Short simplex paths in lattice polytopes

Alberto Del Pia Carla Michini

University of Wisconsin-Madison

Lattices: Geometry, Algorithms and Hardness
Berkeley, February 18, 2020

Lattice polytopes

P is a lattice polytope in [0, k]" if
> all vertices are integral
> P C0,k]"

Appear in:

» polyhedral combinatorics

P integer programming

» fractional relaxations

Diameter of lattice polytopes

Upper bounds:

» nif k =1 [Naddef 89]

» kn [Kleinschmidt Onn 92]

> [(k—Yn]ifk>2
[DP Michini 16]

> kn—[3n] —(k—3)if k>3
[Deza Pournin 18]

Diameter of lattice polytopes

Lower bounds:
> nif k=1
> |3n] if k =2 [dP Michini 16]
> [J(k+1)n]ifk<2n
[Deza Manoussakis Onn 18]
> ck3if n=2, k= oo
[Balog Barany 91]
> c(n)k if n fixed, k — oo
[Deza Pournin Sukegawa 19]

LP on lattice polytopes

We study the LP problem:

max CTX

st. xeP

» P is a lattice polytope in [0, k]”
> P={xe€R"| Ax < b}, where A€ Z™*", b e Z™
> ceZ”

GOAL: Simplex algorithm that traces “short” simplex paths on P
from given vertex x° to optimal vertex x*

Possibly, polynomially far from the worst case diameter

How “short” can a simplex path be?
Upper bound on simplex path length by [Kitahara Matsui
Mizuno '12]

» @ = {x cR] | Dx = d} lattice polytope in [0, k]" in
standard form with D € Z™*" and d € Z™

P simplex path length
< (n—m)-min{m,n — m} - k - log(kmin{m, n — m})

» P = {x € R"| Ax < b} lattice polytope in [0, k]"

> P={(x,s) € RT™ | Ax + I;ns = b}
> P is a lattice polytope in [0, max{k, S}]"*™, where

S = maxsep{lb — Axl|..}
> simplex path length O(n? max{k, S} log(nmax{k,S}))

How “short” can a simplex path be?
Upper bound on simplex path length by [Kitahara Matsui
Mizuno '12]

» @ = {x cR] | Dx = d} lattice polytope in [0, k]" in
standard form with D € Z™*" and d € Z™

P simplex path length
< (n—m)-min{m,n — m} - k - log(kmin{m, n — m})

» P = {x € R"| Ax < b} lattice polytope in [0, k]"

> P={(x,s) € RT™ | Ax + I;ns = b}
> P is a lattice polytope in [0, max{k, S}]"*™, where

S = maxsep{lb — Axl|..}
> simplex path length O(n? max{k, S} log(nmax{k,S}))

Can we eliminate dependence on S, i.e., on A, b?

Short simplex paths in lattice polytopes

1%t MAIN RESULT: Simplex algorithm for lattice polytopes in [0, k]”
s.t. simplex path length O(n*k log(nk))

Independent on:
» cost vector ¢
» description Ax < b of P

» number of inequalities m

Short simplex paths in lattice polytopes

1%t MAIN RESULT: Simplex algorithm for lattice polytopes in [0, k]”
s.t. simplex path length O(n*k log(nk))

The simplex path length is polynomially far from optimal:
» For fixed k, 3 polytopes with diameter in Q(n)
» For fixed n and k — oo, 3 polytopes with diameter in Q(kﬁnl)

Short simplex paths in lattice polytopes

1%t MAIN RESULT: Simplex algorithm for lattice polytopes in [0, k]”
s.t. simplex path length O(n*k log(nk))

More questions:
» Most lattice polytopes in combinatorial optimization are defined
via 0, +1 constraint matrices
» Can we exploit the largest absolute value o of the entries in the
constraint matrix?

Short simplex paths in lattice polytopes

2"d MAIN RESULT: Simplex algorithm for lattice polytopes in [0, k]”
s.t. simplex path length O(n?k log(nk«))

More questions:
» Most lattice polytopes in combinatorial optimization are defined
via 0, +1 constraint matrices
» Can we exploit the largest absolute value o of the entries in the
constraint matrix?

Short simplex paths in lattice polytopes

2"d MAIN RESULT: Simplex algorithm for lattice polytopes in [0, k]”
s.t. simplex path length O(n?k log(nk«))

» If o < poly(n, k), then simplex path length O(n?k log(nk))
» If o < poly(n, k) and k = 1 then simplex path length O(n? log n)

How does it work?

We move to an adjacent vertex by calling:

Oracle

Input: Polytope P, c € Z", vertex x' of P
Output:

» Either a statement that x! maximizes ¢ '

x over P

» or a vertex x'T! adjacent to xf s.t. ¢ xfTt > cTx?

The input to the oracle is key to compute a short simplex path. ..

How does it work?

1. Basic algorithm length < kn||c||

2. Scaling algorithm length O(knlog]||c||,.)

3. Preprocessing & scaling algorithm length = O(n*k log(nk))

4. Iterative algorithm length O(n%k log(nk«))

Basic algorithm

Basic algorithm
Input: Lattice polytope P in [0,k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing c ' x.
fort=0,1,2,... do
Invoke oracle(P, c, x*)
If the oracle states that x! is optimal, return xt
Otherwise, let xt*1 be the vertex returned by the oracle

x9

Observation: The length of the
X simplex path generated is at most
c'x* —c'x% < knllclly

Example: ¢ =(1,1)

Basic algorithm

Basic algorithm
Input: Lattice polytope P in [0,k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing c ' x.
fort=0,1,2,... do
Invoke oracle(P, c, x*)
If the oracle states that x! is optimal, return xt
Otherwise, let xt*1 be the vertex returned by the oracle

Observation: The length of the
X simplex path generated is at most
c'x* —c'x% < knllclly

Example: ¢ =(1,1)

Basic algorithm

Basic algorithm
Input: Lattice polytope P in [0,k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing c ' x.
fort=0,1,2,... do
Invoke oracle(P, c, x*)
If the oracle states that x! is optimal, return xt
Otherwise, let xt*1 be the vertex returned by the oracle

*

X
s\\ Observation: The length of the
simplex path generated is at most
] cTx* = cTx0 < knl|c]|,
ss Example: ¢ = (1,4)
\ \
\ \

Scaling algorithm

Let £ := [log cll.]

For t =0,..., ¥, define the integral approximations of c:
ct:= [L} (Note: ¢’ = ¢)
= 5 ;
Example:

1,2,3,4,5,6,7
1,1,1,1,1,1,1

c=()
CO:() Fort=0,...,¢
cl=(1,1,1,1,2,2,2)
= ()
= ()

> [lef]loe < 2°

1,1,2,2,3,3,4
1,2,3,4,5,6,7

Scaling algorithm

Fort=0,...,0: c':= [2441

Scaling algorithm

Input: Lattice polytope P in [0, k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing ¢ x
fort=0,...,¢do
Set xt*1 := basic algorithm(P, ct, xt)

Return the vertex x‘t1

Scaling algorithm

x

!

Fort=0,...,0: c':= [%1

iy

Example: ¢ = (1,4)

i

X
o

Scaling algorithm

Input: Lattice polytope P in [0, k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing ¢ x
fort=0,...,¢do
Set xt*1 := basic algorithm(P, ct, xt)

Return the vertex x‘t1

Scaling algorithm

Fort=0,...,0: c':= [%1

Example: ¢ = (1,4) ¢® = (1,1)

Scaling algorithm

Input: Lattice polytope P in [0, k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing ¢ x
fort=0,...,¢do
Set xt*1 := basic algorithm(P, ct, xt)

Return the vertex x‘t1

Scaling algorithm

c
Fort=0,...,0: c':= [F1
Example: ¢ = (1,4) ¢! = (1,2)

Scaling algorithm
Input: Lattice polytope P in [0, k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing ¢ x
fort=0,...,¢do
Set xt*1 := basic algorithm(P, ct, xt)
1

Return the vertex x‘t

Scaling algorithm

iy

c
Fort=0,...,0: c':= [F1
Example: ¢ = (1,4) ¢2 = (1,4)

iy

i

Scaling algorithm

Input: Lattice polytope P in [0, k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing ¢ x
fort=0,...,¢do
Set xt*1 := basic algorithm(P, ct, xt)

Return the vertex x‘t1

Scaling algorithm

Proposition: Simplex path length O(knlog ||c||..)

Scaling algorithm

Input: Lattice polytope P in [0, k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing ¢ x
fort=0,...,/ do
Set xt*1 := basic algorithm(P, ct, xt)

Return the vertex x‘t1

Preprocessing algorithm

Preprocessing algorithm

Input: c € Q", positive integer N
Output: ¢ € Z" such that
> 2]l < 207 Nn(o+2)
> sign(c'z) =sign(¢'z) Vz € Z" with ||z||; < N —1

» Due to [Frank Tardos 87]

» Relies on the simultaneous approximation algorithm of
[Lenstra Lenstra Lovasz 82]

Setting N := kn+ 1, x* optimal for ¢ = optimal for c:
> Vxe PNZ™
> x* —x€Z"and ||x* —x||; < kn
> 2T (x*—x)>0 = c'(x*-x)>0

Preprocessing & scaling algorithm

Preprocessing & scaling algorithm

Input: Lattice polytope P in [0,k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing ¢ ' x

¢ := preprocessing algorithm(c, N := kn)

x* := scaling algorithm(P, &, x°)

Return x*

Theorem 1: Simplex path length O(n*k log(nk))

lterative algorithm

GOAL: shorter simplex path length, dependent on

P ={x €R"| Ax < b}, where A€ Z™*", bec Z™
:= largest absolute value of the entries of A

IDEA: Identify at each iteration one constraint of Ax < b that is
active at each optimal solution of max{c'x | x € P}

Inspired by [Tardos '86]

lterative algorithm

Iterative algorithm

Input: Lattice polytope P in [0, k]", c € Z", vertex x° of P
Output: A vertex x* of P maximizing ¢ ' x

0:
1:

2:

Let £ := () and x* := x°
Let ¢ be the projection of c onto {x € R" | a/x =0Vi € &}.
If ¢ =0 return x*

Let ¢ € Z" be defined by & = [=7¢;| for i =1,.

HCH

3: Consider the following pair of prlmal and dual LP problems

max &'x min by
st. alx=b i€ st. Aly=¢
alx<b ie[m]\& yi >0 ie[m)\&

(P). (B)
Compute optimal vertex X of (P) with scaling alg from x*
Compute an optimal solution 7 to (D) [...]
Let F:={i | yi > nk}, and let h€ F\ &
E «+ EU{h}, x* < X and go back to step 1

Main results

(correctness)

Proposition: Vector x* returned maximizes ¢’

x over P.

(short simplex paths)
Proposition: Simplex path length O(n?k log(nk))

(polynomial runtime)

Proposition: The number of operations to construct the next
vertex in the simplex path is bounded by poly(n, m, log «, log k).
If P is ‘well-described’ by Ax < b, then it is bounded by

poly(n, m, log k).

Correctness - idea

max ¢'x B min bly B
st. a/x=b €€ (P) st. Aly=¢ (D)
alx<b ie[m]\€& yi >0 ie[m)\&

At each iteration, we restrict to a face F of P defined as

F:={xeR"|a'x<bforic[m\E, a/x=b;foricé&}

We prove that each optimal solution of max{c'x | x € P} lies in F

Correctness - idea

max C'x . min bly B
st. a/x=b €€ (P) st. Aly=¢ (D)
alx<b ie[m]\€& yi >0 ie[m)\&

At each iteration, we restrict to a face F of P defined as

F:={xeR"|a'x<bforic[m\E, a/x=b;foricé&}

We prove that each optimal solution of max{c'x | x € P} lies in F

Let ¢ be defined by ¢ := H‘ Gfori=1,....,n = ¢=|¢]

Correctness - idea

max C'x . min bly B
st. a/x=b €€ (P) st. Aly=¢ (D)
alx<b ie[m]\€& yi >0 ie[m)\&

At each iteration, we restrict to a face F of P defined as

F:={xeR"|a'x<bforic[m\E, a/x=b;foricé&}

We prove that each optimal solution of max{c'x | x € P} lies in F
Complementary slackness conditions for (P)/(D):
If 7 optimal for (D) then V X optimal for (P):

y; > some const = a; X = b; ie[ml\& (%)

A

= to solve (P) set primal constraints in (*) to equality

Correctness - idea

max C'x . min bly B
st. a/x=b €€ (P) st. Aly=¢ (D)
alx<b ie[m]\€& yi >0 ie[m)\&

At each iteration, we restrict to a face F of P defined as

F:={xeR"|a'x<bforic[m\E, a/x=b;foricé&}

We prove that each optimal solution of max{c'x | x € P} lies in F
Complementary slackness conditions for (P)/(D):
If 7 optimal for (D) then V X optimal for (P):

y; > some const = a] X =b; ie[ml\& (%)

A

= to solve (P) set primal constraints in (*) to equality

Correctness - key lemma

max C'x . min bly B
st. a/x=b €€ (P) st. Aly=¢ (D)
alx<b ie[m]\€& yi >0 ie[m)\&

At each iteration, we restrict to a face F of P defined as

F:={xeR"|a'x<bforic[m\E, a/x=b;foricé&}

We prove that each optimal solution of max{c'x | x € P} lies in F
Complementary slackness conditions for (P)/(D):
If 7 optimal for (D) then V X optimal for (P):

Vi>nk = a%=b ie[m\€& (%)

A

= to solve (P) set primal constraints in (*) to equality

Short simplex paths - idea

At each iteration, we restrict to a face F of P defined as

F:={xeR"|a'x<bforic[m\E, a/ x=b;foricé&}

We prove that at each iteration the dimension of F decreases by 1
= at most n iterations

At each iteration, we run the scaling algorithm to solve (P)
Obs: F is a lattice polytope in [0, k]” and || €|, < n3ka.

At each iteration the scaling algorithm constructs a simplex path
of length at most nk log ||¢||, € O(nk log(nk«))

Theorem 3: Simplex path length O(n?k log(nk«))

Thank you!

