
Short simplex paths in lattice polytopes

Alberto Del Pia Carla Michini

University of Wisconsin-Madison

Lattices: Geometry, Algorithms and Hardness
Berkeley, February 18, 2020



Lattice polytopes

P is a lattice polytope in [0, k]n if

I all vertices are integral

I P ⊆ [0, k]n

Appear in:

I polyhedral combinatorics

I integer programming

I fractional relaxations



Diameter of lattice polytopes

Upper bounds:

I n if k = 1 [Naddef 89]

I kn [Kleinschmidt Onn 92]

I b(k − 1
2 )nc if k ≥ 2

[DP Michini 16]

I kn − d2
3ne − (k − 3) if k ≥ 3

[Deza Pournin 18]



Diameter of lattice polytopes

Lower bounds:

I n if k = 1

I b3
2nc if k = 2 [dP Michini 16]

I b1
2 (k + 1)nc if k < 2n

[Deza Manoussakis Onn 18]

I ck
2
3 if n = 2, k →∞

[Balog Bárány 91]

I c(n)k
n

n+1 if n fixed, k →∞
[Deza Pournin Sukegawa 19]



LP on lattice polytopes

We study the LP problem:

max c>x
s.t. x ∈ P

I P is a lattice polytope in [0, k]n

I P = {x ∈ Rn | Ax ≤ b}, where A ∈ Zm×n, b ∈ Zm

I c ∈ Zn

GOAL: Simplex algorithm that traces “short” simplex paths on P
from given vertex x0 to optimal vertex x∗

Possibly, polynomially far from the worst case diameter



How “short” can a simplex path be?

Upper bound on simplex path length by [Kitahara Matsui
Mizuno ’12]

I Q = {x ∈ Rn
+ | Dx = d} lattice polytope in [0, k]n in

standard form with D ∈ Zm×n and d ∈ Zm

I simplex path length
≤ (n −m) ·min{m, n −m} · k · log(k min{m, n −m})

I P = {x ∈ Rn | Ax ≤ b} lattice polytope in [0, k]n

I P̄ = {(x , s) ∈ Rn+m
+ | Ax + Ims = b}

I P̄ is a lattice polytope in [0,max{k ,S}]n+m, where
S = maxx∈P{‖b − Ax‖∞}

I simplex path length O(n2 max{k , S} log(nmax{k, S}))

Can we eliminate dependence on S , i.e., on A, b?



How “short” can a simplex path be?

Upper bound on simplex path length by [Kitahara Matsui
Mizuno ’12]

I Q = {x ∈ Rn
+ | Dx = d} lattice polytope in [0, k]n in

standard form with D ∈ Zm×n and d ∈ Zm

I simplex path length
≤ (n −m) ·min{m, n −m} · k · log(k min{m, n −m})

I P = {x ∈ Rn | Ax ≤ b} lattice polytope in [0, k]n

I P̄ = {(x , s) ∈ Rn+m
+ | Ax + Ims = b}

I P̄ is a lattice polytope in [0,max{k ,S}]n+m, where
S = maxx∈P{‖b − Ax‖∞}

I simplex path length O(n2 max{k , S} log(nmax{k, S}))

Can we eliminate dependence on S , i.e., on A, b?



Short simplex paths in lattice polytopes

1st MAIN RESULT: Simplex algorithm for lattice polytopes in [0, k]n

s.t. simplex path length O(n4k log(nk))

Independent on:

I cost vector c

I description Ax ≤ b of P

I number of inequalities m



Short simplex paths in lattice polytopes

1st MAIN RESULT: Simplex algorithm for lattice polytopes in [0, k]n

s.t. simplex path length O(n4k log(nk))

The simplex path length is polynomially far from optimal:

I For fixed k , ∃ polytopes with diameter in Ω(n)

I For fixed n and k →∞, ∃ polytopes with diameter in Ω(k
n

n+1 )



Short simplex paths in lattice polytopes

1st MAIN RESULT: Simplex algorithm for lattice polytopes in [0, k]n

s.t. simplex path length O(n4k log(nk))

More questions:

I Most lattice polytopes in combinatorial optimization are defined
via 0,±1 constraint matrices

I Can we exploit the largest absolute value α of the entries in the
constraint matrix?



Short simplex paths in lattice polytopes

More questions:

I Most lattice polytopes in combinatorial optimization are defined
via 0,±1 constraint matrices

I Can we exploit the largest absolute value α of the entries in the
constraint matrix?

2nd MAIN RESULT: Simplex algorithm for lattice polytopes in [0, k]n

s.t. simplex path length O(n2k log(nkα))



Short simplex paths in lattice polytopes

2nd MAIN RESULT: Simplex algorithm for lattice polytopes in [0, k]n

s.t. simplex path length O(n2k log(nkα))

I If α ≤ poly(n, k), then simplex path length O(n2k log(nk))

I If α ≤ poly(n, k) and k = 1 then simplex path length O(n2 log n)



How does it work?

We move to an adjacent vertex by calling:

Oracle
Input: Polytope P, c ∈ Zn, vertex x t of P
Output:

I Either a statement that x t maximizes c>x over P

I or a vertex x t+1 adjacent to x t s.t. c>x t+1 > c>x t

The input to the oracle is key to compute a short simplex path. . .



How does it work?

1. Basic algorithm length ≤ kn ‖c‖∞

2. Scaling algorithm length O(kn log ‖c‖∞)

3. Preprocessing & scaling algorithm length O(n4k log(nk))

4. Iterative algorithm length O(n2k log(nkα))



Basic algorithm

Basic algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x .

for t = 0, 1, 2, . . . do
Invoke oracle(P, c , x t)
If the oracle states that x t is optimal, return x t

Otherwise, let x t+1 be the vertex returned by the oracle

x∗

x∗

x0

x0

Observation: The length of the
simplex path generated is at most
c>x∗ − c>x0 ≤ kn ‖c‖∞

Example: c = (1, 1)



Basic algorithm

Basic algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x .

for t = 0, 1, 2, . . . do
Invoke oracle(P, c , x t)
If the oracle states that x t is optimal, return x t

Otherwise, let x t+1 be the vertex returned by the oracle

x∗

x∗x0

x0

Observation: The length of the
simplex path generated is at most
c>x∗ − c>x0 ≤ kn ‖c‖∞

Example: c = (1, 1)



Basic algorithm

Basic algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x .

for t = 0, 1, 2, . . . do
Invoke oracle(P, c , x t)
If the oracle states that x t is optimal, return x t

Otherwise, let x t+1 be the vertex returned by the oracle

x∗

x∗

x0

x0

Observation: The length of the
simplex path generated is at most
c>x∗ − c>x0 ≤ kn ‖c‖∞

Example: c = (1, 4)



Scaling algorithm

Let ` := dlog ‖c‖∞e
For t = 0, . . . , `, define the integral approximations of c :

ct := d c

2`−t
e (Note: c` = c)

Example:

c = (1, 2, 3, 4, 5, 6, 7)

c0 = (1, 1, 1, 1, 1, 1, 1)

c1 = (1, 1, 1, 1, 2, 2, 2)

c2 = (1, 1, 2, 2, 3, 3, 4)

c3 = (1, 2, 3, 4, 5, 6, 7)

For t = 0, . . . , `:

I ‖ct‖∞ ≤ 2t



Scaling algorithm

Scaling algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x

for t = 0, . . . , ` do
Set x t+1 := basic algorithm(P, ct , x t)

Return the vertex x`+1

For t = 0, . . . , `: ct := d c

2`−t
e

Example: c = (1, 4)

x0

x∗x3 = x∗

x1x1 = x2x2



Scaling algorithm

Scaling algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x

for t = 0, . . . , ` do
Set x t+1 := basic algorithm(P, ct , x t)

Return the vertex x`+1

For t = 0, . . . , `: ct := d c

2`−t
e

Example: c = (1, 4)

x0

x∗

x3 = x∗

x1x1 = x2x2



Scaling algorithm

Scaling algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x

for t = 0, . . . , ` do
Set x t+1 := basic algorithm(P, ct , x t)

Return the vertex x`+1

For t = 0, . . . , `: ct := d c

2`−t
e

Example: c = (1, 4) c0 = (1, 1)

x0

x∗x3 = x∗

x1

x1 = x2x2



Scaling algorithm

Scaling algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x

for t = 0, . . . , ` do
Set x t+1 := basic algorithm(P, ct , x t)

Return the vertex x`+1

For t = 0, . . . , `: ct := d c

2`−t
e

Example: c = (1, 4) c1 = (1, 2)

x0

x∗x3 = x∗

x1

x1 = x2

x2



Scaling algorithm

Scaling algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x

for t = 0, . . . , ` do
Set x t+1 := basic algorithm(P, ct , x t)

Return the vertex x`+1

For t = 0, . . . , `: ct := d c

2`−t
e

Example: c = (1, 4) c2 = (1, 4)

x0

x∗

x3 = x∗

x1x1 = x2

x2



Scaling algorithm

Scaling algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x

for t = 0, . . . , ` do
Set x t+1 := basic algorithm(P, ct , x t)

Return the vertex x`+1

Proposition: Simplex path length O(kn log ‖c‖∞)

Example: c = (1, 4)

x0

x∗x3 = x∗

x1x1 = x2x2



Preprocessing algorithm

Preprocessing algorithm

Input: c ∈ Qn, positive integer N
Output: c̆ ∈ Zn such that

I ‖c̆‖∞ ≤ 24n3
Nn(n+2)

I sign(c>z) = sign(c̆>z) ∀z ∈ Zn with ‖z‖1 ≤ N − 1

I Due to [Frank Tardos 87]

I Relies on the simultaneous approximation algorithm of
[Lenstra Lenstra Lovász 82]

Setting N := kn + 1, x∗ optimal for c̆ ⇒ optimal for c :

I ∀x ∈ P ∩ Zn:

I x∗ − x ∈ Zn and ‖x∗ − x‖1 ≤ kn

I c̆>(x∗ − x) ≥ 0 ⇒ c>(x∗ − x) ≥ 0



Preprocessing & scaling algorithm

Preprocessing & scaling algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x

c̆ := preprocessing algorithm(c ,N := kn)
x∗ := scaling algorithm(P, c̆, x0)
Return x∗

Theorem 1: Simplex path length O(n4k log(nk))



Iterative algorithm

GOAL: shorter simplex path length, dependent on α

P = {x ∈ Rn | Ax ≤ b}, where A ∈ Zm×n, b ∈ Zm

α := largest absolute value of the entries of A

IDEA: Identify at each iteration one constraint of Ax ≤ b that is
active at each optimal solution of max{c>x | x ∈ P}

Inspired by [Tardos ’86]



Iterative algorithm
Iterative algorithm

Input: Lattice polytope P in [0, k]n, c ∈ Zn, vertex x0 of P
Output: A vertex x∗ of P maximizing c>x

0: Let E := ∅ and x∗ := x0

1: Let c̄ be the projection of c onto {x ∈ Rn | a>i x = 0 ∀i ∈ E}.
If c̄ = 0 return x∗

2: Let c̃ ∈ Zn be defined by c̃i := b n3kα
‖c̄‖∞

c̄ic for i = 1, . . . , n

3: Consider the following pair of primal and dual LP problems:

max c̃>x
s.t. a>i x = bi i ∈ E

a>i x ≤ bi i ∈ [m] \ E
(P̃)

min b>y
s.t. A>y = c̃

yi ≥ 0 i ∈ [m] \ E
(D̃)

Compute optimal vertex x̃ of (P̃) with scaling alg from x∗

Compute an optimal solution ỹ to (D̃) [. . . ]
Let F := {i | ỹi > nk}, and let h ∈ F \ E
E ← E ∪ {h}, x∗ ← x̃ and go back to step 1



Main results

(correctness)
Proposition: Vector x∗ returned maximizes c>x over P.

(short simplex paths)
Proposition: Simplex path length O(n2k log(nkα))

(polynomial runtime)
Proposition: The number of operations to construct the next
vertex in the simplex path is bounded by poly(n,m, logα, log k).
If P is ‘well-described’ by Ax ≤ b, then it is bounded by
poly(n,m, log k).



Correctness - idea

max c̃>x
s.t. a>i x = bi i ∈ E

a>i x ≤ bi i ∈ [m] \ E
(P̃)

min b>y
s.t. A>y = c̃

yi ≥ 0 i ∈ [m] \ E
(D̃)

At each iteration, we restrict to a face F of P defined as

F := {x ∈ Rn | a>i x ≤ bi for i ∈ [m] \ E , a>i x = bi for i ∈ E}

We prove that each optimal solution of max{c>x | x ∈ P} lies in F

Complementary slackness conditions for (P̂)/(D̃):
If ỹ optimal for (D̃) then ∀ x̂ optimal for (P̂):

ỹi > ⇒ a>i x̂ = bi i ∈ [m] \ E (∗)

⇒ to solve (P̂) set primal constraints in (∗) to equality



Correctness - idea

max ĉ>x
s.t. a>i x = bi i ∈ E

a>i x ≤ bi i ∈ [m] \ E
(P̂)

min b>y
s.t. A>y = c̃

yi ≥ 0 i ∈ [m] \ E
(D̃)

At each iteration, we restrict to a face F of P defined as

F := {x ∈ Rn | a>i x ≤ bi for i ∈ [m] \ E , a>i x = bi for i ∈ E}

We prove that each optimal solution of max{c>x | x ∈ P} lies in F

Let ĉ be defined by ĉi := n3kα
‖c̄‖∞

c̄i for i = 1, . . . , n ⇒ c̃ = bĉc

Complementary slackness conditions for (P̂)/(D̃):
If ỹ optimal for (D̃) then ∀ x̂ optimal for (P̂):

ỹi > ⇒ a>i x̂ = bi i ∈ [m] \ E (∗)

⇒ to solve (P̂) set primal constraints in (∗) to equality



Correctness - idea

max ĉ>x
s.t. a>i x = bi i ∈ E

a>i x ≤ bi i ∈ [m] \ E
(P̂)

min b>y
s.t. A>y = c̃

yi ≥ 0 i ∈ [m] \ E
(D̃)

At each iteration, we restrict to a face F of P defined as

F := {x ∈ Rn | a>i x ≤ bi for i ∈ [m] \ E , a>i x = bi for i ∈ E}

We prove that each optimal solution of max{c>x | x ∈ P} lies in F

Complementary slackness conditions for (P̂)/(D̃):
If ỹ optimal for (D̃) then ∀ x̂ optimal for (P̂):

ỹi > some const ⇒ a>i x̂ = bi i ∈ [m] \ E (∗)

⇒ to solve (P̂) set primal constraints in (∗) to equality



Correctness - idea

max ĉ>x
s.t. a>i x = bi i ∈ E

a>i x ≤ bi i ∈ [m] \ E
(P̂)

min b>y
s.t. A>y = c̃

yi ≥ 0 i ∈ [m] \ E
(D̃)

At each iteration, we restrict to a face F of P defined as

F := {x ∈ Rn | a>i x ≤ bi for i ∈ [m] \ E , a>i x = bi for i ∈ E}

We prove that each optimal solution of max{c>x | x ∈ P} lies in F

Complementary slackness conditions for (P̂)/(D̃):
If ỹ optimal for (D̃) then ∀ x̂ optimal for (P̂):

ỹi > some const ⇒ a>i x̂ = bi i ∈ [m] \ E (∗)

⇒ to solve (P̂) set primal constraints in (∗) to equality



Correctness - key lemma

max ĉ>x
s.t. a>i x = bi i ∈ E

a>i x ≤ bi i ∈ [m] \ E
(P̂)

min b>y
s.t. A>y = c̃

yi ≥ 0 i ∈ [m] \ E
(D̃)

At each iteration, we restrict to a face F of P defined as

F := {x ∈ Rn | a>i x ≤ bi for i ∈ [m] \ E , a>i x = bi for i ∈ E}

We prove that each optimal solution of max{c>x | x ∈ P} lies in F

Complementary slackness conditions for (P̂)/(D̃):
If ỹ optimal for (D̃) then ∀ x̂ optimal for (P̂):

ỹi > nk ⇒ a>i x̂ = bi i ∈ [m] \ E (∗)

⇒ to solve (P̂) set primal constraints in (∗) to equality



Short simplex paths - idea

At each iteration, we restrict to a face F of P defined as

F := {x ∈ Rn | a>i x ≤ bi for i ∈ [m] \ E , a>i x = bi for i ∈ E}

We prove that at each iteration the dimension of F decreases by 1
⇒ at most n iterations

At each iteration, we run the scaling algorithm to solve (P̃)
Obs: F is a lattice polytope in [0, k]n and ‖c̃‖∞ ≤ n3kα.

At each iteration the scaling algorithm constructs a simplex path
of length at most nk log ‖c̃‖∞ ∈ O(nk log(nkα))

Theorem 3: Simplex path length O(n2k log(nkα))



Thank you!


