Berkeley, February 21st 2020 Simons workshop Lattices Geometry, Algorithms and Hardness

A simplex-type Voronoi algorithm based on short vector computations of copositive quadratic forms

Achill Schürmann (Universität Rostock)

based on work with Mathieu Dutour Sikirić and Frank Vallentin

Perfect Forms (for $Q \in S^n_{> 0}$ positive definite)

 \bullet min(Q) = min *x*∈Z^{*n*}</sub> $\set{0}$ • $\min(Q) = \min_{x \in \mathbb{Z}^n \setminus \{0\}} Q[x]$ is the arithmetical minimum

● Q perfect \Leftrightarrow *Q* is uniquely determined by min(*Q*) and $MinQ = \{ x \in \mathbb{Z}^n : Q[x] = min(Q) \}$

- (Voronoi cones are full dimensional if and only if *Q* is perfect!) • $V(Q) = \text{cone}\{xx^t : x \in \text{Min}Q\}$ is Voronoi cone of Q
- **THM**: Voronoi cones give a polyhedral tessellation of $S_{>0}^n$ and there are only finitely many up to $GL_n(\mathbb{Z})$ -equivalence.

Voronoi's Reduction Theory

 $GL_n(\mathbb{Z})$ acts on $S^n_{>0}$ by $Q \mapsto U^tQU$

Georgy Voronoi (1868 – 1908)

Task of a reduction theory is to provide a fundamental domain

Voronoi's algorithm gives a recipe for the construction of a complete list of such polyhedral cones up to $GL_n(\mathbb{Z})$ -equivalence

Ryshkov Polyhedron

The set of all positive definite quadratic forms / matrices with arithmetical minimum at least I is called **Ryshkov polyhedron**

 $\mathcal{R} = \{ Q \in S^n_{>0} : Q[x] \geq 1 \text{ for all } x \in \mathbb{Z}^n \setminus \{0\} \}$

- R is a locally finite polyhedron
- Vertices of *^R* are perfect

Voronoi's Algorithm

Start with a perfect form *Q*

- 1. SVP: Compute Min *Q* and describing inequalities of the polyhedral cone $P(Q) = \{ Q' \in S^n : Q'[x] \ge 1 \text{ for all } x \in \text{Min } Q \}$
- 2. PolyRepConv: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$
- 3. SvPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$, $i = 1, \ldots, k$
- 4. ISOMs: Test if *Qⁱ* is arithmetically equivalent to a known form
- 5. Repeat steps 1.–4. for new perfect forms

(graph traversal search on edge graph of Ryshkov polyhedron)

Generalization **Example 1.5** and application! \blacksquare Copositive programming a common framework to formulate many distribution of the second wave many distribution o \blacksquare **with numerical install install install in the following a ration in the following service of cone of cone of c** inner product ^h*A, B*ⁱ = Trace(*AB*) = ^P*ⁿ*

i,j=1 *AijBij* . With respect to this inner

IDEA: Generalize Voronoi's theory to other convex cones and their duals $IDFA \cdot Generalize Voronoi's theorem$ TULA. Generanze voronors theory to
other convex cones and their duals $(Opgenorth, 2001)$ IDEA: Generalize Voronoi's theory to

In particular to the completely positive cone **S**
By a particular to the completely positive cone In particular to the completely positive cone *Particular i,j*=1 *AijBij* . With respect to this inner *CPⁿ* = (*COPn*) In particular to the completely positive cone

 $CP_n \quad \subset \quad S^n_{>0} \quad \subset \quad COP_n$ $\mathcal{CP}_n = \mathrm{cone}\{xx^\mathsf{T} : x \in \mathbb{R}^n_{\geq 0}\}$ $\mathcal{COP}_n = (\mathcal{CP}_n)^* = \{B \in \mathcal{S}^n : \langle A, B \rangle \geq 0 \text{ for all } A \in \mathcal{CP}_n\}$ basic questions about this cone are still open and appear to be disconer to be disconer to be disconer to be d
Appear to be disconer to be discone $\{B\in \mathcal{S}^n : B[x]\geq 0 \text{ for all } x\in \mathbb{R}^n_{\geq 0}\}$ a given symmetric matrix *A* is completely positive. If possible one would like to $\mathcal{CP}_n \subset S^n_{\geq n} \subset \mathcal{COP}_n$ \cdots \cdots \cdots \cdots \cdots and its dual, the copositive cone $CD = const. r r T$, $r \in \mathbb{R}^{n}$ is and its dual the conecitive copo $\sum_{i=1}^{n}$ and the cone of $\sum_{i=1}^{n}$ *CPⁿ* = (*COPn*) ⇤*.* So, in order to show that a given symmetric matrix *A* is not completely positive, it $\mathcal{CP}_n \subset S_{>0}^n \subset \mathcal{COP}_n$ *rating witness* for *A* 62 *CPⁿ* in this case, because the linear hyperplane orthogonal $CD = \text{cond}(rr^{\text{T}} \cdot r \in \mathbb{R}^n, \}$ and its dual the copositive cope $C_{P,n} = \text{Cone}(x\bar{x} \ldots \bar{x} \in \mathbb{R}_{\geq 0})$ and its dual, the copositive cone $\mathcal{P}(\mathcal{D} \mathcal{D}) = (\mathcal{C} \mathcal{D})^* =$ $\mathcal{C}\mathcal{O}\mathcal{P}_n = (\mathcal{C}\mathcal{P}_n) = \{B \in \mathcal{S} : \langle A, B \rangle \geq 0 \text{ for all } A \in \mathcal{S}\}$ $P = {B \in \mathcal{S}^n : B[x] \ge 0 \text{ for all } x \in \mathbb{R}_{\ge 0}^n}$ Definition 2.1. *For a symmetric matrix ^B* ² *^Sⁿ we define the* copositive minimum min*COP* (*B*) = inf *^B*[*v*] : *^v* ² ^Z*ⁿ* ⁰ *\ {*0*}*

 $\langle A,$ *m* \mathcal{B}) = Irace(*A* \cdot *B*) denotes the standard inner p $\langle A, B \rangle = \text{Trace}(A \cdot B)$ $\langle A, B \rangle = \text{Hace}(A \cdot B)$ denotes the standard finiter product on B \overline{A} \overline{B} \overline{B} \overline{B} \overline{B} denotes the standard inner product $\langle A, B \rangle$ = Trace($A \cdot B$) denotes the standard inner product on S^n

Application: Copositive Optimization

• Copositive optimization problems are convex conic problems

 $\min \langle C, Q \rangle$ such that $\langle Q, A_i \rangle = b_i, i = 1, \ldots, m$ and $Q \in$ CONE Linear Programming (LP) $CONF = \mathbb{R}^n$ \geq ⁰ Copositive Programming (CP) $COME = CP_n$ or \mathcal{COP}_n Semidefinite Programming (SDP) $CONF = S^n_{\geq 0}$

Task: Certify or disprove $Q \in \mathcal{C}\tilde{\mathcal{P}}_n = \mathsf{cone}\left\{ \mathsf{x}\mathsf{x}^\top : \mathsf{x} \in \mathbb{Q}_{\geq 0}^n \right\}$ $\left\{ \right.$

(due to duality theory we can give certificates for solutions of convex conic problems)

Copositive minimum

(COP-SVP)

DEF: $\min_{\mathcal{C} \in \mathcal{D}} Q = \min_{\mathbf{x} \in \mathbb{Z}^n}$ *^x*2Z*ⁿ* 0*\{*0*}* is the copositive minimum Difficult to compute!?

THM: (Bundfuss and Dür, 2008)

in the standard simplex $\Delta = \{x \in \mathbb{R}_{\geq 0}^n : x_1 + ... x_n = 1\}$ such that each Δ^k has vertices $\mathsf{v}_1,\ldots \mathsf{v}_n$ with $\mathsf{v}_i^\top \mathsf{Q} \mathsf{v}_j > \mathsf{0}$ For $Q \in \text{int } \mathcal{COP}_n$ we can construct a family of simplices Δ^k

A first naive algorithm:

"Fincke-Pohst strategy" to compute $\min_{COP} Q$ in each cone Δ^k

Generalized Ryshkov polyhedron

The set of all copositive quadratic forms / matrices with copositive minimum at least I is called Ryshkov polyhedron

 $\mathcal{R} = \{ Q \in \mathcal{COP}_n : Q[x] \geq 1 \text{ for all } x \in \mathbb{Z}_{\geq 0}^n \setminus \{0\} \}$

DEF: $Q \in \text{int } \mathcal{COP}_n$ is called $\mathcal{COP}\text{-perfect if and only if}$ *Q* is uniquely determined by $\min_{COP} Q$ and $\text{Min}_{\mathcal{COP}}Q = \{ x \in \mathbb{Z}_{\geq 0}^n : Q[x] = \text{min}_{\mathcal{COP}}Q \}$

• *R* is a locally finite polyhedron (with dead-ends / rays)

Vertices of *^R* are *COP*-perfect •

A copositive starting point
\n
$$
\mathbf{H}\mathbf{M}: \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix} \text{ is } \mathcal{COP}\text{-perfect}
$$
\nProof. Matrix Q_{A_n} is positive definite since\n
$$
Q_{A_n}[x] = x_1^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2 + x_n^2 \quad \text{for } x \in \mathbb{R}.
$$

i=1 In particular it lies in the interior of the copositive cone. Furthermore,

$$
\min_{\mathcal{COP}} Q_{\mathsf{A}_n} = 2 \quad \text{with} \quad \min_{\mathcal{COP}} Q_{\mathsf{A}_n} = \left\{ \sum_{i=j}^k e_j : 1 \le j \le k \le n \right\}
$$

Voronoi-type simplex algorithm

 I nput: $A \in \mathcal{S}^n$

Obtain an initial *COP*-perfect matrix *B*_P

- 1. if $\langle B_P, A \rangle < 0$ then output $A \not\in \mathcal{CP}_n$ (with witness B_P)
- $2.$ LP: if $A \in \mathsf{cone}\left\{ \mathsf{x}\mathsf{x}^\top : \mathsf{x} \in \mathsf{Min}_\mathcal{COP}\mathsf{B}_\mathsf{P} \right\}$ then $\mathsf{output}\;A \in \mathcal{C}\tilde{\mathcal{P}}_n$
- 3. COP-SVP: Compute Min_{COP} B_P and the polyhedral cone

 $P(B_P) = \{ B \in S^n : B[x] \ge 1 \text{ for all } x \in \text{Min}_{\mathcal{COP}}B_P \}$

- (flexible "pivot-rule") 4. PolyRepConv: Determine a generator *R* of an extreme ray of *P*(*BP*) with $\langle A, R \rangle < 0$.
- 5. SimplexDiv: if $R \in \mathcal{COP}_n$ then output $A \notin \mathcal{CP}_n$ (with witness R)
- 6. COP-SVPs: Determine the contiguous *COP*-perfect matrix

 $B_N := B_P + \lambda R$ with $\lambda > 0$ and min $_{\mathcal{COP}}B_N = 1$

7. Set $B_P := B_N$ and goto 1.

Starting with Q_{A_2} one iteration of the algorithm finds

the \mathcal{COP} -perfect matrix $\mathcal{B}_P =$ $\begin{pmatrix} 1 & -3/2 \\ -3/2 & 3 \end{pmatrix}$ and

$$
A = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}^T + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}^T + \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}^T
$$

(algorithm terminates with a suitable (algorithm terminates with a suitable pivot-rule) \blacksquare

 $\sqrt{2010}$

*v*⁵ = (0*,* 1*,* 2*,* 1*,* 0) Starting with Q_{A_5} , our algorithm finds a cp-factorization after 5 iterations

giving a certificate for the matrix to be completely positive

Starting with Q_{A_5} , after 18 iterations our algorith Starting with *Q*_{A₅, after 18 iterations our algorithm finds the *COP*-perfect}

giving a certificate for the matrix not to be completely positive σ ² showing a certificate for the matrix Siving a certificate for the final ix not to be completely positive

Open Questions / TODOs

- Find suitable / good pivot rules for boundary cases
- Prove termination of algorithm for exterior cases

- Improve computations in practice
- ... in particular: find a better algorithm to compute min_{COP} and the set of its representatives Min_{COP}

(COP-SVPs)

References

- Achill Schürmann, *Computational Geometry of Positive Definite Quadratic Forms,* University Lecture Series, AMS, Providence, RI, 2009.
- Mathieu Dutour Sikirić, Achill Schürmann and Frank Vallentin, Rational factorizations of completely positive matrices, *Linear Algebra and its Applications*, 523 (2017), 46–51.
- Mathieu Dutour Sikirić, Achill Schürmann and Frank Vallentin, A simplex algorithm for rational cp-factorization, Math. Prog. A, 2020, online first

