Lattice packings: an upper bound on the number of perfect lattices

Wessel van Woerden, CWI, Amsterdam.

Sphere Packing Problem 1 | 23

Sphere Packing Problem 1 | 23

Sphere Packing Problem 1 | 23

• Only solved in dimensions **2***,* **3***,* **8** and **24**...

Lattice Packing Problem 2 | 23

Lattice Packing Problem 2 | 23

• Solved in dimensions **≤ 8** and **24**.

Solution space 3 | 23

• Cone of positive definite quadratic forms:

Ryshkov Polyhedron

4 | 23 1: **4** | **23**

• Spheres of radius at least 1:

Ryshkov Polyhedron 4 | 23

• Spheres of radius at least **1**:

• Concave minimization problem =**⇒** optima at vertices.

Ryshkov Polyhedron 4 | 23

• Spheres of radius at least **1**:

- **•** Concave minimization problem =**⇒** optima at vertices.
- **•** Finite number of non-similar vertices.

Ryshkov Polyhedron 4 | 23

• Spheres of radius at least **1**:

- **•** Concave minimization problem =**⇒** optima at vertices.
- **•** Finite number of non-similar vertices. **← how many?**

Voronoi's Algorithm 5 | 23

- **•** How to solve the lattice packing problem in a fixed dimension:
	- **•** Enumerate all non-similar vertices.

Voronoi's Algorithm 5 | 23

- **•** How to solve the lattice packing problem in a fixed dimension:
	- **•** Enumerate all non-similar vertices.
	- Pick the best one. \Box

• Let **S ^d ⊂** R **^d×^d** be the space of real **symmetric** matrices.

- **•** Let **S ^d ⊂** R **^d×^d** be the space of real **symmetric** matrices.
- Dimension $n := \frac{1}{2}d(d+1)$.

- **•** Let **S ^d ⊂** R **^d×^d** be the space of real **symmetric** matrices.
- Dimension $n := \frac{1}{2}d(d+1)$.
- **•** We define the following inner product on **S d** :

$$
\langle A, B \rangle := \text{Tr}(A^t B) = \sum_{i,j} A_{ij} B_{ij}
$$

- **•** Let **S ^d ⊂** R **^d×^d** be the space of real **symmetric** matrices.
- Dimension $n := \frac{1}{2}d(d+1)$.
- **•** We define the following inner product on **S d** :

$$
\langle A, B \rangle := \text{Tr}(A^t B) = \sum_{i,j} A_{ij} B_{ij}
$$

• Q ∈ S^d defines a quadratic form by

 $Q[x] := x^t Qx = \langle Q, xx^t \rangle \quad \forall x \in \mathbb{R}^d$

- **•** Let **S ^d ⊂** R **^d×^d** be the space of real **symmetric** matrices.
- Dimension $n := \frac{1}{2}d(d+1)$.
- **•** We define the following inner product on **S d** :

$$
\langle A, B \rangle := \text{Tr}(A^t B) = \sum_{i,j} A_{ij} B_{ij}
$$

• Q ∈ S^d defines a quadratic form by

$$
Q[x] := x^t Q x = \langle Q, xx^t \rangle \ \forall x \in \mathbb{R}^d
$$

 \bullet For a positive definite quadratic form (PQF) $Q \in {\cal S}^d_{>0}$:

$$
\lambda(Q) := \min_{x \in \mathbb{Z}^d - \{0\}} Q[x]
$$

Min (Q) := { $x \in \mathbb{Z}^d$: Q[x] = $\lambda(Q)$ }

Hermite Constant

• Lattice $L = B\mathbb{Z}^d \implies PQF \ Q = B^tB \in S^d_{>0}$.

Hermite Constant

7 | 23

Hermite Constant 7 | 23

• Lattice $\boldsymbol{L} = \boldsymbol{B}\mathbb{Z}^d \implies \boldsymbol{P}\boldsymbol{Q}\boldsymbol{\mathsf{F}}$ $\boldsymbol{Q} = \boldsymbol{B}^t\boldsymbol{B} \in \boldsymbol{S}_{>0}^d$.

Hermite Constant 7 | 23

• Lattice $\boldsymbol{L} = \boldsymbol{B}\mathbb{Z}^d \implies \boldsymbol{P}\boldsymbol{Q}\boldsymbol{\mathsf{F}}$ $\boldsymbol{Q} = \boldsymbol{B}^t\boldsymbol{B} \in \boldsymbol{S}_{>0}^d$.

• Hermite invariant:

$$
\gamma(Q) = \frac{\lambda(Q)}{(\det Q)^{1/d}} \sim \text{density}(L)^{2/d}
$$

Hermite Constant 7 | 23

• Lattice $L = B\mathbb{Z}^d \implies PQF Q = B^tB \in S^d_{>0}$.

• Hermite invariant:

$$
\gamma(\mathbf{Q}) = \frac{\lambda(\mathbf{Q})}{(\det \mathbf{Q})^{1/d}} \sim \text{density}(\mathbf{L})^{2/d}
$$

• Lattice packing problem **⇔** determine Hermite's constant:

$$
\mathcal{H}_d := \sup_{Q \in \mathcal{S}_{>0}^d} \gamma(Q)
$$

• For *λ >* **0** we define the Ryshkov Polyhedron

 $\mathcal{P}_{\lambda} = \{ \boldsymbol{Q} \in \mathcal{S}_{>0}^{\boldsymbol{d}} : \lambda(\boldsymbol{Q}) \geq \lambda \}$

• For *λ >* **0** we define the Ryshkov Polyhedron

$$
\mathcal{P}_{\lambda} = \bigcap_{\mathsf{x} \in \mathbb{Z}^d \setminus \{\mathsf{0}\}} \{ \mathsf{Q} \in \mathcal{S}^d : \langle \mathsf{Q}, \mathsf{x} \mathsf{x}^t \rangle \geq \lambda \} \subset \mathcal{S}^d_{>0}
$$

• For *λ >* **0** we define the Ryshkov Polyhedron

$$
\mathcal{P}_{\lambda} = \bigcap_{x \in \mathbb{Z}^d \setminus \{0\}} \{Q \in \mathcal{S}^d : \langle Q, xx^t \rangle \geq \lambda\} \subset \mathcal{S}_{>0}^d
$$

• Facets correspond to $x \in \mathbb{Z}^d \setminus \{0\}$.

• For *λ >* **0** we define the Ryshkov Polyhedron

 $\mathcal{P}_{\lambda} = \{ \boldsymbol{Q} \in \mathcal{S}_{>0}^{\boldsymbol{d}} : \lambda(\boldsymbol{Q}) \geq \lambda \}$

• We have

$$
\mathcal{H}_d = \frac{\lambda}{\inf_{Q \in \mathcal{P}_{\lambda}} \det(Q)^{1/d}}
$$

• For *λ >* **0** we define the Ryshkov Polyhedron

 $\mathcal{P}_{\lambda} = \{ \boldsymbol{Q} \in \mathcal{S}_{>0}^{\boldsymbol{d}} : \lambda(\boldsymbol{Q}) \geq \lambda \}$

• We have

$$
\mathcal{H}_d = \frac{\lambda}{\inf_{Q \in \mathcal{P}_\lambda} \det(Q)^{1/d}}
$$

 \bullet Minkowski: $\det(Q)^{1/d}$ is (strictly) concave on $\mathcal{S}^d_{>0}$ =**⇒** Local optima at vertices of **P***λ*.

Perfect forms

 \bullet **Q** is perfect \Leftrightarrow **Q** is a vertex of $\mathcal{P}_{\lambda(Q)}$

Perfect forms 9 | 23

- **• Q** is perfect **⇔ Q** is a vertex of **P***λ*(**Q**) .
- Note that $|\text{Min } Q| \geq 2n = d(d+1)$

Similarity 10 | 23 • *B* and **BU** generate the same lattice for $U \in GL_d(\mathbb{Z})$.

-
-
-
-
-
-

Similarity 10 | 23

- *B* and **BU** generate the same lattice for $U \in GL_d(\mathbb{Z})$.
- **Arithmetically equivalence:** $\exists U$ s.t. $Q' = U^t QU$.

Similarity 10 | 23

- *B* and **BU** generate the same lattice for $U \in GL_d(\mathbb{Z})$.
- **Arithmetically equivalence:** $\exists U$ s.t. $Q' = U^t QU$.
- Note that $\lambda_1(U^tQU) = \lambda_1(Q)$ and $\det(U^tQU) = \det(Q)$.

Similarity 10 | 23

- *B* and **BU** generate the same lattice for $U \in GL_d(\mathbb{Z})$.
- **• Arithmetically equivalence:** $\exists U$ s.t. $Q' = U^t QU$.
- Note that $\lambda_1(U^tQU) = \lambda_1(Q)$ and $det(U^tQU) = det(Q)$.
- **• Similarity:** Arithmetical equivalence up to scaling.

Perfect Forms: how many?

Number of perfect forms 11 | 23

- **•** The exact set of perfect forms is known up to dimension **8**.
- **•** For **d ≥ 6** Voronoi's Algorithm was used.

An improved upper bound 12 | 23

• $p_d :=$ number of non-similar d -dimensional perfect forms.

An improved upper bound 12 | 23

$$
12 \mid 23
$$

- $p_d :=$ number of non-similar d -dimensional perfect forms.
- Known bounds for p_d .

$$
p_d < e^{O(d^4 \log(d))} \qquad \qquad \text{(C. Soul\'e, 1998)}
$$
\n
$$
e^{\Omega(d)} < p_d < e^{O(d^3 \log(d))} \qquad \text{(R. Bacher, 2017)}
$$

An improved upper bound 12 | 23

$$
12 \mid 23
$$

- $p_d :=$ number of non-similar d -dimensional perfect forms.
- Known bounds for p_d .

$$
p_d < e^{O(d^4 \log(d))} \qquad \qquad \text{(C. Soul\'e, 1998)}
$$
\n
$$
e^{\Omega(d)} < p_d < e^{O(d^3 \log(d))} \qquad \text{(R. Bacher, 2017)}
$$

Theorem (This talk)

 $p_d < e^{O(d^2 \log(d))}$

Outer Normal Cones 13 | 23

polyhedron inside cone =**⇒** subdivision of cone

Inner Normal Cones 13 | 23

polyhedron inside cone =**⇒** subdivision of cone

Subdivision for $d = 2$ **14 23**

Figure: Subdivision by normal cones of Ryshkov Polyhedron.

Voronoi Domain 15 | 23

Definition

For a PQF $\boldsymbol{Q} \in \mathcal{S}^{\boldsymbol{d}}_{>0}$ its Voronoi Domain $\mathcal{V}(\boldsymbol{Q})$ is

$$
\mathcal{V}(\mathbf{Q}) := \text{cone}(\{xx^t : x \in \text{Min } \mathbf{Q}\}) \subset \mathcal{S}^d_{\geq 0}.
$$

Voronoi Domain 15 | 23

Definition

For a PQF $\boldsymbol{Q} \in \mathcal{S}^{\boldsymbol{d}}_{>0}$ its Voronoi Domain $\mathcal{V}(\boldsymbol{Q})$ is $\mathcal{V}(\mathbf{Q}) := \mathrm{cone}(\{\mathbf{x}\mathbf{x}^t : \mathbf{x} \in \mathsf{Min}\ \mathbf{Q}\}) \subset \mathcal{S}^d_{\geq 0}.$

• Q is perfect **⇔ V**(**Q**) is full dimensional.

Volumetric argument 17 | 23

• Find a complete set of representatives **P^d** such that:

 $Vol(V(Q)) \geq \ell_d$ **∀Q ∈ P^d**

Volumetric argument 17 | 23

• Find a complete set of representatives **P^d** such that:

 $Vol(V(Q)) \geq \ell_d$ **∀Q ∈ P^d**

• Then $p_d = |P_d| \leq \frac{u_d}{\ell_d}$.

Volumetric argument 17 | 23

• Find a complete set of representatives P_d such that:

 $Vol(V(Q)) > \ell_d$ **∀Q ∈ P^d**

- Then $p_d = |P_d| \leq \frac{u_d}{\ell_d}$.
- **•** To quantify the volume we restrict to the half space

 $\mathcal{T}_d := \{Q \in \mathcal{S}^d : \text{Tr}(Q) = \langle Q, I_d \rangle \leq 1\}.$

Volume simplex 18 | 23

Volume Voronoi domain 19 | 23

• $Tr(xx^t) = x^t x$.

Volume Voronoi domain 19 | 23

- $Tr(xx^t) = x^t x$.
- Can look at subcone: w.l.o.g. Min $Q = \{\pm x_1, \ldots, \pm x_n\}$.

We get

$$
\text{Vol}(\mathcal{V}(Q) \cap \mathcal{T}_d) = \frac{1}{n!} \cdot \left| \det \left(\left\langle \frac{x_i x_i^t}{x_i^t x_i}, \frac{x_j x_j^t}{x_j^t x_j} \right\rangle \right)_{i,j \in [n]} \right|^{1/2}
$$

We get

$$
\text{Vol}(\mathcal{V}(Q) \cap \mathcal{T}_d) = \frac{1}{n!} \cdot \left| \det \left(\left\langle \frac{x_i x_i^t}{x_i^t x_i}, \frac{x_j x_j^t}{x_j^t x_j} \right\rangle \right)_{i,j \in [n]} \right|^{1/2}
$$

$$
= \frac{1}{n!} \cdot \left(\prod_{i=1}^n \frac{1}{x_i^t x_i} \right) \cdot \left| \det \left(\left\langle x_i x_i^t, x_j x_j^t \right\rangle \right)_{i,j \in [n]} \right|^{1/2}
$$

We get

$$
\text{Vol}(\mathcal{V}(Q) \cap \mathcal{T}_d) = \frac{1}{n!} \cdot \left| \det \left(\left\langle \frac{x_i x_i^t}{x_i^t x_i}, \frac{x_j x_j^t}{x_j^t x_j} \right\rangle \right)_{i,j \in [n]} \right|^{1/2}
$$
\n
$$
= \frac{1}{n!} \cdot \left(\prod_{i=1}^n \frac{1}{x_i^t x_i} \right) \cdot \left| \det \left(\left\langle x_i x_i^t, x_j x_j^t \right\rangle \right)_{i,j \in [n]} \right|^{1/2}
$$
\n
$$
\geq \frac{1}{n!} \cdot \left(\prod_{i=1}^n \frac{1}{x_i^t x_i} \right) \leftarrow \text{ uses integrality of the } x_i
$$

We get

$$
\text{Vol}(\mathcal{V}(Q) \cap \mathcal{T}_d) = \frac{1}{n!} \cdot \left| \det \left(\left\langle \frac{x_i x_i^t}{x_i^t x_i}, \frac{x_j x_j^t}{x_j^t x_j} \right\rangle \right)_{i,j \in [n]} \right|^{1/2}
$$
\n
$$
= \frac{1}{n!} \cdot \left(\prod_{i=1}^n \frac{1}{x_i^t x_i} \right) \cdot \left| \det \left(\left\langle x_i x_i^t, x_j x_j^t \right\rangle \right)_{i,j \in [n]} \right|^{1/2}
$$
\n
$$
\geq \frac{1}{n!} \cdot \left(\prod_{i=1}^n \frac{1}{x_i^t x_i} \right) \leftarrow \text{ uses integrality of the } x_i
$$
\n
$$
\geq \ell_d?
$$

We need to upper bound all $x_i^t x_i$.

Short minimal vectors 21 | 23

Lemma

Let PQF $Q \in S_{>0}^d$. Then there exists a Q' arithmetically equivalent to **Q** such that

$$
x^t x = O(d^4) \,\forall x \in \mathit{Min}\, Q'
$$

Short minimal vectors 21 | 23

Lemma

Let PQF $Q \in S_{>0}^d$. Then there exists a Q' arithmetically equivalent to **Q** such that

$$
x^t x = O(d^4) \,\forall x \in \mathit{Min}\, Q'
$$

• Proof: transference and dual lattice reduction.

Short minimal vectors 21 | 23

Lemma

Let PQF $Q \in S_{>0}^d$. Then there exists a Q' arithmetically equivalent to **Q** such that

 $x^t x = O(d^4) \,\,\forall x \in M$ in Q'

• Proof: transference and dual lattice reduction.

$$
\begin{aligned} \text{Vol}(\mathcal{V}(Q) \cap \mathcal{T}_d) &\geq \frac{1}{n!} \cdot \left(\prod_{i=1}^n \frac{1}{x_i^t x_i} \right) \\ &\geq \frac{1}{n!} \cdot \left(\frac{1}{O\left(d^4\right)} \right)^n =: \ell_d \end{aligned}
$$

Conclusion 22 | 23

Remind that $n = \frac{1}{2}d(d+1)$. To conclude:

$$
p_d = |P_d| \leq \frac{u_d}{\ell_d}
$$

= $o(1) \cdot n! \cdot O(d^4)^n$

Conclusion 22 | 23

Remind that $n = \frac{1}{2}d(d+1)$. To conclude:

$$
p_d = |P_d| \leq \frac{u_d}{\ell_d}
$$

= $o(1) \cdot n! \cdot O(d^4)^n$
= $e^{O(d^2 \log(d))}$

Conclusion 22 | 23

Remind that $n = \frac{1}{2}d(d+1)$. To conclude:

$$
p_d = |P_d| \leq \frac{u_d}{\ell_d}
$$

= $o(1) \cdot n! \cdot O(d^4)^n$
= $e^{O(d^2 \log(d))}$

Thank you!

Citations 23 | 23

- C. Soulé, Perfect forms and the Vandiver conjecture, Journal fur die Reine und Angewandte Mathematik 517 (1999) 209–222.
- **•** R. Bacher, On the number of perfect lattices, Journal de Théorie des Nombres de Bordeaux 30 (3) (2018) 917-945.
- **•** J. Martinet, Perfect Lattices in Euclidean Spaces, Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg, 2002.
- **•** A. Schurmann, Computational Geometry of Positive Definite Quadratic Forms : Polyhedral Reduction Theories, Algorithms, and Applications, American Mathematical Society, 2009.