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Perfect Forms 

THM: Voronoi cones give a polyhedral tessellation of Sn
>0

and there are only finitely many up to            -equivalence. GLn(Z)

(Voronoi cones are full dimensional if and only if Q is perfect!)

( for Q 2 Sn
>0 positive definite )

DEF: min(Q) = min
x2Zn\{0}

Q[x] is the arithmetical minimum•  

Q perfect ,
Q is uniquely determined by min(Q) and

MinQ = { x 2 Zn : Q[x] = min(Q) }
•  

V(Q) = cone{xxt : x 2 MinQ} is Voronoi cone of Q•  



Voronoi’s Reduction Theory

Task of a reduction theory is to provide a fundamental domain 

GLn(Z) acts on Sn
>0 by Q 7! UtQU

Georgy Voronoi  
(1868 – 1908)  

Voronoi’s algorithm gives a recipe for the construction of a  
complete list of such polyhedral cones up to            -equivalenceGLn(Z)



Ryshkov Polyhedron

The set of all positive definite quadratic forms / matrices 
with arithmetical minimum at least 1 is called  

Ryshkov polyhedron
Ryshkov Polyhedra

• R is a locally finite polyhedron

• Vertices of R are perfect forms

• ↵ 7! (det(Q + ↵Q0))
1
n is strictly concave on Sn

>0

R is a locally finite polyhedron•  
Vertices of R are perfect•  

R =
�
Q 2 Sn

>0 : Q[x] � 1 for all x 2 Zn \ {0}
 



Voronoi’s algorithm

Start with a perfect form Q

1. SVP: Compute Min Q and describing inequalities of the polyhedral cone

P(Q) = { Q0
2 S

n : Q0[x] � 1 for all x 2 Min Q }

2. PolyRepConv: Enumerate extreme rays R1, . . . , Rk of P(Q)

3. SVPs: Determine contiguous perfect forms Qi = Q + ↵Ri, i = 1, . . . , k

4. ISOMs: Test if Qi is arithmetically equivalent to a known form

5. Repeat steps 1.–4. for new perfect forms

Voronoi’s Algorithm

( graph traversal search on edge graph of Ryshkov polyhedron )



CPn ⇢ S
n
>0 ⇢ COPn

Generalization … and application!

IDEA:  Generalize Voronoi’s theory to  
          other convex cones and their duals

A SIMPLEX ALGORITHM FOR RATIONAL

CP-FACTORIZATION

MATHIEU DUTOUR SIKIRIĆ, ACHILL SCHÜRMANN, AND FRANK VALLENTIN

Abstract. We describe and analyze an algorithmic procedure, similar to the
simplex algorithm for linear programming, which tests whether or not a given
symmetric matrix is completely positive. For matrices in the rational closure
of the cone of completely positive matrices our procedure computes a rational
cp-factorization. For matrices which are not completely positive a certificate
in form of a separating hyperplane is computed, whenever our procedure ter-
minates. We conjecture that there exists a pivot rule so that our procedure
always terminates for rational input matrices.

1. Introduction

Copositive programming gives a common framework to formulate many di�cult
optimization problems as convex conic ones. In fact, many NP-hard problems
are known to have such reformulations (see for example the surveys [2, 8]). All
the di�culty of these problems appears to be “converted” into the di�culty of
understanding the cone of copositive matrices COPn which consists of all symmetric
n⇥ n matrices B 2 S

n with xTBx � 0 for all x 2 Rn
�0. Its dual cone is the cone

CPn = cone{xxT : x 2 Rn
�0}

of completely positive n ⇥ n matrices. Therefore, it seems no surprise that many
basic questions about this cone are still open and appear to be di�cult.

One important problem is to find an algorithmic test deciding whether or not
a given symmetric matrix A is completely positive. If possible one would like to
obtain a certificate for either A 2 CPn or A 62 CPn. In terms of the definitions the
most natural certificate for A 2 CPn is giving a cp-factorization

A =
mX

i=1

xix
T
i with x1, . . . , xm 2 Rn

�0

and for A 62 CPn giving a separating hyperplanes defined by B 2 COPn so that
hB,Ai < 0. Dickinson and Gijben [5] showed that this (strong) membership prob-
lem is NP-hard.
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and its dual, the copositive cone 
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From the algorithmic side some successful ideas have been proposed by Jarre
and Schmallowsky [14], Nie [17], Sponsel and Dür [20], Groetzner and Dür [11],
and Anstreicher, Burer, and Dickinson [4, Section 3.3].

In this paper we describe a new procedure that works for all matrices in the
rational closure

˜CPn = cone{xxT : x 2 Qn
�0}

of the cone of completely positive matrices. Moreover, it also computes certificates
in case A 62 CPn.

In contrast to most of the other approaches mentioned above (the exception being
the approach by Anstreicher, Burer and Dickinson whose factorization method is
based on the ellipsoid method), our algorithm is exact in the sense that it uses
rational numbers only if the input matrix is rational and so does not have to cope
with numerical instabilities. In particular it finds a rational cp-factorization if it
exists. However, questions of convergence remain, in particular for all A which are
not contained in the “irrational boundary part” (bd CPn) \ ˜CPn.

2. The copositive minimum and copositive perfect matrices

By S
n we denote the Euclidean vector space of symmetric n ⇥ n matrices with

inner product hA,Bi = Trace(AB) =
Pn

i,j=1 AijBij . With respect to this inner
product we have the following duality relations between the cone of copositive
matrices and and the cone of completely positive matrices

COPn = (CPn)
⇤ = {B 2 S

n : hA,Bi � 0 for all A 2 CPn},

and
CPn = (COPn)

⇤.

So, in order to show that a given symmetric matrix A is not completely positive, it
su�ces to find a copositive matrix B 2 COPn with hB,Ai < 0. We call B a sepa-
rating witness for A 62 CPn in this case, because the linear hyperplane orthogonal
to B separates A and CPn.

Using the notation B[x] for xTBx = hB, xxT
i, we obtain

COPn = {B 2 S
n : B[x] � 0 for all x 2 Rn

�0}.

Definition 2.1. For a symmetric matrix B 2 S
n we define the copositive minimum

as
minCOP(B) = inf

�
B[v] : v 2 Zn

�0 \ {0}
 
,

and we denote the set of vectors attaining it by

MinCOP(B) =
�
v 2 Zn

�0 : B[v] = minCOP(B)
 
.

The following proposition shows that matrices in the interior of the cone of
copositive matrices attain their copositive minimum.

Lemma 2.2. Let B be a matrix in the interior of the cone of copositive matrices.
Then, the copositive minimum of B is strictly positive and it is attained by only
finitely many vectors.

Proof. Since B is copositive, we have the inequality minCOP(B) � 0. Suppose that
minCOP(B) = 0. Then there is a sequence vi 2 Zn

�0 \{0} of pairwise distinct lattice
points such that B[vi] tends to zero when i tends to infinity. From the sequence
vi we construct a new sequence ui of points on the unit sphere Sn�1 by setting
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In particular to the completely positive cone 

hA,Bi = h`�+2(A ·B) /2MQi2b i?2 bi�M/�`/ BMM2` T`Q/m+i QM Sn

(Opgenorth,  2001)



Application: Copositive Optimization 

Copositive optimization problems are convex conic problems   •  
min hC,Qi such that hQ, Aii = bi, i = 1, . . . ,m

and Q 2 CONE

Linear Programming (LP)

CONE = Rn
�0

Copositive Programming (CP)

CONE = CPn or COPn

Semidefinite Programming (SDP)
CONE = Sn

�0

Task: Certify or disprove Q 2 ˜CPn = cone
�
xx> : x 2 Qn

�0

 

( due to duality theory we can give certificates for solutions of convex conic problems )



Copositive minimum

DEF: minCOP Q = min
x2Zn

�0\{0}
Q[x] is the copositive minimum

Difficult to compute!? 

A first naive algorithm:

”Fincke-Pohst strategy” to compute minCOP Q in each cone�k

in the standard simplex � =
�
x 2 Rn

�0 : x1 + . . . xn = 1
 

THM: (Bundfuss and Dür, 2008)

such that each �k has vertices v1, . . . vn with v>i Qvj > 0

For Q 2 int COPn we can construct a family of simplices �k

(COP-SVP)



Generalized Ryshkov polyhedron  

DEF: Q 2 int COPn is called COP-perfect if and only if

Q is uniquely determined by minCOP Q and

MinCOPQ =
�
x 2 Zn

�0 : Q[x] = minCOPQ
 

The set of all copositive quadratic forms / matrices 
with copositive minimum at least 1 is called  

Ryshkov polyhedron

R =
�
Q 2 COPn : Q[x] � 1 for all x 2 Zn

�0 \ {0}
 

Vertices of R are COP-perfect•  
R is a locally finite polyhedron•  (with dead-ends / rays)



A copositive starting point 
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Definition 2.3. A copositive matrix B 2 int(COPn) is called COP-perfect if it is
uniquely determined by its copositive minimum minCOP B and the set MinCOP B
attaining it.

In other words, B 2 int(COPn) is COP-perfect if and only if it is the unique
solution of the system of linear equations

hB, vvTi = minCOP B, for all v 2 MinCOP B.

In particular all vertices of R are COP-perfect.

Lemma 2.4. COP-perfect matrices exist in all dimensions (dimension n = 1 being
trivial): For dimension n � 2 the following matrix

(4) QAn =

0

BBBBBBB@

2 �1 0 . . . 0

�1 2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 �1
0 . . . 0 �1 2

1

CCCCCCCA

is COP-perfect; 1
2QAn is a vertex of R.

Proof. Matrix QAn is positive definite since

QAn [x] = x2
1 +

n�1X

i=1

(xi � xi+1)
2 + x2

n for x 2 R.

In particular it lies in the interior of the copositive cone. Furthermore,

minCOP QAn = 2 with MinCOP QAn =

8
<

:

kX

i=j

ej : 1  j  k  n

9
=

; ,

where ej is the j-th standard unit basis vector of Rn. Thus, the
�n+1

2

�
vectors at-

taining the copositive minimum have a continued sequence of 1s in their coordinates
and otherwise 0s. Now it is easy to see that the rank-1-matrices

0

@
kX

i=j

ej

1

A

0

@
kX

i=j

ej

1

A
T

, where 1  j  k  n,

are linearly independent and span the space of symmetric matrices which shows
that QAn is COP-perfect. ⇤

The matrix QAn is also known as a Gram matrix of the root lattice An, a very
important lattice in the theory of sphere packings, see Conway and Sloane [3].

3. The algorithm

In this section we show how one can solve the linear program (2). Our algorithm
is similar to the simplex algorithm for linear programming, as it walks along a
path of subsequently constructed COP-perfect matrices, which are vertices of the
polyhedral set R and which are connected by edges.

is COP-perfectTHM:
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Voronoi-type simplex algorithm 
Input: A 2 Sn

>0

COP-SVPs: Obtain an initial COP-perfect matrix BP

( flexible ”pivot-rule” )

1. B7 hBP, Ai < 0 i?2M QmiTmi A 62 CPn (with witness BP)

2. LP: B7 A 2 cone
�
xx> : x 2 MinCOPBP

 
i?2M QmiTmi A 2 ˜CPn

3. COP-SVP: Compute MinCOPBP and the polyhedral cone

P(BP) = { B 2 S
n : B[x] � 1 for all x 2 MinCOPBP }

4. PolyRepConv: Determine a generator R of an extreme ray of P(BP)
with hA, Ri < 0.

5. SimplexDiv: B7 R 2 COPn i?2M QmiTmi A 62 CPn (with witness R)

6. COP-SVPs: Determine the contiguous COP-perfect matrix

BN := BP + �R with � > 0 and minCOPBN = 1

7. Set BP := BN and ;QiQ 1.



Interior cases 

EX:

(algorithm terminates)  

A =

✓
6 3
3 2

◆

A =

✓
1
0

◆✓
1
0

◆>
+

✓
1
1

◆✓
1
1

◆>
+

✓
2
1

◆✓
2
1

◆>

Starting with QA2 one iteration of the algorithm finds

the COP-perfect matrix BP =
✓

1 �3/2
�3/2 3

◆
and
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Note that there is always a unique choice in Step 4 in case A is a 2 ⇥ 2 rank-1
matrix. Note also that the vectors represent fractions that converge to

p
2. Every

second vector corresponds to a convergent of the continued fraction of
p
2. For

instance,

99/70 = 1 +
1

2 +
1

2 +
1

2 +
1

2 +
1

2

.

The COP-perfect matrix after ten iterations of the algorithm is

B(10)
P =

✓
4756 �6726
�6726 9512

◆
.

It can be shown that the matrices B(i)
P converge to a multiple of

B =

✓
1 �

p
2

�
p
2 2

◆
satisfying hA,Bi = 0 and hX,Bi � 0 for all X 2 CP2.

However, every one of the infinitely many perfect matrices B(i)
P satisfies

hX,B(i)
P i > 0 for all X 2 CP2.

5. Computational Experiments

We implemented our algorithm. The source code, written in C++, is available on
TODO: github [?]. In this section we report how it performs on several examples,
most of them were previously discussed in the literature.

TODO: The first example is the matrix

A1 =
�
...
�

which lies in the interior of CP5.
The second example is from [11] and lies in the boundary of CP5

A2 =

0

BBBB@

8 5 1 1 5
5 8 5 1 1
1 5 8 5 1
1 1 5 8 5
5 1 1 5 8

1

CCCCA
EX:

(algorithm terminates with a suitable pivot-rule)  

from Groetzner, Dür (2018) 

A simplex algorithm for rational cp-factorization 13

Starting from QA5 our algorithm does five steps to find the factorization A2 =P10
i=1 viv

T
i with

v1 = (0, 0, 0, 1, 1)

v2 = (0, 0, 1, 1, 0)

v3 = (0, 0, 1, 2, 1)

v4 = (0, 1, 1, 0, 0)

v5 = (0, 1, 2, 1, 0)

v6 = (1, 0, 0, 0, 1)

v7 = (1, 0, 0, 1, 2)

v8 = (1, 1, 0, 0, 0)

v9 = (1, 2, 1, 0, 0)

v10 = (2, 1, 0, 0, 1)

The third example is from [17, Example 6.2] and it positive semidefinite, but not
completely positive

A3 =

0

BBBB@

1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 6

1

CCCCA

Starting from QA5 our algorithm does 18 steps to find the copositive matrix

B3 =

0

BBBB@

363/5 �2126/35 2879/70 608/21 �4519/210
�2126/35 1787/35 �347/10 1025/42 253/14
2879/70 �347/10 829/35 �1748/105 371/30
608/21 1025/42 �1748/105 1237/105 �601/70

�4519/210 253/14 371/30 �601/70 671/105

1

CCCCA

with hA3, B3i = �2/5 showing that A3 62 CP5.
The fourth and last example is the family of completely positive matrices TODO

from [14].
TODO: Some words about the running time.
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giving a certificate for the matrix to be completely positive

Starting with QA5 , our algorithm finds a cp-factorization after 5 iterations

Boundary cases from ˜CPn



Exterior cases 
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EX:

(algorithm conjectured to terminate)  

giving a certificate for the matrix not to be completely positive
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1 0 0 1 6

1

CCCCA

Starting from QA5 our algorithm does 18 steps to find the copositive matrix

B3 =

0

BBBB@

363/5 �2126/35 2879/70 608/21 �4519/210
�2126/35 1787/35 �347/10 1025/42 253/14
2879/70 �347/10 829/35 �1748/105 371/30
608/21 1025/42 �1748/105 1237/105 �601/70

�4519/210 253/14 371/30 �601/70 671/105

1

CCCCA

with hA3, B3i = �2/5 showing that A3 62 CP5.
The fourth and last example is the family of completely positive matrices TODO

from [14].
TODO: Some words about the running time.
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Starting with QA5 , after 18 iterations our algorithm finds the COP-perfect

from Nie (2014) 



Open Questions  /  TODOs

• Find suitable / good pivot rules for boundary cases

• Prove termination of algorithm for exterior cases

• Improve computations in practice 

• … in particular: find a better algorithm to compute 

minCOP and the set of its representatives MinCOP

( COP-SVPs )
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