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Quantum algorithms for optimization

® quantum algorithms for optimization tasks is a promising “new"” area
® mild speedups, but many important applications many applications

® important example: semidefinite programming (SDPs)

® existing quantum algorithms don't always yield improvements

® “open” challenge: relaxations of binary quadratic problems

ideas

® bundle many linear constraints together (convex constraints)
¢ develop primal only classical algorithm (mirror descent)

® embed quantum simulation as fast subroutine (Gibbs sampling)
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Binary quadratic optimization

maximize (x,A x) = tr(A xx™)
xeR"

subject to  x € {£1}"

captures many important problems:
i MAXCUT and CUTNORM
il community detection
iii semi-discrete matrix factorization
iv Ising model and spin glasses
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ii. Hamiltonian Updates




SDP relaxation

maximize tr (A xx™)
xeRn

subject to x € {il}"

convex relaxation:
f(X) = tr(A X) is linear
X € C1 NCy where
C1 = {X : diag(X) = 1} affine subspace
Co ={X: X = 0} convex cone
actually a SDP, but tr(X) = n
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maximize tr(A X)
Xesn

subject to diag(X) =1 The problem
X=0
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The problem

maximize tr ( AX )
XeSsn

subject to diag(X)= 1
tr(X)=n, X =0
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The problem
maximize tr (% )
XeSsn
subject to diag(X ):% (X e )
tr(X)=1, X =0 (XesS)
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phase I: optimization problem =- feasibility problem
phase ll: develop quantum-inspired meta-algorithm

Meta-algorithm

quantum boost: use quantum subroutines

inspiration: matrix multiplicative weights, mirror descent



Optimization = feasibility

objective function f(X) is linear and bounded

instead of optimizing f(X) directly, choose A € [—1,1] and ask:
is there a feasible X that obeys f(X) < \?

Binary search

O(2log(1/€)) = O(1) questions (with varying \) nail down f(X;) + ¢
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Reformulate feasibility problem

task: for A = ”T}”A and A € [—1,1] solve

find X e§"
subject to tr <A~\ X> <A
diag(X) = 11
tr(X)=1, X =0
e A, is half-space

® D, is affine subspace
® S, is the set of all density matrices

Quantum-inspired change of variables

(Gibbs state)

~ exp(—H)
X el H) <

(X € Ay)

(X € D,)
(X €S,)
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Hamiltonian Updates

X = py = % automatically ensures X € S,
find HeS"
subject to  tr(A py) < A
diag(pn) = +1

Hamiltonian Updates:
@ start with H = 0 (“infinite temperature”)
@ check if py € Ay and py € D,

if true we are done
else update H to penalize infeasible directions?

® loop (at most) T times

*find separating hyperplane P and update H <+ H + ¢P

(P € A))
(pH S Dn)
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lllustration of Hamiltonian Updates

e P
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lllustration of Hamiltonian Updates
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Hamiltonian Updates: convergence Caltech
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Theorem (Brandio, RiK, Franga) Richard Kiing

Hamiltonian Updates finds an approximately feasible point after (at most)

T = [16log(n)/e?] + 1 = O(1) steps. Otherwise, the problem is infeasible.

proof idea: . Optmaion =
* relative entropy between pg = 2/ and any feasible point p* is < log(n) ——

® show that each iteration makes constant progress in relative entropy: —

2
* * €
S(P"llper1) = S(p7llpe) < — 5

= convergence after (at most) T steps, or S(p*||p7T) <0

optimization context: mirror descent with von-Neumann entropy potential
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Hamiltonian Updates solves feasibility problem in O(log(n)/e?) = O(1) steps

® each step requires three subroutines:

; — _exp(=H)
(i) compute py = (op(—H)) )

(i) pu € Ay: check tr(A py) < A; output P = A

(iii) pH € Dy: check diag(pn) = 1; output P =3, 1{(e;, pne;) > 1} ejel
® naive cost:

(i) O(n*)

(i) O(ns) s = (row)sparsity(A)

(i) O(n)

* naive total cost: O(n*s)  (not very impressive yet)



Hamiltonian Updates: classical implementation

fact: Hamiltonian updates is designed to be robust

= implementing subroutines up to accuracy e still yields an approximately
feasible solution (and correctly flags infeasibility)

classical boost: exp(—H) ~ Zi —0 k, , £ = O(log(n)/e) = O(1)

Theorem (Brandio, RiK, Franga; 2019)

Hamiltonian Updates approximately solves quadratic SDP relaxations in classical

runtime O (n?slog(n)/e'?)

maximize tr
( ||A||

subject to diag(X) =
X = 0.

— &

)

n’s), where s = (row)sparsity(A).
@ best existing general algorithm: (5(n2
@® approx. discrepancy: en||Al| vs. €||A|¢,
© favorable for generic problem instances

O no speedup for MAXCUT

55)
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Hamiltonian updates: quantum implementation Caltech

quantum SDP

classical bottleneck: compute Gibbs states py = % R:::,G:u::ng
quantum speedup:

prepare copies of py on quantum computer O(y/nss°M)

estimate tr(A pp) via phase estimation O(1/€?) copies

estimate diag(py) via computational basis measurements O(n/€?) copies .

Theorem (Brandéo, RiK, Franca; 2019) 1 et Wi
Hamiltonian Updates approximately solves binary quadratic SDP relaxations in B
quantum runtime O(n°(y/5)1T°(). S—

@ first quantum speedup for combinatorial SDP relaxation
® beats classical runtimes O(n?s) and O(n*°s)

© classical access to (approx.) optimal Hamiltonian = data processing



Details about quantum subroutine
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important design feature: Hamiltonians are very structured:
H = aA+ D, a, 8 = O(log(n)/e)
@ use [Poulin, Wojcan; 2009] to reduce task of preparing py to simulating time
evolution (O(+/n) invocations)

® use [Childs, Wiebe; 2012] to split up time evolution (negligible overhead)
© [Low; 2019]: implementing exp(itaA) costs @(ﬁHo(l))

© [Prakash; 2014] implementing exp(it3D) with quantum RAM costs O(n)
— total cost: O(n5y/5 o)
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Conclusion

uantum SDP
T ! Spteedups
we established speedups for important problem class: \ Richard Kiing
maximize tr(A X) *PH |
Xesn J
subject to diag(X) = %1 /
J g( ) n —P
tr(X)=1, X =0 .
our strategy:
(i) replace optimization by a sequence of feasibility problems
exp(—H) Summary

(i) change of variables: X < py = oo =)
(iii) iteratively penalize infeasible directions by Hamiltonian Updates H < H + ¢P

(iv) boost runtime by preparing each py on quantum computer

our result: we obtain approximate solutions faster than existing approaches:
O(n?s) (classical) and @(nljﬁHo(l)) (quantum) vs. O(n*°s) (classical)
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@ improve runtime scaling in approximation accuracy €
® implementation on near-tearm devices or classical computers

© adapt meta-algorithm to other important convex optimization problems:

® quantum state tomography
® semi-discrete matrix factorization

Summary

Thank you!



