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Integer Linear Programming

Standard Form

max cT x

Ax = b

x ∈ Zn
≥0

where A ∈ Zm×n, b ∈ Zm, c ∈ Zn.

Considered case
m (#constraints) is a fixed constant, entries of A are small (≤ ∆).

Applications

Knapsack and scheduling problems, configuration IPs,. . .



Pseudo-polynomial Algorithms

Papadimitrou 1981

IP can be solved in time (m(∆ + ‖b‖∞))O(m2).

Eisenbrand & Weismantel 2018
IP can be solved in time n · O(m∆)2m · ‖b‖2

∞.

This talk
IP can be solved in time O(m∆)2m · log(‖b‖∞) + O(nm).
Moreover, for every m and δ > 0 improving the exponent to
2m − δ is equivalent to finding a truly subquadratic algorithm for
(min, +)-convolution.
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Other results

Feasibility problem

Our algorithm: O(m∆)m · log(∆) · log(∆ + ‖b‖∞) + O(nm).
Improving exponent to m − δ would contradict the Strong
Exponential Time Hypothesis (SETH).

Previous best result (Eisenbrand, Weismantel 2018):
n · O(m∆)m · ‖b‖∞.



Other results

Knapsack problems with small weights
Running time Previous

Unbounded Knapsack O(∆2) O(nC ),O(n∆2)
Unbounded Subset-Sum O(∆ log2(∆)) O(C log(C ))

(∆ = maximum weight; C = capacity)

Scheduling on identical machines P ||Cmax

Previous EPTAS 2O(1/ε log4(1/ε)) + O(N logN)

New EPTAS 2O(1/ε log2(1/ε)) + O(N)
(N = number of jobs, M = number of machines with M ≤ N)
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Steinitz Lemma

Let ‖·‖ be a norm in Rm and let v (1), . . . , v (t) ∈ Rm such that
‖v (i)‖ ≤ 1 for all i and v (1) + · · ·+ v (t) = 0. Then there exists a
permutation π ∈ St such that for all j ∈ {1, . . . , t}

‖
j∑

i=1

v (π(i))‖ ≤ m.

0 00



Steinitz for IP

Consider an optimal solution x∗ of (IP)
and the sequence of column vectors

A1, . . . ,A1︸ ︷︷ ︸
x∗1 times

,A2, . . . ,A2︸ ︷︷ ︸
x∗2 times

, . . .

Recall that ‖Ai‖∞ ≤ ∆.

max cT x

Ax = b (IP)

x ∈ Zn
≥0

b

0

b

0
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Steinitz for IP

More formally,

Corollary

Let v (1), . . . , v (t) denote columns of A with
∑t

i=1 v
(i) = b. Then

there exists a permutation π ∈ St such that for all j ∈ {1, . . . , t}∥∥∥∥∥
j∑

i=1

v (π(i)) − j · b/t

∥∥∥∥∥
∞

≤ 2m∆.

This follows easily from the Steinitz Lemma: Insert vectors v (i)−b/t
2∆ ,

i ∈ {1, . . . , t}, in the Steinitz Lemma. Note that ‖ v
(i)−b/t

2∆ ‖∞ ≤ 1.



Eisenbrand & Weismantel

b

0

u
v

if v − u = Ai is column;
weight ci

I Every 0− b path gives a
feasible solution

I Longest path is optimal
solution

I O(m∆)m · ‖b‖∞ vertices

I n ·O(m∆)m · ‖b‖∞ edges

I Running time:
n · O(m∆)2m · ‖b‖2

∞

Observation: There is an optimal solution of bounded norm, i.e.,
‖x‖1 ≤ O(m∆)m · ‖b‖∞.



Our Approach

b

0

b′ = v (1) + . . .+ v (t/2)

Let v (1) + . . .+ v (t) = b be
columns corresponding to an
optimal solution of (IP).

Equivalent:

v (1) + . . .+ v (t/2) is optimal for

{max cT x ,Ax = b′, x ∈ Zn
≥0}

and v (t/2+1) + . . .+ v (t) is for

{max cT x ,Ax = b−b′, x ∈ Zn
≥0}.

If ordered via Steinitz Lemma, b′ and b − b′ are not far from 1
2b.

Also, t cut in half in subproblems.
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Dynamic Program

Assume w.l.o.g. there is an optimal solution x with ‖x‖1 = 2K ,
where K ∈ log(O(m∆)m · ‖b‖∞) = O(m log(m∆) + log(‖b‖∞))

Solve for every i = K ,K − 1, . . . , 0 and every b′ with∥∥∥∥b′ − 1

2i
b

∥∥∥∥
∞
≤ 4m∆

the problem

max cT x

Ax = b′

‖x‖1 = 2K−i

x ∈ Zn
≥0.

Solution for original problem at i = 0
and b′ = b.

b

0
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Iterative calculation

Let i < K and b′ with ‖b′ − 1/2i · b‖∞ ≤ 4m∆.

Let v (1), . . . , v (2K−i ) correspond to a solution of

max{cT x ,Ax = b′, ‖x‖1 = 2K−i , x ∈ Zn
≥0},

ordered via Steinitz Lemma.

Set b′′ := v (1) + . . .+ v (2K−i−1).∥∥∥∥b′′ − 1

2i+1
b

∥∥∥∥
∞
≤
∥∥∥∥b′′ − 1

2
b′
∥∥∥∥
∞︸ ︷︷ ︸

≤2m∆

+

∥∥∥∥1

2
b′ − 1

2i+1
b

∥∥∥∥
∞︸ ︷︷ ︸

≤1/2·4m∆

≤ 4m∆

Similarly, ∥∥∥∥(b′ − b′′)− 1

2i+1
b

∥∥∥∥
∞
≤ 4m∆.

Guess b′′ (O(m∆)m candidates), look up solutions for (i + 1, b′′)
and (i + 1, b′ − b′′), and take the best.
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Merging solutions

(max, +)-convolution

Input: r1, . . . , rN ∈ R,
s1, . . . , sN ∈ R

Output: t1, . . . , tN ∈ R with
ti = maxj [rj + si−j ]

r1, . . . ,r i
2
−1, r i

2
, r i

2
+1,. . . , ri−1

s1, . . . ,s i
2
−1, s i

2
, s i

2
+1,. . . , si−1

ti

For m = 1, merging solutions directly corresponds to solving
(max, +)-convolution of size N = O(∆).
For general m, we can cast the problem to an instance of
(max, +)-convolution of size N = O(m∆)m.

T (N) time algorithm for (min, +)-convolution ⇒
T (O(m∆)m) · O(m log(m∆) + log(‖b‖∞)) + O(nm) for IP.

With T (n) = O(n2/ log(n)): O(m∆)2m · log(‖b‖∞) + O(nm).
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Lower bound

Theorem
If there is an m ∈ N and δ > 0 for which an Algorithm exists that
solves IPs with m constraints in time O(m(∆ + ‖b‖∞))2m−δ, then
(min ,+)-convolution can be solved in time O(N2−δ′).

Theorem (Cygan et al. 2017)

1. There exists a δ > 0 and an O(N2−δ) time algorithm for
(min ,+)-convolution

if and only if

2. There exists a δ > 0 and an O(C 2−δ) time algorithm for
Unbounded Knapsack.



Unbounded Knapsack

max
N∑
i=1

pixi

N∑
i=1

wixi ≤ C

x1, . . . , xN ∈ Z≥0

m = 1
Assume there is a O(m(∆ + ‖b‖∞︸ ︷︷ ︸

=O(C)

))2m−δ = O(C 2−δ).

m > 1
Reduce ∆ by introducing additional equalities.



Unbounded Knapsack

max
N∑
i=1

pixi + 0 · y

N∑
i=1

wixi + 1 · y = C

x1, . . . , xN , y ∈ Z≥0

m = 1
Assume there is a O(m(∆ + ‖b‖∞︸ ︷︷ ︸

=O(C)

))2m−δ = O(C 2−δ).

m > 1
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Carry over addition



Unbounded Knapsack cont’d

Set ∆ = dC 1/me. Write

C = C (0) + ∆ · C (1) + ∆2 · C (2) + · · ·+ ∆m−1 · C (m−1),

wi = w
(0)
i + ∆ · w (1)

i + ∆2 · w (2)
i + · · ·+ ∆m−1 · w (m−1)

i ,

with each number smaller than ∆.

N∑
i=1

w
(0)
i xi −∆ · y0 = C (0)

N∑
i=1

wixi = C ⇔
N∑
i=1

w
(1)
i xi + y0 −∆ · y1 = C (1)

N∑
i=1

w
(2)
i xi + y1 −∆ · y2 = C (2)

...



Putting together the pieces

I Suppose for some fixed m there exists an algorithm that
solves IPs with m constraints in O(m(∆ + ‖b‖∞))2m−δ.

I Construction shows Unbounded Knapsack can be solved
via IP with m constraints and biggest entry ∆ = dC 1/me.

I Running time:

O(m(∆ + ‖b‖∞))2m−δ = O(mdC 1/me)2m−δ

= O(m)2m−δ · (C 1/m)2m−δ = f (m) · C 2− δ
m .

⇒ Unbounded Knapsack can be solved in subquadratic time.

⇒ (min, +)-convolution can be solved in subquadratic time.



Feasibility of IP

Boolean-convolution

Input: r1, . . . , rN ∈ {0, 1},
s1, . . . , sN ∈ {0, 1}

Output: t1, . . . , tN ∈ {0, 1}
with
ti =

∨
j [rj ∧ si−j ]

r1, . . . ,r i
2
−1, r i

2
, r i

2
+1,. . . , ri−1

s1, . . . ,s i
2
−1, s i

2
, s i

2
+1,. . . , si−1

ti

Boolean Convolution can be computed in time
T (N) = O(N logN) time.

⇒ Feasibility of IP in time

T (O(m∆)m) · (m log(m∆) + log(‖b‖∞)) + O(nm)
= O(m∆)m · log(∆) · log(∆ + ‖b‖∞) + O(nm).
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Lower bound

k-SUM

Input: T ∈ N0 and Z1, . . . ,Zk ⊂ N0 where
|Z1|+ |Z2|+ . . .+ |Zk | = n ∈ N.

Output: z1 ∈ Z1, z2 ∈ Z2 . . . , zk ∈ Zk such that
z1 + z2 + . . .+ zk = T .

Theorem (Abboud et al. 2017)

If SETH holds, then for every δ > 0 there exists a γ > 0 such that
k-SUM cannot be solved in time O(T 1−δnγk).

Theorem
If the SETH holds, for every fixed m there does not exist an
algorithm that solves feasibility of IPs with m constraints in time
nf (m) · (∆ + ‖b‖∞)m−δ.



Proximity

Theorem (Eisenbrand, Weismantel 2018)

Let max{cT x : Ax = b, x ∈ Zn
≥0} be feasible and bounded and x∗

be an optimal vertex solution of the LP relaxation. Then there is
an optimal solution z∗ of IP with ‖z∗ − x∗‖∞ ≤ m(2m∆ + 1)m.

Reduction of right-hand side

This implies z∗i ≥ `i := max{0, dx∗i e −m(2m∆ + 1)m}. Therefore,
we get an equivalent IP max{cT y : Ay = b′, y ∈ Zn

≥0} with

b′j = max{bj − aTj `, 0}.

Consequence: ‖b′‖∞ ≤ O(m∆)m+1



Proximity

Theorem (Eisenbrand, Weismantel 2018)

Let max{cT x : Ax = b, x ∈ Zn
≥0} be feasible and bounded and x∗

be an optimal vertex solution of the LP relaxation. Then there is
an optimal solution z∗ of IP with ‖z∗ − x∗‖∞ ≤ m(2m∆ + 1)m.

Reduction of right-hand side

This implies z∗i ≥ `i := max{0, dx∗i e −m(2m∆ + 1)m}. Therefore,
we get an equivalent IP max{cT y : Ay = b′, y ∈ Zn

≥0} with

b′j = max{bj − aTj `, 0}.

Consequence: ‖b′‖∞ ≤ O(m∆)m+1



Use of Proximity

Theorem (Eisenbrand, Weismantel 2018)

Optimality and Feasibility of the IP can be done in time
n · O(m∆)4m+2 + LP and n · O(m∆)2m+1 + LP, respectively.

Using our new result for the IP we obtain:

Theorem
Optimality and Feasibility of the IP can be done in time
O(m∆)2m + O(nm) + LP and O(m∆)m · log2(∆) + O(nm) + LP,
respectively.
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Application Knapsack

Unbounded Knapsack
with equality constraint is an IP with m = 1 constraint:

max{
n∑

i=1

pixi :
n∑

i=1

wixi = C , x ∈ Zn
≥0}.

An optimal fractional LP solution can be computed in O(∆) and
O(1) time for Unbounded Knapsack and Unbounded
Subset-Sum.

Using the proximity results we get:
Running time Previous

Unbounded Knapsack O(∆2) O(nC ),O(n∆2)
Unbounded Subset-Sum O(∆ log2(∆)) O(C log(C ))
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Application P ||Cmax

Scheduling on identical machines

Input: N jobs with processing times pj ∈ N and M ≤ N
machines.

Output: A schedule α : {1, . . . ,N} → {1, . . . ,M} which
minimizes the maximum load Li =

∑
j :α(j)=i pj over

all machines i = 1, . . . ,M.

Proc. time

Makespan

Jobs Machines
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Application P ||Cmax

Configuration IP∑
C∈C xC = M∑
C∈C CixC = Ni ∀i ∈ {1, . . . ,m − 1}

xC ∈ Z≥0 ∀C ∈ C

has m = O(1/ε log(1/ε)) constraints and n = |C| = 2O(1/ε) many
variables. The value ∆ ≤ 1/ε and ‖b‖∞ ≤ N.

Previous best result: 2O(1/ε log4(1/ε)) + O(N logN).

New result: Including the rounding in time O(N + 1/ε log(1/ε)),
the total running time for the ILP is:

O(m∆)m · log(∆) · log(∆ + ‖b‖∞) + O(nm) + O(N + 1/ε log(1/ε))

≤ 2O(1/ε log2(1/ε)) log(N) + O(N) ≤ 2O(1/ε log2(1/ε)) + O(N).



Application P ||Cmax

Configuration IP∑
C∈C xC = M∑
C∈C CixC = Ni ∀i ∈ {1, . . . ,m − 1}

xC ∈ Z≥0 ∀C ∈ C

has m = O(1/ε log(1/ε)) constraints and n = |C| = 2O(1/ε) many
variables. The value ∆ ≤ 1/ε and ‖b‖∞ ≤ N.

Previous best result: 2O(1/ε log4(1/ε)) + O(N logN).
New result: Including the rounding in time O(N + 1/ε log(1/ε)),
the total running time for the ILP is:

O(m∆)m · log(∆) · log(∆ + ‖b‖∞) + O(nm) + O(N + 1/ε log(1/ε))

≤ 2O(1/ε log2(1/ε)) log(N) + O(N) ≤ 2O(1/ε log2(1/ε)) + O(N).



Conclusion

I Improved pseudo-polynomial algorithm for IP with fixed
number of constraints

I Equivalence to (min, +)-convolution w.r.t. improvements

I Lower bound for feasibility IP under SETH

I Use of proximity to reduce running time

I Application in knapsack and scheduling



Open Question

Can we solve the following IP in time
(m∆)O(m) · log(‖b‖∞) + O(nm)?

max cT x

Ax = b

x ≤ u

x ∈ Zn
≥0

Best algorithm known: n ·mO(m) ·∆O(m2).


