On Integer Programming and Convolution

Klaus Jansen Lars Rohwedder

Department of Computer Science University of Kiel

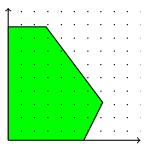
Berkeley 2020

C|AU

Christian-Albrechts-Universität zu Kiel

Standard Form

$$\max c^{T} x$$
$$Ax = b$$
$$x \in \mathbb{Z}_{\geq 0}^{n}$$



where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$.

Considered case

m (#constraints) is a fixed constant, entries of A are small ($\leq \Delta$).

Applications

Knapsack and scheduling problems, configuration IPs,...

Papadimitrou 1981

IP can be solved in time $(m(\Delta + \|b\|_{\infty}))^{O(m^2)}$.

Eisenbrand & Weismantel 2018 IP can be solved in time $n \cdot O(m\Delta)^{2m} \cdot ||b||_{\infty}^2$.

Papadimitrou 1981

IP can be solved in time $(m(\Delta + \|b\|_{\infty}))^{O(m^2)}$.

Eisenbrand & Weismantel 2018 IP can be solved in time $n \cdot O(m\Delta)^{2m} \cdot ||b||_{\infty}^2$.

This talk

IP can be solved in time $O(m\Delta)^{2m} \cdot \log(\|b\|_{\infty}) + O(nm)$.

Papadimitrou 1981

IP can be solved in time $(m(\Delta + \|b\|_{\infty}))^{O(m^2)}$.

Eisenbrand & Weismantel 2018 IP can be solved in time $n \cdot O(m\Delta)^{2m} \cdot ||b||_{\infty}^2$.

This talk

IP can be solved in time $O(m\Delta)^{2m} \cdot \log(\|b\|_{\infty}) + O(nm)$. Moreover, for every m and $\delta > 0$ improving the exponent to $2m - \delta$ is equivalent to finding a truly subquadratic algorithm for (min, +)-convolution.

Feasibility problem

Our algorithm: $O(m\Delta)^m \cdot \log(\Delta) \cdot \log(\Delta + ||b||_{\infty}) + O(nm)$. Improving exponent to $m - \delta$ would contradict the Strong Exponential Time Hypothesis (SETH).

Previous best result (Eisenbrand, Weismantel 2018): $n \cdot O(m\Delta)^m \cdot \|b\|_{\infty}$.

C | A

Knapsack problems with small weights

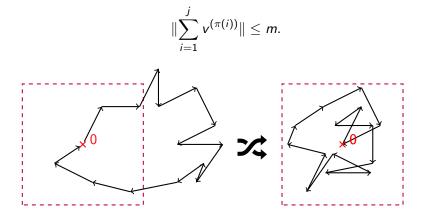
Running timePreviousUNBOUNDED KNAPSACK $O(\Delta^2)$ $O(nC), O(n\Delta^2)$ UNBOUNDED SUBSET-SUM $O(\Delta \log^2(\Delta))$ $O(C \log(C))$ (Δ = maximum weight; C = capacity)

Previous

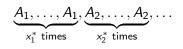
Knapsack problems with small weights

Running time UNBOUNDED KNAPSACK $O(\Delta^2)$ $O(nC), O(n\Delta^2)$ UNBOUNDED SUBSET-SUM $O(\Delta \log^2(\Delta)) = O(C \log(C))$ $(\Delta = \text{maximum weight}; C = \text{capacity})$

Scheduling on identical machines $P||C_{max}$ Previous EPTAS $2^{O(1/\epsilon \log^4(1/\epsilon))} + O(N \log N)$ New EPTAS $2^{O(1/\epsilon \log^2(1/\epsilon))} + O(N)$ (N =number of jobs, M = number of machines with $M \leq N$) Let $\|\cdot\|$ be a norm in \mathbb{R}^m and let $v^{(1)}, \ldots, v^{(t)} \in \mathbb{R}^m$ such that $\|v^{(i)}\| \leq 1$ for all *i* and $v^{(1)} + \cdots + v^{(t)} = 0$. Then there exists a permutation $\pi \in S_t$ such that for all $j \in \{1, \ldots, t\}$



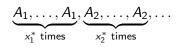
Consider an optimal solution x^* of (IP) and the sequence of column vectors



Recall that $||A_i||_{\infty} \leq \Delta$.

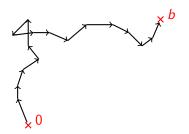
 $\max c^{T} x$ $Ax = b \quad (IP)$ $x \in \mathbb{Z}_{>0}^{n}$

Consider an optimal solution x^* of (IP) and the sequence of column vectors

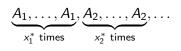


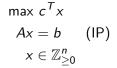
Recall that $||A_i||_{\infty} \leq \Delta$.

 $\max c^T x$ $Ax = b \quad (\mathsf{IP}) \\ x \in \mathbb{Z}_{\geq 0}^n$

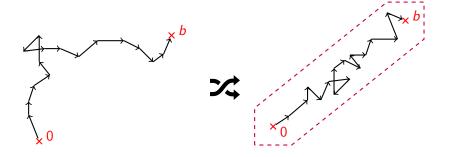


Consider an optimal solution x^* of (IP) and the sequence of column vectors





Recall that $||A_i||_{\infty} \leq \Delta$.



More formally,

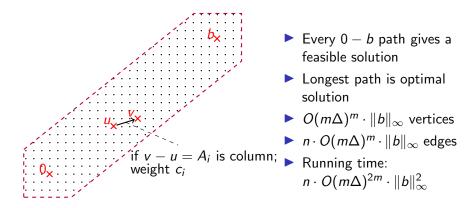
Corollary

Let $v^{(1)}, \ldots, v^{(t)}$ denote columns of A with $\sum_{i=1}^{t} v^{(i)} = b$. Then there exists a permutation $\pi \in S_t$ such that for all $j \in \{1, \ldots, t\}$

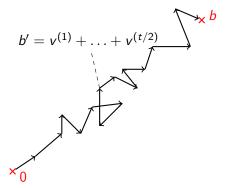
$$\left\|\sum_{i=1}^{j} v^{(\pi(i))} - j \cdot b/t\right\|_{\infty} \leq 2m\Delta.$$

This follows easily from the Steinitz Lemma: Insert vectors $\frac{v^{(i)}-b/t}{2\Delta}$, $i \in \{1, \ldots, t\}$, in the Steinitz Lemma. Note that $\|\frac{v^{(i)}-b/t}{2\Delta}\|_{\infty} \leq 1$.

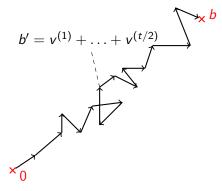
Eisenbrand & Weismantel



Observation: There is an optimal solution of bounded norm, i.e., $||x||_1 \leq O(m\Delta)^m \cdot ||b||_{\infty}$.



Let $v^{(1)} + \ldots + v^{(t)} = b$ be columns corresponding to an optimal solution of (IP).



Let $v^{(1)} + \ldots + v^{(t)} = b$ be columns corresponding to an optimal solution of (IP).

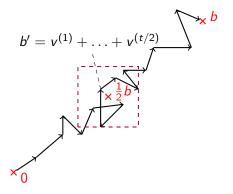
Equivalent:

 $v^{(1)} + \ldots + v^{(t/2)}$ is optimal for

$$\{\max c^T x, Ax = b', x \in \mathbb{Z}^n_{\geq 0}\}$$

and $v^{(t/2+1)} + \ldots + v^{(t)}$ is for

$$\{\max c^{\mathsf{T}}x, Ax = b - b', x \in \mathbb{Z}_{\geq 0}^n\}.$$



Let $v^{(1)} + \ldots + v^{(t)} = b$ be columns corresponding to an optimal solution of (IP).

Equivalent:

 $v^{(1)} + \ldots + v^{(t/2)}$ is optimal for

$$\{\max c^T x, Ax = b', x \in \mathbb{Z}^n_{\geq 0}\}$$

and $v^{(t/2+1)} + \ldots + v^{(t)}$ is for

$$\{\max c^T x, Ax = b-b', x \in \mathbb{Z}^n_{\geq 0}\}.$$

If ordered via Steinitz Lemma, b' and b - b' are not far from $\frac{1}{2}b$. Also, t cut in half in subproblems. Assume w.l.o.g. there is an optimal solution x with $||x||_1 = 2^K$, where $K \in \log(O(m\Delta)^m \cdot ||b||_{\infty}) = O(m\log(m\Delta) + \log(||b||_{\infty}))$

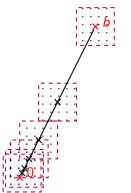
Assume w.l.o.g. there is an optimal solution x with $||x||_1 = 2^K$, where $K \in \log(O(m\Delta)^m \cdot ||b||_{\infty}) = O(m\log(m\Delta) + \log(||b||_{\infty}))$

Solve for every
$$i = K, K - 1, ..., 0$$
 and every b' with
 $\left\| b' - \frac{1}{2^i} b \right\|_{\infty} \le 4m\Delta$

the problem

$$\max c^{T} x$$
$$Ax = b'$$
$$\|x\|_{1} = 2^{K-i}$$
$$x \in \mathbb{Z}_{\geq}^{n} 0.$$

Solution for original problem at i = 0and b' = b.



Let
$$i < K$$
 and b' with $||b' - 1/2^i \cdot b||_{\infty} \le 4m\Delta$.

Let $v^{(1)}, \ldots, v^{(2^{K-i})}$ correspond to a solution of

$$\max\{c^{T}x, Ax = b', \|x\|_{1} = 2^{K-i}, x \in \mathbb{Z}_{\geq 0}^{n}\},\$$

ordered via Steinitz Lemma.

Let
$$i < K$$
 and b' with $||b' - 1/2^i \cdot b||_{\infty} \le 4m\Delta$.

Let $v^{(1)}, \ldots, v^{(2^{K-i})}$ correspond to a solution of

$$\max\{c^{T}x, Ax = b', \|x\|_{1} = 2^{K-i}, x \in \mathbb{Z}_{\geq 0}^{n}\},\$$

ordered via Steinitz Lemma. Set $b'' := v^{(1)} + \ldots + v^{(2^{K-i-1})}$.

$$\left\|b'' - \frac{1}{2^{i+1}}b\right\|_{\infty} \leq \underbrace{\left\|b'' - \frac{1}{2}b'\right\|_{\infty}}_{\leq 2m\Delta} + \underbrace{\left\|\frac{1}{2}b' - \frac{1}{2^{i+1}}b\right\|_{\infty}}_{\leq 1/2 \cdot 4m\Delta} \leq 4m\Delta$$

Similarly,

$$\left\| (b'-b'')-rac{1}{2^{i+1}}b
ight\|_{\infty}\leq 4m\Delta.$$

Let
$$i < K$$
 and b' with $||b' - 1/2^i \cdot b||_{\infty} \leq 4m\Delta$.

Let $v^{(1)}, \ldots, v^{(2^{K-i})}$ correspond to a solution of

$$\max\{c^{\mathsf{T}}x, Ax = b', \|x\|_1 = 2^{K-i}, x \in \mathbb{Z}^n_{\geq 0}\},\$$

ordered via Steinitz Lemma. Set $b'' := v^{(1)} + \ldots + v^{(2^{K-i-1})}$.

$$\left\|b'' - \frac{1}{2^{i+1}}b\right\|_{\infty} \leq \underbrace{\left\|b'' - \frac{1}{2}b'\right\|_{\infty}}_{\leq 2m\Delta} + \underbrace{\left\|\frac{1}{2}b' - \frac{1}{2^{i+1}}b\right\|_{\infty}}_{\leq 1/2 \cdot 4m\Delta} \leq 4m\Delta$$

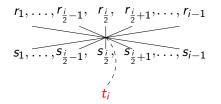
Similarly,

$$\left\| (b'-b'')-rac{1}{2^{i+1}}b
ight\|_{\infty}\leq 4m\Delta.$$

Guess b'' $(O(m\Delta)^m$ candidates), look up solutions for (i + 1, b'') and (i + 1, b' - b''), and take the best.

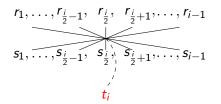
(MAX, +)-CONVOLUTION

Input: $r_1, \ldots, r_N \in \mathbb{R}$, $s_1, \ldots, s_N \in \mathbb{R}$ Output: $t_1, \ldots, t_N \in \mathbb{R}$ with $t_i = \max_j [r_j + s_{i-j}]$



For m = 1, merging solutions directly corresponds to solving (MAX, +)-CONVOLUTION of size $N = O(\Delta)$. For general m, we can cast the problem to an instance of (MAX, +)-CONVOLUTION of size $N = O(m\Delta)^m$. (MAX, +)-CONVOLUTION

Input: $r_1, \ldots, r_N \in \mathbb{R}$, $s_1, \ldots, s_N \in \mathbb{R}$ Output: $t_1, \ldots, t_N \in \mathbb{R}$ with $t_i = \max_j [r_j + s_{i-j}]$



For m = 1, merging solutions directly corresponds to solving (MAX, +)-CONVOLUTION of size $N = O(\Delta)$. For general m, we can cast the problem to an instance of (MAX, +)-CONVOLUTION of size $N = O(m\Delta)^m$.

 $T(N) \text{ time algorithm for } (\min, +)\text{-convolution} \Rightarrow$ $T(O(m\Delta)^m) \cdot O(m\log(m\Delta) + \log(\|b\|_{\infty})) + O(nm) \text{ for IP.}$ With $T(n) = O(n^2/\log(n)): O(m\Delta)^{2m} \cdot \log(\|b\|_{\infty}) + O(nm).$

Theorem

If there is an $m \in \mathbb{N}$ and $\delta > 0$ for which an Algorithm exists that solves IPs with m constraints in time $O(m(\Delta + \|b\|_{\infty}))^{2m-\delta}$, then (MIN ,+)-CONVOLUTION can be solved in time $O(N^{2-\delta'})$.

Theorem (Cygan et al. 2017)

- 1. There exists a $\delta > 0$ and an $O(N^{2-\delta})$ time algorithm for (MIN ,+)-CONVOLUTION
- if and only if
 - 2. There exists a $\delta > 0$ and an $O(C^{2-\delta})$ time algorithm for UNBOUNDED KNAPSACK.

Unbounded Knapsack

Unbounded Knapsack

m = 1

$$\max \sum_{i=1}^{N} p_i x_i + 0 \cdot y$$
$$\sum_{i=1}^{N} w_i x_i + 1 \cdot y = C$$
$$x_1, \dots, x_N, y \in \mathbb{Z}_{\geq 0}$$

Assume there is a
$$O(m(\Delta + ||b||_{\infty}))^{2m-\delta} = O(C^{2-\delta}).$$

Unbounded Knapsack

$$\max \sum_{i=1}^{N} p_i x_i + 0 \cdot y$$
$$\sum_{i=1}^{N} w_i x_i + 1 \cdot y = C$$
$$x_1, \dots, x_N, y \in \mathbb{Z}_{\geq 0}$$

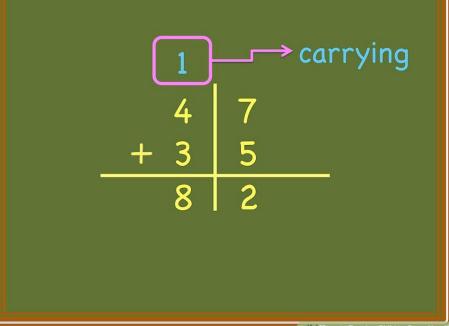
Λ/

$$m = 1$$

Assume there is a $O(m(\underbrace{\Delta + \|b\|_{\infty}}_{=O(C)}))^{2m-\delta} = O(C^{2-\delta}).$

m > 1

Reduce Δ by introducing additional equalities.



wiki How to Teach a Child to Carry Numbers

2

Set
$$\Delta = \lceil C^{1/m} \rceil$$
. Write

$$C = C^{(0)} + \Delta \cdot C^{(1)} + \Delta^2 \cdot C^{(2)} + \dots + \Delta^{m-1} \cdot C^{(m-1)},$$

$$w_i = w_i^{(0)} + \Delta \cdot w_i^{(1)} + \Delta^2 \cdot w_i^{(2)} + \dots + \Delta^{m-1} \cdot w_i^{(m-1)},$$

with each number smaller than Δ .

$$\sum_{i=1}^{N} w_i^{(0)} x_i - \Delta \cdot y_0 = C^{(0)}$$
$$\sum_{i=1}^{N} w_i x_i = C \quad \Leftrightarrow \quad \sum_{i=1}^{N} w_i^{(1)} x_i + y_0 - \Delta \cdot y_1 = C^{(1)}$$
$$\sum_{i=1}^{N} w_i^{(2)} x_i + y_1 - \Delta \cdot y_2 = C^{(2)}$$

- Suppose for some fixed m there exists an algorithm that solves IPs with m constraints in O(m(Δ + ||b||_∞))^{2m-δ}.
- Construction shows UNBOUNDED KNAPSACK can be solved via IP with *m* constraints and biggest entry $\Delta = \lceil C^{1/m} \rceil$.

Running time:

$$egin{aligned} O(m(\Delta+\|b\|_{\infty}))^{2m-\delta}&=O(m\lceil C^{1/m}
ceil)^{2m-\delta}\ &=O(m)^{2m-\delta}\cdot (C^{1/m})^{2m-\delta}=f(m)\cdot C^{2-rac{\delta}{m}}. \end{aligned}$$

 \Rightarrow UNBOUNDED KNAPSACK can be solved in subquadratic time. \Rightarrow (MIN, +)-CONVOLUTION can be solved in subquadratic time.

BOOLEAN-CONVOLUTION

Input: $r_1, ..., r_N \in \{0, 1\},$ $s_1, ..., s_N \in \{0, 1\}$ Output: $t_1, ..., t_N \in \{0, 1\}$ with $t_i = \bigvee_j [r_j \land s_{i-j}]$ Boolean Convolution can be computed in time

Boolean Convolution can be computed i $T(N) = O(N \log N)$ time.

BOOLEAN-CONVOLUTION

Input: $r_1, ..., r_N \in \{0, 1\}$, $s_1, ..., s_N \in \{0, 1\}$ Output: $t_1, ..., t_N \in \{0, 1\}$ with $t_i = \bigvee_j [r_j \land s_{i-j}]$ Boolean Convolution can be computed in time

 $T(N) = O(N \log N)$ time.

 \Rightarrow Feasibility of IP in time

$$T(O(m\Delta)^m) \cdot (m\log(m\Delta) + \log(\|b\|_{\infty})) + O(nm)$$

= $O(m\Delta)^m \cdot \log(\Delta) \cdot \log(\Delta + \|b\|_{\infty}) + O(nm).$

к-SUM

Input:
$$T \in \mathbb{N}_0$$
 and $Z_1, \ldots, Z_k \subset \mathbb{N}_0$ where
 $|Z_1| + |Z_2| + \ldots + |Z_k| = n \in \mathbb{N}.$
Output: $z_1 \in Z_1, z_2 \in Z_2 \ldots, z_k \in Z_k$ such that
 $z_1 + z_2 + \ldots + z_k = T.$

Theorem (Abboud et al. 2017)

If SETH holds, then for every $\delta > 0$ there exists a $\gamma > 0$ such that k-SUM cannot be solved in time $O(T^{1-\delta}n^{\gamma k})$.

Theorem

If the SETH holds, for every fixed *m* there does not exist an algorithm that solves feasibility of IPs with *m* constraints in time $n^{f(m)} \cdot (\Delta + \|b\|_{\infty})^{m-\delta}$.

Theorem (Eisenbrand, Weismantel 2018)

Let $\max\{c^T x : Ax = b, x \in \mathbb{Z}_{\geq 0}^n\}$ be feasible and bounded and x^* be an optimal vertex solution of the LP relaxation. Then there is an optimal solution z^* of IP with $\|z^* - x^*\|_{\infty} \leq m(2m\Delta + 1)^m$.

Theorem (Eisenbrand, Weismantel 2018)

Let $\max\{c^T x : Ax = b, x \in \mathbb{Z}_{\geq 0}^n\}$ be feasible and bounded and x^* be an optimal vertex solution of the LP relaxation. Then there is an optimal solution z^* of IP with $\|z^* - x^*\|_{\infty} \leq m(2m\Delta + 1)^m$.

Reduction of right-hand side

This implies $z_i^* \ge \ell_i := \max\{0, \lceil x_i^* \rceil - m(2m\Delta + 1)^m\}$. Therefore, we get an equivalent IP $\max\{c^T y : Ay = b', y \in \mathbb{Z}_{\ge 0}^n\}$ with $b'_j = \max\{b_j - a_j^T \ell, 0\}$.

Consequence: $\|b'\|_{\infty} \leq O(m\Delta)^{m+1}$

CIA

Theorem (Eisenbrand, Weismantel 2018)

Optimality and Feasibility of the IP can be done in time $n \cdot O(m\Delta)^{4m+2} + LP$ and $n \cdot O(m\Delta)^{2m+1} + LP$, respectively.

Theorem (Eisenbrand, Weismantel 2018)

Optimality and Feasibility of the IP can be done in time $n \cdot O(m\Delta)^{4m+2} + LP$ and $n \cdot O(m\Delta)^{2m+1} + LP$, respectively.

Using our new result for the IP we obtain:

Theorem

Optimality and Feasibility of the IP can be done in time $O(m\Delta)^{2m} + O(nm) + LP$ and $O(m\Delta)^m \cdot \log^2(\Delta) + O(nm) + LP$, respectively.

UNBOUNDED KNAPSACK

with equality constraint is an IP with m = 1 constraint:

$$\max\{\sum_{i=1}^n p_i x_i : \sum_{i=1}^n w_i x_i = C, x \in \mathbb{Z}_{\geq 0}^n\}.$$

An optimal fractional LP solution can be computed in $O(\Delta)$ and O(1) time for UNBOUNDED KNAPSACK and UNBOUNDED SUBSET-SUM.

UNBOUNDED KNAPSACK

with equality constraint is an IP with m = 1 constraint:

$$\max\{\sum_{i=1}^n p_i x_i : \sum_{i=1}^n w_i x_i = C, x \in \mathbb{Z}_{\geq 0}^n\}.$$

An optimal fractional LP solution can be computed in $O(\Delta)$ and O(1) time for UNBOUNDED KNAPSACK and UNBOUNDED SUBSET-SUM.

Using the proximity results we get:

UNBOUNDED KNAPSACK UNBOUNDED SUBSET-SUM

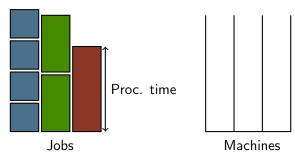
Running time $O(\Delta^2)$ $O(\Delta \log^2(\Delta)) = O(C \log(C))$

Previous

 $O(nC), O(n\Delta^2)$

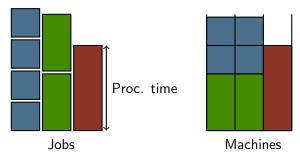
Scheduling on identical machines

- Input: N jobs with processing times $p_j \in \mathbb{N}$ and $M \leq N$ machines.
- Output: A schedule $\alpha : \{1, \dots, N\} \rightarrow \{1, \dots, M\}$ which minimizes the maximum load $L_i = \sum_{j:\alpha(j)=i} p_j$ over all machines $i = 1, \dots, M$.



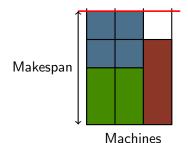
Scheduling on identical machines

- Input: N jobs with processing times $p_j \in \mathbb{N}$ and $M \leq N$ machines.
- Output: A schedule $\alpha : \{1, \dots, N\} \rightarrow \{1, \dots, M\}$ which minimizes the maximum load $L_i = \sum_{j:\alpha(j)=i} p_j$ over all machines $i = 1, \dots, M$.



Scheduling on identical machines

- Input: N jobs with processing times $p_j \in \mathbb{N}$ and $M \leq N$ machines.
- Output: A schedule $\alpha : \{1, \dots, N\} \rightarrow \{1, \dots, M\}$ which minimizes the maximum load $L_i = \sum_{j:\alpha(j)=i} p_j$ over all machines $i = 1, \dots, M$.



Configuration IP

$$\sum_{\substack{C \in \mathcal{C} \\ C \in \mathcal{C}}} x_C = M$$

$$\sum_{\substack{C \in \mathcal{C} \\ C_i \\ C \in \mathbb{Z}_{\geq 0}}} \forall i \in \{1, \dots, m-1\}$$

$$\forall C \in \mathcal{C}$$

has $m = O(1/\epsilon \log(1/\epsilon))$ constraints and $n = |\mathcal{C}| = 2^{O(1/\epsilon)}$ many variables. The value $\Delta \leq 1/\epsilon$ and $\|b\|_{\infty} \leq N$.

Previous best result: $2^{O(1/\epsilon \log^4(1/\epsilon))} + O(N \log N)$.

Configuration IP

$$\begin{array}{ll} \sum_{C \in \mathcal{C}} x_C = M \\ \sum_{C \in \mathcal{C}} C_i x_C = N_i & \forall i \in \{1, \dots, m-1\} \\ x_C \in \mathbb{Z}_{\geq 0} & \forall C \in \mathcal{C} \end{array}$$

has $m = O(1/\epsilon \log(1/\epsilon))$ constraints and $n = |\mathcal{C}| = 2^{O(1/\epsilon)}$ many variables. The value $\Delta \leq 1/\epsilon$ and $\|b\|_{\infty} \leq N$.

Previous best result: $2^{O(1/\epsilon \log^4(1/\epsilon))} + O(N \log N)$. **New result:** Including the rounding in time $O(N + 1/\epsilon \log(1/\epsilon))$, the total running time for the ILP is:

$$\begin{array}{l} O(m\Delta)^m \cdot \log(\Delta) \cdot \log(\Delta + \|b\|_{\infty}) + O(nm) + O(N + 1/\epsilon \log(1/\epsilon)) \\ \leq 2^{O(1/\epsilon \log^2(1/\epsilon))} \log(N) + O(N) \leq 2^{O(1/\epsilon \log^2(1/\epsilon))} + O(N). \end{array}$$

- Improved pseudo-polynomial algorithm for IP with fixed number of constraints
- ▶ Equivalence to (MIN, +)-CONVOLUTION w.r.t. improvements
- Lower bound for feasibility IP under SETH
- Use of proximity to reduce running time
- Application in knapsack and scheduling

Open Question

Can we solve the following IP in time $(m\Delta)^{O(m)} \cdot \log(||b||_{\infty}) + O(nm)$?

$$\max c^{T} x$$
$$Ax = b$$
$$x \le u$$
$$x \in \mathbb{Z}_{\ge 0}^{n}$$

Best algorithm known: $n \cdot m^{O(m)} \cdot \Delta^{O(m^2)}$.