Simons workshop Lattices Geometry, Algorithms and Hardness Berkeley, February 21st 2020

A simplex-type Voronoi algorithm based on short vector computations of copositive quadratic forms

Achill Schürmann (Universität Rostock)

based on work with Mathieu Dutour Sikirić and Frank Vallentin

Perfect Forms (for $Q \in S_{>0}^n$ positive definite)

• $\min(Q) = \min_{x \in \mathbb{Z}^n \setminus \{0\}} Q[x]$ is the arithmetical minimum

• Q is uniquely determined by $\min(Q)$ and • Q perfect \Leftrightarrow $MinQ = \{ x \in \mathbb{Z}^n : Q[x] = \min(Q) \}$

- $V(Q) = \operatorname{cone} \{xx^t : x \in \operatorname{Min} Q\}$ is Voronoi cone of Q(Voronoi cones are full dimensional if and only if Q is perfect!)
- **THM**: Voronoi cones give a polyhedral tessellation of $S_{>0}^n$ and there are only finitely many up to $GL_n(\mathbb{Z})$ -equivalence.

Voronoi's Reduction Theory

 $\operatorname{GL}_n(\mathbb{Z})$ acts on $\mathcal{S}_{>0}^n$ by $Q \mapsto U^t Q U$

Georgy Voronoi (1868 – 1908)

Task of a reduction theory is to provide a fundamental domain

Voronoi's algorithm gives a recipe for the construction of a complete list of such polyhedral cones up to $GL_n(\mathbb{Z})$ -equivalence

Ryshkov Polyhedron

The set of all positive definite quadratic forms / matrices with arithmetical minimum at least 1 is called Ryshkov polyhedron

 $\mathcal{R} = \left\{ Q \in \mathcal{S}_{>0}^n \ : \ Q[x] \ge I \text{ for all } x \in \mathbb{Z}^n \setminus \{0\}
ight\}$

- \mathcal{R} is a locally finite polyhedron
- Vertices of \mathcal{R} are perfect

Voronoi's Algorithm

Start with a perfect form Q

- 1. SVP: Compute Min Q and describing inequalities of the polyhedral cone $\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \ge 1 \text{ for all } x \in Min Q \}$
- 2. PolyRepConv: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$
- 3. SVPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$, $i = 1, \ldots, k$
- 4. ISOMs: Test if Q_i is arithmetically equivalent to a known form
- 5. Repeat steps 1.–4. for new perfect forms

(graph traversal search on edge graph of Ryshkov polyhedron)

Generalization

... and application!

IDEA: Generalize Voronoi's theory to other convex cones and their duals (Opgenorth, 2001)

In particular to the completely positive cone

 $\langle A, B \rangle = \operatorname{Trace}(A \cdot B)$ denotes the standard inner product on \mathcal{S}^n

Application: Copositive Optimization

Copositive optimization problems are convex conic problems

 $\min \langle C, Q \rangle \text{ such that } \langle Q, A_i \rangle = b_i, i = 1, \dots, m$ and $Q \in \text{CONE}$ $CONE = \mathbb{R}^n_{\geq 0}$ Linear Programming (LP) $CONE = \mathcal{S}^n_{\geq 0}$ Semidefinite Programming (SDP)

Task: Certify or disprove $Q \in \tilde{CP}_n = \operatorname{cone} \left\{ xx^\top : x \in \mathbb{Q}_{>0}^n \right\}$

(due to duality theory we can give certificates for solutions of convex conic problems)

Copositive minimum

DEF: $\min_{\mathcal{COP}} Q = \min_{\substack{x \in \mathbb{Z}_{\geq 0}^n \setminus \{0\}}} Q[x]$ is the copositive minimum Difficult to compute!?

THM: (Bundfuss and Dür, 2008)

For $Q \in \operatorname{int} COP_n$ we can construct a family of simplices Δ^k in the standard simplex $\Delta = \{x \in \mathbb{R}^n_{\geq 0} : x_1 + \ldots x_n = I\}$ such that each Δ^k has vertices $v_1, \ldots v_n$ with $v_i^\top Qv_j > 0$

A first naive algorithm:

"Fincke-Pohst strategy" to compute $\min_{\mathcal{COP}} Q$ in each cone Δ^k

Generalized Ryshkov polyhedron

The set of all copositive quadratic forms / matrices with copositive minimum at least 1 is called Ryshkov polyhedron

 $\mathcal{R} \;=\; \left\{ Q \in \mathcal{COP}_n \;:\; Q[x] \geq I \text{ for all } x \in \mathbb{Z}_{\geq 0}^n \setminus \{0\} \right\}$

DEF: $Q \in \operatorname{int} \mathcal{COP}_n$ is called \mathcal{COP} -perfect if and only if Q is uniquely determined by $\min_{\mathcal{COP}} Q$ and $\operatorname{Min}_{\mathcal{COP}} Q = \left\{ x \in \mathbb{Z}_{\geq 0}^n : Q[x] = \min_{\mathcal{COP}} Q \right\}$

- \mathcal{R} is a locally finite polyhedron (with dead-ends / rays)
- Vertices of \mathcal{R} are \mathcal{COP} -perfect

A copositive starting point

$$\begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & \ddots & \ddots & 1 \\ 0 & \ddots & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}$$
is *COP*-perfect
Proof. Matrix Q_{A_n} is positive definite since

$$Q_{A_n}[x] = x_1^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2 + x_n^2 \quad \text{for } x \in \mathbb{R}.$$

In particular it lies in the interior of the copositive cone. Furthermore,

$$\min_{\mathcal{COP}} Q_{\mathsf{A}_n} = 2 \quad \text{with} \quad \min_{\mathcal{COP}} Q_{\mathsf{A}_n} = \left\{ \sum_{i=j}^k e_j : 1 \le j \le k \le n \right\}$$

Voronoi-type simplex algorithm

Input: $A \in S^n$

Obtain an initial COP-perfect matrix B_P

- I. if $\langle B_P, A \rangle < 0$ then output $A \not\in \mathcal{CP}_n$ (with witness B_P)
- 2. LP: if $A \in \text{cone}\left\{xx^{\top} : x \in \text{Min}_{\mathcal{COP}}B_{P}\right\}$ then output $A \in \tilde{\mathcal{CP}}_{n}$
- 3. COP-SVP: Compute $Min_{COP}B_P$ and the polyhedral cone

 $\mathcal{P}(B_{P}) = \{ B \in \mathcal{S}^{n} : B[x] \ge I \text{ for all } x \in Min_{\mathcal{COP}}B_{P} \}$

- 4. PolyRepConv: Determine a generator R of an extreme ray of $\mathcal{P}(B_P)$ with $\langle A, R \rangle < 0$. (flexible "pivot-rule")
- 5. SimplexDiv: if $R \in COP_n$ then output $A \notin CP_n$ (with witness R)
- 6. COP-SVPs: Determine the contiguous COP-perfect matrix

 $B_N := B_P + \lambda R$ with $\lambda > 0$ and $\min_{\mathcal{COP}} B_N = 1$

7. Set $B_P := B_N$ and goto 1.

Starting with Q_{A_2} one iteration of the algorithm finds

the
$$COP$$
-perfect matrix $B_P = \begin{pmatrix} I & -3/2 \\ -3/2 & 3 \end{pmatrix}$ and
 $A = \begin{pmatrix} I \\ 0 \end{pmatrix} \begin{pmatrix} I \\ 0 \end{pmatrix}^{\top} + \begin{pmatrix} I \\ I \end{pmatrix} \begin{pmatrix} I \\ I \end{pmatrix}^{\top} + \begin{pmatrix} 2 \\ I \end{pmatrix} \begin{pmatrix} 2 \\ I \end{pmatrix}^{\top}$

(algorithm terminates with a suitable pivot-rule)

Starting with Q_{A_5} , our algorithm finds a cp-factorization after 5 iterations

v_1	=	$\left(0,0,0,1,1 ight)$	v_6	=	$\left(1,0,0,0,1 ight)$
v_2	=	$\left(0,0,1,1,0 ight)$	v_7	=	$\left(1,0,0,1,2 ight)$
v_3	=	$\left(0,0,1,2,1 ight)$	v_8	=	$\left(1,1,0,0,0 ight)$
v_4	=	$\left(0,1,1,0,0 ight)$	v_9	=	$\left(1,2,1,0,0 ight)$
v_5	=	$\left(0,1,2,1,0 ight)$	v_{10}	=	$\left(2,1,0,0,1 ight)$

giving a certificate for the matrix to be completely positive

Starting with Q_{A_5} , after 18 iterations our algorithm finds the COP-perfect

(363/5	-2126/35	2879/70	608/21	-4519/210
-2126/35	1787/35	-347/10	1025/42	253/14
2879/70	-347/10	829/35	-1748/105	371/30
608/21	1025/42	-1748/105	1237/105	-601/70
-4519/210	253/14	371/30	-601/70	671/105 /

giving a certificate for the matrix not to be completely positive

Open Questions / TODOs

- Find suitable / good pivot rules for boundary cases
- Prove termination of algorithm for exterior cases

Improve computations in practice

• ... in particular: find a better algorithm to compute $\min_{\mathcal{COP}}$ and the set of its representatives $Min_{\mathcal{COP}}$

(COP-SVPs)

References

- Achill Schürmann, Computational Geometry of Positive Definite Quadratic Forms, University Lecture Series, AMS, Providence, RI, 2009.
- Mathieu Dutour Sikirić, Achill Schürmann and Frank Vallentin, Rational factorizations of completely positive matrices, *Linear Algebra and its Applications*, 523 (2017), 46–51.
- Mathieu Dutour Sikirić, Achill Schürmann and Frank Vallentin, A simplex algorithm for rational cp-factorization, Math. Prog. A, 2020, online first

