Alberto Del Pia Carla Michini University of Wisconsin-Madison

Lattices: Geometry, Algorithms and Hardness Berkeley, February 18, 2020

Lattice polytopes

P is a **lattice polytope** in $[0, k]^n$ if

- all vertices are integral
- ▶ $P \subseteq [0, k]^n$

Appear in:

- polyhedral combinatorics
- integer programming
- fractional relaxations

Diameter of lattice polytopes

Upper bounds:

- n if k = 1 [Naddef 89]
- ▶ kn [Kleinschmidt Onn 92]
- $\lfloor (k \frac{1}{2})n \rfloor$ if $k \ge 2$ [DP Michini 16]
- ▶ $kn \lceil \frac{2}{3}n \rceil (k 3)$ if $k \ge 3$ [Deza Pournin 18]

Diameter of lattice polytopes

Lower bounds:

- *n* if k = 1
- $\lfloor \frac{3}{2}n \rfloor$ if k = 2 [dP Michini 16]
- ► $\lfloor \frac{1}{2}(k+1)n \rfloor$ if k < 2n[Deza Manoussakis Onn 18]
- $ck^{\frac{2}{3}}$ if $n = 2, k \to \infty$ [Balog Bárány 91]
- $c(n)k^{\frac{n}{n+1}}$ if *n* fixed, $k \to \infty$ [Deza Pournin Sukegawa 19]

LP on lattice polytopes

We study the LP problem:

$$\begin{array}{ll} \max \quad \boldsymbol{c}^{\top} \boldsymbol{x} \\ \text{s.t.} \quad \boldsymbol{x} \in \boldsymbol{P} \end{array}$$

GOAL: Simplex algorithm that traces "short" simplex paths on Pfrom given vertex x^0 to optimal vertex x^* Possibly, polynomially far from the worst case diameter

How "short" can a simplex path be?

Upper bound on simplex path length by [Kitahara Matsui Mizuno '12]

- ▶ $Q = \{x \in \mathbb{R}^n_+ \mid Dx = d\}$ lattice polytope in $[0, k]^n$ in standard form with $D \in \mathbb{Z}^{m \times n}$ and $d \in \mathbb{Z}^m$
- ► simplex path length $\leq (n-m) \cdot \min\{m, n-m\} \cdot k \cdot \log(k \min\{m, n-m\})$
- ▶ $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$ lattice polytope in $[0, k]^n$

$$\blacktriangleright \bar{P} = \{(x,s) \in \mathbb{R}^{n+m}_+ \mid Ax + I_m s = b\}$$

- ▶ \overline{P} is a lattice polytope in $[0, \max\{k, S\}]^{n+m}$, where $S = \max_{x \in P} \{ \|b - Ax\|_{\infty} \}$
- simplex path length $O(n^2 \max\{k, S\} \log(n \max\{k, S\}))$

How "short" can a simplex path be?

Upper bound on simplex path length by [Kitahara Matsui Mizuno '12]

- ▶ $Q = \{x \in \mathbb{R}^n_+ \mid Dx = d\}$ lattice polytope in $[0, k]^n$ in standard form with $D \in \mathbb{Z}^{m \times n}$ and $d \in \mathbb{Z}^m$
- ► simplex path length $\leq (n-m) \cdot \min\{m, n-m\} \cdot k \cdot \log(k \min\{m, n-m\})$

▶
$$P = \{x \in \mathbb{R}^n \mid Ax \le b\}$$
 lattice polytope in $[0, k]^n$

$$\blacktriangleright \bar{P} = \{(x,s) \in \mathbb{R}^{n+m}_+ \mid Ax + I_m s = b\}$$

- ▶ \overline{P} is a lattice polytope in $[0, \max\{k, S\}]^{n+m}$, where $S = \max_{x \in P} \{ \|b - Ax\|_{\infty} \}$
- simplex path length $O(n^2 \max\{k, S\} \log(n \max\{k, S\}))$

Can we eliminate dependence on S, i.e., on A, b?

1st MAIN RESULT: Simplex algorithm for lattice polytopes in $[0, k]^n$ s.t. simplex path length $O(n^4k \log(nk))$

Independent on:

- cost vector c
- description $Ax \leq b$ of P
- number of inequalities m

1st MAIN RESULT: Simplex algorithm for lattice polytopes in $[0, k]^n$ s.t. simplex path length $O(n^4k \log(nk))$

The simplex path length is polynomially far from optimal:

- For fixed k, \exists polytopes with diameter in $\Omega(n)$
- ► For fixed *n* and $k \to \infty$, \exists polytopes with diameter in $\Omega(k^{\frac{n}{n+1}})$

1st MAIN RESULT: Simplex algorithm for lattice polytopes in $[0, k]^n$ s.t. simplex path length $O(n^4k \log(nk))$

More questions:

- Most lattice polytopes in combinatorial optimization are defined via 0, ±1 constraint matrices
- Can we exploit the largest absolute value α of the entries in the constraint matrix?

2nd MAIN RESULT: Simplex algorithm for lattice polytopes in $[0, k]^n$ s.t. simplex path length $O(n^2k \log(nk\alpha))$

More questions:

- Most lattice polytopes in combinatorial optimization are defined via 0, ±1 constraint matrices
- Can we exploit the largest absolute value α of the entries in the constraint matrix?

2nd MAIN RESULT: Simplex algorithm for lattice polytopes in $[0, k]^n$ s.t. simplex path length $O(n^2k \log(nk\alpha))$

If α ≤ poly(n, k), then simplex path length O(n²k log(nk))
 If α ≤ poly(n, k) and k = 1 then simplex path length O(n² log n)

How does it work?

We move to an adjacent vertex by calling:

Oracle

Input: Polytope *P*, $c \in \mathbb{Z}^n$, vertex x^t of *P* **Output:**

• Either a statement that x^t maximizes $c^{\top}x$ over P

• or a vertex x^{t+1} adjacent to x^t s.t. $\mathbf{c}^\top x^{t+1} > \mathbf{c}^\top x^t$

The input to the oracle is key to compute a short simplex path...

How does it work?

1. Basic algorithm length $\leq kn \|c\|_{\infty}$

2. Scaling algorithm length $O(kn \log ||c||_{\infty})$

3. Preprocessing & scaling algorithm length $O(n^4 k \log(nk))$

4. **Iterative algorithm** length $O(n^2 k \log(nk\alpha))$

Basic algorithm

Basic algorithm

Input: Lattice polytope *P* in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of *P* **Output:** A vertex x^* of *P* maximizing $c^\top x$.

for
$$t = 0, 1, 2, ...$$
 do
Invoke oracle(P, c, x^t)
If the oracle states that x^t is optimal, return x^t
Otherwise, let x^{t+1} be the vertex returned by the oracle

Observation: The length of the simplex path generated is at most $c^{\top}x^* - c^{\top}x^0 \le kn \|c\|_{\infty}$

Example: c = (1, 1)

Basic algorithm

Basic algorithm

Input: Lattice polytope *P* in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of *P* **Output:** A vertex x^* of *P* maximizing $c^\top x$.

for t = 0, 1, 2, ... do Invoke oracle(P, c, x^t) If the oracle states that x^t is optimal, return x^t Otherwise, let x^{t+1} be the vertex returned by the oracle

Observation: The length of the simplex path generated is at most $c^{\top}x^* - c^{\top}x^0 \le kn \|c\|_{\infty}$

Example: c = (1, 1)

Basic algorithm

Basic algorithm

Input: Lattice polytope *P* in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of *P* **Output:** A vertex x^* of *P* maximizing $c^\top x$.

for t = 0, 1, 2, ... do Invoke oracle(P, c, x^t) If the oracle states that x^t is optimal, return x^t Otherwise, let x^{t+1} be the vertex returned by the oracle

Observation: The length of the simplex path generated is at most $c^{\top}x^* - c^{\top}x^0 \le kn \|c\|_{\infty}$

Example: c = (1, 4)

Let $\ell := \lceil \log \| \boldsymbol{c} \|_{\infty} \rceil$ For $t = 0, \dots, \ell$, define the integral approximations of \boldsymbol{c} :

$$c^t := \lceil rac{c}{2^{\ell-t}}
ceil \qquad (ext{Note: } c^\ell = c)$$

Example:

$$c = (1, 2, 3, 4, 5, 6, 7)$$

$$c^{0} = (1, 1, 1, 1, 1, 1, 1)$$

$$c^{1} = (1, 1, 1, 1, 2, 2, 2)$$

$$c^{2} = (1, 1, 2, 2, 3, 3, 4)$$

$$c^{3} = (1, 2, 3, 4, 5, 6, 7)$$

For
$$t = 0, \dots, \ell$$
:
 $\|c^t\|_{\infty} \leq 2^t$

For
$$t = 0, \ldots, \ell$$
: $c^t := \lceil \frac{c}{2^{\ell-t}} \rceil$

Scaling algorithm

For
$$t = 0, \dots, \ell$$
: $c^t := \lceil \frac{c}{2^{\ell-t}} \rceil$
Example: $c = (1, 4)$

Scaling algorithm

For
$$t = 0, \dots, \ell$$
: $c^t := \lceil \frac{c}{2^{\ell-t}} \rceil$
Example: $c = (1, 4) \ c^0 = (1, 1)$

Scaling algorithm

For
$$t = 0, ..., \ell$$
: $c^t := \lceil \frac{c}{2^{\ell-t}} \rceil$
Example: $c = (1, 4) \ c^1 = (1, 2)$

Scaling algorithm

For
$$t = 0, ..., \ell$$
: $c^t := \lceil \frac{c}{2^{\ell-t}} \rceil$
Example: $c = (1, 4) \ c^2 = (1, 4)$

Input: Lattice polytope *P* in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of *P* **Output:** A vertex x^* of *P* maximizing $c^T x$ for $t = 0, ..., \ell$ do Set $x^{t+1} :=$ basic algorithm(*P*, c^t , x^t) Return the vertex $x^{\ell+1}$

 $x^3 = x^*$

 x^2

Proposition: Simplex path length $O(kn \log ||c||_{\infty})$

Scaling algorithm

Preprocessing algorithm

Preprocessing algorithm Input: $c \in \mathbb{Q}^n$, positive integer NOutput: $\check{c} \in \mathbb{Z}^n$ such that $\|\check{c}\|_{\infty} \leq 2^{4n^3} N^{n(n+2)}$ $\operatorname{sign}(c^{\top}z) = \operatorname{sign}(\check{c}^{\top}z) \quad \forall z \in \mathbb{Z}^n \text{ with } \|z\|_1 \leq N-1$

Due to [Frank Tardos 87]

 Relies on the simultaneous approximation algorithm of [Lenstra Lenstra Lovász 82]

Setting N := kn + 1, x^* optimal for $\breve{c} \Rightarrow$ optimal for c:

$$\forall x \in P \cap \mathbb{Z}^n:$$

$$x^* - x \in \mathbb{Z}^n \text{ and } \|x^* - x\|_1 \le kn$$

$$\breve{c}^\top (x^* - x) \ge 0 \quad \Rightarrow \quad c^\top (x^* - x) \ge 0$$

Preprocessing & scaling algorithm

Preprocessing & scaling algorithm

Input: Lattice polytope *P* in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of *P* **Output:** A vertex x^* of *P* maximizing $c^\top x$

$$\check{c} := \text{preprocessing algorithm}(c, N := kn)$$

 $x^* := \text{scaling algorithm}(P, \check{c}, x^0)$
Return x^*

Theorem 1: Simplex path length $O(n^4 k \log(nk))$

Iterative algorithm

GOAL: shorter simplex path length, dependent on α

 $P = \{x \in \mathbb{R}^n \mid Ax \le b\}, \text{ where } A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m \\ \alpha := \text{ largest absolute value of the entries of } A$

IDEA: Identify at each iteration one constraint of $Ax \le b$ that is active at each optimal solution of $\max\{c^{\top}x \mid x \in P\}$ Inspired by [Tardos '86]

Iterative algorithm

Iterative algorithm

Input: Lattice polytope *P* in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of *P* **Output:** A vertex x^* of *P* maximizing $c^\top x$

0: Let
$$\mathcal{E} := \emptyset$$
 and $x^* := x^0$

- 1: Let \overline{c} be the projection of c onto $\{x \in \mathbb{R}^n \mid a_i^\top x = 0 \ \forall i \in \mathcal{E}\}$. If $\overline{c} = 0$ return x^*
- 2: Let $\tilde{c} \in \mathbb{Z}^n$ be defined by $\tilde{c}_i := \lfloor \frac{n^3 k \alpha}{\|\bar{c}\|_{\infty}} \bar{c}_i \rfloor$ for $i = 1, \ldots, n$
- 3: Consider the following pair of primal and dual LP problems:

$$\begin{array}{ll} \max \quad \tilde{c}^{\top}x & \min \quad b^{\top}y \\ \text{s.t.} \quad a_i^{\top}x = b_i \quad i \in \mathcal{E} \\ a_i^{\top}x \leq b_i \quad i \in [m] \setminus \mathcal{E} \\ (\tilde{P}) \\ \text{Compute optimal vertex } \tilde{x} \text{ of } (\tilde{P}) \text{ with scaling alg from } x^* \\ \text{Compute an optimal solution } \tilde{y} \text{ to } (\tilde{D}) \\ \text{Let } \mathcal{F} := \{i \mid \tilde{y}_i > nk\}, \text{ and let } h \in \mathcal{F} \setminus \mathcal{E} \\ \mathcal{E} \leftarrow \mathcal{E} \cup \{h\}, \ x^* \leftarrow \tilde{x} \text{ and go back to step } 1 \end{array}$$

Main results

(correctness) **Proposition**: Vector x^* returned maximizes $c^{\top}x$ over P.

(short simplex paths)

Proposition: Simplex path length $O(n^2 k \log(nk\alpha))$

(polynomial runtime)

Proposition: The number of operations to construct the next vertex in the simplex path is bounded by $poly(n, m, \log \alpha, \log k)$. If *P* is 'well-described' by $Ax \le b$, then it is bounded by $poly(n, m, \log k)$.

At each iteration, we restrict to a face F of P defined as

$$F := \{x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E}\}$$

We prove that each optimal solution of $\max\{\mathbf{c}^{\top}x \mid x \in P\}$ lies in F

$$\begin{array}{ll} \max & \hat{c}^{\top}x & \min & b^{\top}y \\ \text{s.t.} & a_i^{\top}x = b_i \quad i \in \mathcal{E} \\ & a_i^{\top}x \leq b_i \quad i \in [m] \setminus \mathcal{E} \end{array} \qquad \begin{array}{l} \min & b^{\top}y \\ \text{s.t.} & A^{\top}y = \tilde{c} \\ & y_i \geq 0 \qquad i \in [m] \setminus \mathcal{E} \end{array} \qquad (\tilde{D})$$

At each iteration, we restrict to a face F of P defined as $F := \{x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, a_i^\top x = b_i \text{ for } i \in \mathcal{E}\}$

We prove that each optimal solution of $\max\{c^{\top}x \mid x \in P\}$ lies in F

Let
$$\hat{c}$$
 be defined by $\hat{c}_i := \frac{n^3 k \alpha}{\|\bar{c}\|_{\infty}} \bar{c}_i$ for $i = 1, ..., n \implies \tilde{c} = \lfloor \hat{c} \rfloor$

$$\begin{array}{ll} \max & \hat{c}^{\top}x & \min & b^{\top}y \\ \text{s.t.} & a_i^{\top}x = b_i \quad i \in \mathcal{E} \\ & a_i^{\top}x \leq b_i \quad i \in [m] \setminus \mathcal{E} \end{array} \qquad \begin{array}{l} \min & b^{\top}y \\ \text{s.t.} & A^{\top}y = \tilde{c} \\ & y_i \geq 0 \qquad i \in [m] \setminus \mathcal{E} \end{array} \qquad (\tilde{D})$$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

We prove that each optimal solution of $\max\{c^{\top}x \mid x \in P\}$ lies in F

Complementary slackness conditions for $(\hat{P})/(\tilde{D})$: If \tilde{y} optimal for (\tilde{D}) then $\forall \hat{x}$ optimal for (\hat{P}) :

$$\widetilde{y}_i > some \ const \quad \Rightarrow \quad a_i^\top \hat{x} = b_i \qquad \quad i \in [m] \setminus \mathcal{E} \quad (*)$$

 \Rightarrow to solve (\hat{P}) set primal constraints in (*) to equality

$$\begin{array}{ll} \max & \hat{c}^{\top}x & \min & b^{\top}y \\ \text{s.t.} & a_i^{\top}x = b_i \quad i \in \mathcal{E} \\ & a_i^{\top}x \leq b_i \quad i \in [m] \setminus \mathcal{E} \end{array} \qquad \begin{array}{l} \min & b^{\top}y \\ \text{s.t.} & A^{\top}y = \tilde{c} \\ & y_i \geq 0 \qquad i \in [m] \setminus \mathcal{E} \end{array} \qquad (\tilde{D})$$

At each iteration, we restrict to a face F of P defined as

$$\mathcal{F} := \{x \in \mathbb{R}^n \mid a_i^{\top}x \leq b_i ext{ for } i \in [m] \setminus \mathcal{E}, \ a_i^{\top}x = b_i ext{ for } i \in \mathcal{E}\}$$

We prove that each optimal solution of $\max\{c^{\top}x \mid x \in P\}$ lies in F

Complementary slackness conditions for $(\hat{P})/(\tilde{D})$: If \tilde{y} optimal for (\tilde{D}) then $\forall \hat{x}$ optimal for (\hat{P}) :

$$\widetilde{y}_i >$$
some const $\Rightarrow a_i^\top \hat{x} = b_i \qquad i \in [m] \setminus \mathcal{E} \quad (*)$

 \Rightarrow to solve (\hat{P}) set primal constraints in (*) to equality

Correctness - key lemma

$$\begin{array}{ll} \max \quad \hat{c}^{\top}x & \min \quad b^{\top}y \\ \text{s.t.} \quad a_i^{\top}x = b_i \quad i \in \mathcal{E} \\ a_i^{\top}x \leq b_i \quad i \in [m] \setminus \mathcal{E} \end{array} \qquad \begin{array}{l} \min \quad b^{\top}y \\ \text{s.t.} \quad A^{\top}y = \tilde{c} \\ y_i \geq 0 \qquad i \in [m] \setminus \mathcal{E} \end{array} \qquad (\tilde{D})$$

At each iteration, we restrict to a face F of P defined as $F := \{x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, a_i^\top x = b_i \text{ for } i \in \mathcal{E}\}$

We prove that each optimal solution of $\max\{c^{\top}x \mid x \in P\}$ lies in F

Complementary slackness conditions for $(\hat{P})/(\tilde{D})$: If \tilde{y} optimal for (\tilde{D}) then $\forall \hat{x}$ optimal for (\hat{P}) :

$$\widetilde{y}_i > nk \quad \Rightarrow \quad a_i^{\top} \widehat{x} = b_i \qquad i \in [m] \setminus \mathcal{E} \quad (*)$$

 \Rightarrow to solve (\hat{P}) set primal constraints in (*) to equality

Short simplex paths - idea

At each iteration, we restrict to a face F of P defined as

 $F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$

We prove that at each iteration the dimension of *F* decreases by $1 \Rightarrow at most n$ iterations

At each iteration, we run the scaling algorithm to solve (\tilde{P}) Obs: F is a lattice polytope in $[0, k]^n$ and $\|\tilde{c}\|_{\infty} \leq n^3 k \alpha$.

At each iteration the scaling algorithm constructs a simplex path of length at most $nk \log \|\tilde{c}\|_{\infty} \in O(nk \log(nk\alpha))$

Theorem 3: Simplex path length $O(n^2 k \log(nk\alpha))$

Thank you!