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• Let Sd ⊂ Rd×d be the space of real symmetric matrices.
• Dimension n := 1

2d(d + 1).
• We define the following inner product on Sd :

〈A,B〉 := Tr(AtB) =
∑
i ,j

AijBij

• Q ∈ Sd defines a quadratic form by

Q[x] := xtQx = 〈Q, xxt〉 ∀x ∈ Rd

• For a positive definite quadratic form (PQF) Q ∈ Sd
>0:

λ(Q) := min
x∈Zd−{0}

Q[x]

Min (Q) := {x ∈ Zd : Q[x] = λ(Q)}
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>0.

∼ det(Q)1/2∼ λ(Q)d/2

• Hermite invariant:

γ(Q) =
λ(Q)

(det Q)1/d ∼ density(L)2/d

• Lattice packing problem⇔ determine Hermite’s constant:

Hd := sup
Q∈Sd

>0

γ(Q)
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11 | 23Number of perfect forms
• The exact set of perfect forms is known up to dimension 8.
• For d ≥ 6 Voronoi’s Algorithm was used.

d # non-similar Perfect forms
2 1 (Lagrange, 1773)
3 1 (Gauss, 1840)
4 2 (Korkine & Zolotarev, 1877)
5 3 (Korkine & Zolotarev, 1877)
6 7 (Barnes, 1957)
7 33 (Jaquet, 1993)
8 10916 (DSV, 2005)
9 ≥ 500.000 (DSV, 2005)
≥ 23.000.000 (vW, 2018)
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• pd := number of non-similar d -dimensional perfect forms.
• Known bounds for pd .

pd < eO(d4 log(d)) (C. Soulé, 1998)

eΩ(d) < pd < eO(d3 log(d)) (R. Bacher, 2017)

Theorem (This talk)

pd < eO(d2 log(d))
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14 | 23Subdivision for d = 2

Figure: Subdivision by normal cones of Ryshkov Polyhedron.
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Td := {Q ∈ Sd : Tr(Q) = 〈Q, Id〉 ≤ 1}.
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17 | 23Volumetric argument
• Find a complete set of representatives Pd such that:

Vol
(
Sd
≥0

)
≤ ud
= o(1)

Vol (V(Q)) ≥ `d

∀Q ∈ Pd

• Then pd = |Pd | ≤ ud
`d

.
• To quantify the volume we restrict to the half space

Td := {Q ∈ Sd : Tr(Q) = 〈Q, Id〉 ≤ 1}.
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0

a1 a3

a2

n-dimensional simplex:
Volume = 1

n! · |det(〈ai , aj〉)i ,j |1/2
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• Tr(xxt) = xtx.
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x1xt
1

xt
1x1

x3xt
3

xt
3x3

x2xt
2

xt
2x2

V(Q) ∩ Td
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≥`d ?

We need to upper bound all xt
i xi .
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Lemma
Let PQF Q ∈ Sd

>0. Then there exists a Q′ arithmetically
equivalent to Q such that

xtx = O(d4) ∀x ∈ Min Q′

• Proof: transference and dual lattice reduction.

Vol(V(Q) ∩ Td ) ≥
1
n!
·
( n∏

i=1

1
xt

i xi

)

≥
1
n!
·
(

1
O (d4)

)n

=: `d
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22 | 23Conclusion

Remind that n = 1
2d(d + 1). To conclude:

pd = |Pd | ≤
ud

`d

= o(1) · n! · O(d4)n

= eO(d2 log(d))

Thank you!
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