- Formally real Jordan algebra satisfies the axioms: (i) xy = yx. (ii) $x^p x^q = x^{p+q}$. (ii) $\sum_i x_i^2 = 0 \Rightarrow x_i = 0$.
- (Jordan, Von Neumann, Wigner 34): Classified finite dimensional formally real Jordan algebras into 5 families.
- Special Jordan algebra: Algebra of matrices with product defined as x ∘ y = (xy + yx)/2.

- Formally real Jordan algebra satisfies the axioms: (i) xy = yx. (ii) $x^p x^q = x^{p+q}$. (ii) $\sum_i x_i^2 = 0 \Rightarrow x_i = 0$.
- (Jordan, Von Neumann, Wigner 34): Classified finite dimensional formally real Jordan algebras into 5 families.
- Special Jordan algebra: Algebra of matrices with product defined as x ∘ y = (xy + yx)/2.
- The spin factor is a Jordan algebra on ℝⁿ with product defined as,

$$\vec{u} \circ \vec{v} = (u_0, \tilde{u}) \circ (v_0, \tilde{v}) := (\vec{u}^T \vec{v}, u_0 \tilde{v} + v_0 \tilde{u})$$

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

- Formally real Jordan algebra satisfies the axioms: (i) xy = yx. (ii) $x^p x^q = x^{p+q}$. (ii) $\sum_i x_i^2 = 0 \Rightarrow x_i = 0$.
- (Jordan, Von Neumann, Wigner 34): Classified finite dimensional formally real Jordan algebras into 5 families.
- Special Jordan algebra: Algebra of matrices with product defined as x ∘ y = (xy + yx)/2.
- The spin factor is a Jordan algebra on ℝⁿ with product defined as,

$$\vec{u} \circ \vec{v} = (u_0, \tilde{u}) \circ (v_0, \tilde{v}) := (\vec{u}^T \vec{v}, u_0 \tilde{v} + v_0 \tilde{u})$$

• The identity element is $\vec{e} := (1; 0^n)$.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

JORDAN PRODUCT, ARROW MATRICES

• The Jordan product is a linear operation, it has a matrix representation,

$$\vec{u} \circ \vec{v} = \begin{bmatrix} u_0 & \tilde{u}^T \\ \tilde{u} & u_0 I_{n-1} \end{bmatrix} \vec{v} := Arw(u)\vec{v}$$

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

A D > A D > A D > A D >

э

JORDAN PRODUCT, ARROW MATRICES

The Jordan product is a linear operation, it has a matrix representation,

$$\vec{u} \circ \vec{v} = \begin{bmatrix} u_0 & \tilde{u}^T\\ \tilde{u} & u_0 I_{n-1} \end{bmatrix} \vec{v} := Arw(u)\vec{v}$$

• The Jordan product and the Arrow matrices can be extended blockwise,

$$(\vec{u_1};\ldots;\vec{u_r})\circ(\vec{v_1};\ldots;\vec{v_r}):=(\vec{u_1}\circ\vec{v_1};\ldots;\vec{u_r}\circ\vec{v_r}).$$

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

イロト イヨト イヨト

э

JORDAN PRODUCT, ARROW MATRICES

The Jordan product is a linear operation, it has a matrix representation,

$$\vec{u} \circ \vec{v} = \begin{bmatrix} u_0 & \tilde{u}^T\\ \tilde{u} & u_0 I_{n-1} \end{bmatrix} \vec{v} := Arw(u)\vec{v}$$

• The Jordan product and the Arrow matrices can be extended blockwise,

$$(\vec{u_1};\ldots;\vec{u_r})\circ(\vec{v_1};\ldots;\vec{v_r}):=(\vec{u_1}\circ\vec{v_1};\ldots;\vec{u_r}\circ\vec{v_r}).$$

• The well structured arrow matrices make the linear systems that arise in the IPM for SOCPs simpler than those for SDPs.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

• The central path for the SOCP is parametrized by $\nu > 0$ and is characterized by feasibility and complementary slackness conditions,

$$A\vec{x} = \vec{b}$$

$$A^{T}\vec{y} + \vec{s} = \vec{c}$$

$$\vec{x} \circ \vec{s} = \nu \vec{e},$$
(4)

イロト イヨト イヨト

э

• The central path for the SOCP is parametrized by $\nu > 0$ and is characterized by feasibility and complementary slackness conditions,

$$A\vec{x} = \vec{b}$$

$$A^{T}\vec{y} + \vec{s} = \vec{c}$$

$$\vec{x} \circ \vec{s} = \nu \vec{e},$$
(4)

イロト イボト イヨト イヨト

3

• The central path converges to the optimal solution as $\nu \rightarrow 0$.

• The central path for the SOCP is parametrized by $\nu > 0$ and is characterized by feasibility and complementary slackness conditions,

$$A\vec{x} = \vec{b}$$

$$A^{T}\vec{y} + \vec{s} = \vec{c}$$

$$\vec{x} \circ \vec{s} = \nu \vec{e},$$
(4)

イロト 不得 トイヨト イヨト 二日

- The central path converges to the optimal solution as $\nu \rightarrow 0$.
- A single iteration of the IPM finds $\Delta \vec{x}, \Delta \vec{y}, \Delta \vec{s}$ such that $\vec{x} + \Delta \vec{x}, \vec{y} + \Delta \vec{y}$ and $\vec{s} + \Delta \vec{s}$ are close to the central path for $\nu' = \sigma \nu$.

• Linearizing the last equation and neglecting the term $\Delta \vec{x} \circ \Delta \vec{s}$ we get,

 $\vec{x} \circ \vec{s} + \vec{x} \circ \Delta \vec{s} + \vec{s} \circ \Delta \vec{x} = \sigma \nu \vec{e}.$

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

イロト イヨト イヨト

3

• Linearizing the last equation and neglecting the term $\Delta \vec{x} \circ \Delta \vec{s}$ we get,

$$\vec{x} \circ \vec{s} + \vec{x} \circ \Delta \vec{s} + \vec{s} \circ \Delta \vec{x} = \sigma \nu \vec{e}.$$

• We thus obtain the Newton linear system for SOCPs,

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Arw(\vec{s}) & 0 & Arw(\vec{x}) \end{bmatrix} \begin{bmatrix} \Delta \vec{x} \\ \Delta \vec{y} \\ \Delta \vec{s} \end{bmatrix} = \begin{bmatrix} \vec{b} - A\vec{x} \\ \vec{c} - \vec{s} - A^{T} \vec{y} \\ \sigma \nu \vec{e} - \vec{x} \circ \vec{s} \end{bmatrix}$$
(5)

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

イロト イヨト イヨト

э

• Linearizing the last equation and neglecting the term $\Delta \vec{x} \circ \Delta \vec{s}$ we get,

$$\vec{x} \circ \vec{s} + \vec{x} \circ \Delta \vec{s} + \vec{s} \circ \Delta \vec{x} = \sigma \nu \vec{e}.$$

• We thus obtain the Newton linear system for SOCPs,

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ Arw(\vec{s}) & 0 & Arw(\vec{x}) \end{bmatrix} \begin{bmatrix} \Delta \vec{x} \\ \Delta \vec{y} \\ \Delta \vec{s} \end{bmatrix} = \begin{bmatrix} \vec{b} - A\vec{x} \\ \vec{c} - \vec{s} - A^{T}\vec{y} \\ \sigma \nu \vec{e} - \vec{x} \circ \vec{s} \end{bmatrix}$$
(5)

Analysis shows that if (x, y, s) is in a neighborhood N of the central path at ν, then x + Δx, y + Δy, s + Δs remains feasible and in N at ν'.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

イロト イヨト イヨト

• Quantum IPM uses quantum linear system solver to solve the Newton linear system and tomography to reconstruct the solutions.

イロト イヨト イヨト

э

- Quantum IPM uses quantum linear system solver to solve the Newton linear system and tomography to reconstruct the solutions.
- (Quantum data structures) Efficient unitary block encodings $\begin{bmatrix} A/\mu & \cdot \\ \cdot & \cdot \end{bmatrix}$ can be constructed/updated in linear time.

- Quantum IPM uses quantum linear system solver to solve the Newton linear system and tomography to reconstruct the solutions.
- (Quantum data structures) Efficient unitary block encodings $\begin{bmatrix} A/\mu & \cdot \\ \cdot & \cdot \end{bmatrix}$ can be constructed/updated in linear time.
- (Chakraborty, Gilyén, Jeffery 18): Given block encodings for input matrix A, the quantum linear system can be solved in time $O(\sqrt{n\kappa} \log(1/\epsilon))$.

- Quantum IPM uses quantum linear system solver to solve the Newton linear system and tomography to reconstruct the solutions.
- (Quantum data structures) Efficient unitary block encodings $\begin{bmatrix} A/\mu & . \\ . & . \end{bmatrix}$ can be constructed/updated in linear time.
- (Chakraborty, Gilyén, Jeffery 18): Given block encodings for input matrix A, the quantum linear system can be solved in time $O(\sqrt{n\kappa} \log(1/\epsilon))$.
- (Kerenidis, P. 18): The output of quantum linear system $|x\rangle = |A^{-1}b\rangle$ can be reconstructed in time $O(n \log n/\epsilon^2)$ queries to obtain \tilde{x} such that $\|\tilde{x} x\|_2 \le \epsilon \|x\|_2$.

 Jordan algebra provides a dictionary/framework to transfer concepts from the analysis for the SDP to the SOCP setting.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

イロト イボト イヨト イヨト

3

- Jordan algebra provides a dictionary/framework to transfer concepts from the analysis for the SDP to the SOCP setting.
- We can define a spectral decomposition for vectors,

$$\vec{x} = \frac{1}{2} \left(x_0 + \| \tilde{x} \| \right) \begin{bmatrix} 1\\ \frac{\tilde{x}}{\|\tilde{x}\|} \end{bmatrix} + \frac{1}{2} \left(x_0 - \| \tilde{x} \| \right) \begin{bmatrix} 1\\ -\frac{\tilde{x}}{\|\tilde{x}\|} \end{bmatrix}$$
(6)

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

イロト イボト イヨト イヨト

3

- Jordan algebra provides a dictionary/framework to transfer concepts from the analysis for the SDP to the SOCP setting.
- We can define a spectral decomposition for vectors,

$$\vec{x} = \frac{1}{2} \left(x_0 + \| \tilde{x} \| \right) \begin{bmatrix} 1 \\ \frac{\tilde{x}}{\| \tilde{x} \|} \end{bmatrix} + \frac{1}{2} \left(x_0 - \| \tilde{x} \| \right) \begin{bmatrix} 1 \\ -\frac{\tilde{x}}{\| \tilde{x} \|} \end{bmatrix}$$
(6)

 We can thus define ||x||₂, ||x||_F and prove familiar inequalities like ||x ∘ y||_F ≤ ||x||₂ ||y||_F.

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

イロト イポト イヨト イヨト 三日

- Jordan algebra provides a dictionary/framework to transfer concepts from the analysis for the SDP to the SOCP setting.
- We can define a spectral decomposition for vectors,

$$\vec{x} = \frac{1}{2} \left(x_0 + \| \tilde{x} \| \right) \begin{bmatrix} 1 \\ \frac{\tilde{x}}{\| \tilde{x} \|} \end{bmatrix} + \frac{1}{2} \left(x_0 - \| \tilde{x} \| \right) \begin{bmatrix} 1 \\ -\frac{\tilde{x}}{\| \tilde{x} \|} \end{bmatrix}$$
(6)

イロト イポト イヨト イヨト 三日

- We can thus define $||x||_2$, $||x||_F$ and prove familiar inequalities like $||x \circ y||_F \le ||x||_2 ||y||_F$.
- Matrix scaling $Y \rightarrow XYX$ has the Jordan algebra analog $2Arw^2(x) Arw(x^2)$.

EXPERIMENTS: RANDOM SVM INSTANCES

- Generate *m* points $\{\vec{x_i} \in \mathbb{R}^n \mid i \in [m]\}$ in the unit hypercube $[-1, 1]^n$.
- Generate a random unit vector w ∈ ℝⁿ and assign labels to the points as y⁽ⁱ⁾ = sgn(w^Tx⁽ⁱ⁾).
- Corrupt a fixed proportion p of the labels, by flipping the sign of each y⁽ⁱ⁾ with probability p.
- Shift the entire dataset by a vector d
 ⁻
 ⁻
- Generate instances from SVM(n, 2n, p) with n uniform in [2, 2⁹] and p uniform from {0, 0.1, · · · , 0.9, 1}.

EXPERIMENTS: COMPARISONS WITH CLASSICAL ALGORITHMS

- We compare with classical algorithms on SVM(n, 2n, p) instances for $\epsilon = 0.1$ where these algorithms achieve high accuracy.
- SOCP solver (ECOS) scales empirically as $O(n^{3.314})$, this is consistent with using a Strassen like algorithm with exponent 2.8.
- LIBSVM with linear kernel scales empirically as $O(n^{3.112})$, it is consistent with state-of-the-art alternate approaches to SVM.
- The running time $\frac{n^2 \kappa}{\delta^2}$ for the quantum IPM empirically scales as $O(n^{2.591})$ with a 95% confidence interval [2.56, 2.62].

I.Kerenidis, A.Prakash, D.Szilágyi Simons Workshop, Berkeley, CA.

EXPERIMENTS

• The classification accuracy for the quantum algorithm is similar to that of the classical algorithms.

I.Kerenidis, A.Prakash, D.Szilágyi

Simons Workshop, Berkeley, CA.

э

CONCLUSIONS

- Experiments indicate that the quantum IPM achieves a polynomial speedup for solving SOCPs with low and medium precision.
- For random SVM instances, it achieves a polynomial speedup with no detriment to the quality of the trained classifier.
- Similar results for the constrained portfolio optimization problem.
- Conclusion: Quantum optimization methods can achieve polynomial speedups for longer term algorithms.
- Open question: Improvements to the quantum IPM using tomography with ℓ_∞ guarantees?

イロト イボト イヨト イヨト

PORTFOLIO OPTIMIZATION

- Portfolio optimization is the theory of optimal investment of wealth in assets that differ in expected return and risk [Markovitz 1952].
- Let $R(t) \in \mathbb{R}^m$ be returns for *m* assets over time epochs $t \in [T]$. Then, expected reward and risk can be estimated as,

$$\mu = \frac{1}{T} \sum_{t \in [T]} R(t)$$

$$\Sigma = \frac{1}{T - 1} \sum_{t \in [T]} (R(t) - \mu) (R(t) - \mu)^T$$

- A portfolio is specified by $x \in \mathbb{R}^m$ with x_j being the investment in asset j.
- The expected reward and risk for x are $\mu^T x$ and $x^T \Sigma x$ respectively.

I.Kerenidis, A.Prakash, D.Szilágyi

Simons Workshop, Berkeley, CA.

PORTFOLIO OPTIMIZATION

- Unconstrained portfolio optimization: Find portfolio that minimizes risk for a given reward.
- Constrained portfolio optimization: There are positivity x_j ≥ 0 and budget constraints Cx ≥ d. Introducing slack variables s = Cx - d, s ≥ 0.
- The Constrained Portfolio Optimization problem reduces to SOCP,

min
$$x^T \Sigma x$$

s.t. $\mu^T x = R$
 $Ax = b$
 $x \ge 0.$ (7)

 (Lloyd-Rebentrost). The unconstrained problem is a least squares problem and has a closed form solution using a single linear system solver.

I.Kerenidis, A.Prakash, D.Szilágyi

Simons Workshop, Berkeley, CA.

EXPERIMENTS: CONSTRAINED PORTFOLIO OPTIMIZATION

- cvxPortfolio dataset: Stocks for the S&P-500 companies for each day over a period of 9 years (2007-2016).
- Subsample 100 companies and consider random interval of t days where t is uniform on [10,500]. Add positivity constraints on portfolio.
- Quantum algorithm can be simulated by adding Gaussian noise of magnitude δ , the duality gap $\epsilon = 0.1$ due to market stochasticity.

イロト イヨト イヨト

EXPERIMENTS

• Observed complexity for $\epsilon = 0.1$ and power law fit for random portfolio optimization instances.

I.Kerenidis, A.Prakash, D.Szilágyi

Simons Workshop, Berkeley, CA.