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Computing on Encrypted Data
Personalised Medicine

   “The dream for tomorrow’s medicine is 
to understand the links between DNA 
and disease — and to tailor therapies 
accordingly. But scientists have a 
problem: how to keep genetic data and 
medical records secure while still 
enabling the massive, cloud-based 
analyses needed to make meaningful 
associations.”

 2

Check Hayden, E. (2015).  Nature, 519, 400-401. 



Computing on Encrypted Data
Personalised Medicine

   “The dream for tomorrow’s medicine is 
to understand the links between DNA 
and disease — and to tailor therapies 
accordingly. But scientists have a 
problem: how to keep genetic data and 
medical records secure while still 
enabling the massive, cloud-based 
analyses needed to make meaningful 
associations.”

 2

Check Hayden, E. (2015).  Nature, 519, 400-401. 

Doesn’t FHE solve exactly this?



Prof. Bob wants to store encrypted file so that:

• Other Professors or admin assistants of CS 
group can open it 

• Encrypt file for each of them? 

• If someone quits or new person joins? Re-
encrypt ? 

• Organizational nightmare !
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What do we want?

PROF OR {Admin AND CS}

✗

PROF

CS Admin

Attacker
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Need New Tools & Techniques!
Main Tool: Lattice Trapdoors
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Short Integer Solution Problem

Given matrix A, find “short” (low norm) vector x such that  

A
x 0=n

m

m n

Let

mod q

A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

A x = 0 mod q ∈ ℤn
q
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Learning With Errors Problem
Distinguish “noisy inner products” from uniform 

Fix uniform s    Zq
n   

a1 , b1 = <a1,s> + e1  
a2 , b2 = <a2,s> + e2 

am , bm = <am,s>+ em 

vs

ai uniform     Zq
n , ei ~ ϕ     Zq  ai uniform    Zq

n , bi uniform    Zq∈∈ ∈

∈

∈
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Public Key A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)



Lattice Based One Way Functions

Based on SIS


•  Short x, surjective 


•  CRHF if SIS is hard [Ajt96…]
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Public Key A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

fA(x) = A x mod q ∈ ℤn
q

Lattice-Based One-Way Functions

I Public key
h
· · · A · · ·

i
2 Zn⇥m

q for q = poly(n), m = ⌦(n log q).

fA(x) = Ax mod q 2 Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . . ]

gA(s, e) = s
t
A+ e

t mod q 2 Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: ⇤?(A) = {x 2 Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

O

(0, q)

(q, 0)

a1

a2

Ats

e
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Inverting functions for Crypto
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• Given                                      

• Sample  

    with prob 

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp( −∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O
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• Find unique   

gA(s, e) = stA + et mod q

(s, e)

And
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Latter distribution 
needs lattice 
trapdoors!



Walking the Edge between 
Structure and Randomness:  

The Quest for Indistinguishability 
Obfuscation 

Shweta Agrawal 
IIT Madras

What do these trapdoors look like?
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Lattice Trapdoors (Type 1): 
Geometric View

Multiple Bases

v1

v2

v’2
v’1
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Parallelopipeds 



!14

Parallelopipeds
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What’s my 
closest lattice 

point?

“Quite short” and “nearly orthogonal”

T

Good Basis
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Good Basis
Declared 
closest 
point

Pretty Accurate…

T
V

Output center of parallelopipid  containing T
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Bad Basis Closer 
Lattice 
point

Declared 
closest 
point

V

Not So Accurate…
Output center of parallelopipid containing T
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Basis quality and Hardness
• SVP, CVP, SIS (...) hard given arbitrary 

(bad) basis 
• Some hard lattice problems are easy given 

a good basis 
• Will exploit this asymmetry
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Basis quality and Hardness
• SVP, CVP, SIS (...) hard given arbitrary 

(bad) basis 
• Some hard lattice problems are easy given 

a good basis 
• Will exploit this asymmetry

Use Short Basis as Cryptographic Trapdoor!
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Invert
gA(s, e) = s

t
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find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
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Λ = {x : Ax = 0 mod q} ⊆ ℤm
q
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The Lattice

Inverting Our Function

Λ = {x : Ax = 0 mod q} ⊆ ℤm
q

Short basis for     lets us sample from  
with correct distribution! 

f −1
A (u)Λ
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1.How to use short basis 
•   Randomized Nearest plane Algorithm
•  Chris’s talk 

2.How to get short basis  — this talk (almost)

Two Questions
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Lattice Trapdoors (Type 2)

  Not a short basis but
• Just as powerful
• More efficient
• Better parameters
• Implies Type 1 trapdoors

Image Credit: https://us.macmillan.com/podcasts/podcast/better-at-everything/

https://us.macmillan.com/podcasts/podcast/better-at-everything/
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Type 2 Trapdoors [MP12]

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

  Design  
  for Gadget Matrix G 
 (fixed, public, offline)

f −1
G , g−1

G

1
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Type 2 Trapdoors [MP12]

Randomize G ↔ A via 
nice unimodular 
transformation
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qRecall and
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f −1
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G
Reduce 

to 
 

f −1
A , g−1

A

f −1
G , g−1

G

1 2 3
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Type 2 Trapdoors [MP12]

Randomize G ↔ A via 
nice unimodular 
transformation

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

  Design  
  for Gadget Matrix G 
 (fixed, public, offline)

f −1
G , g−1

G
Reduce 

to 
 

f −1
A , g−1

A

f −1
G , g−1

G

Transformation in Step 2 is the trapdoor!

1 2 3
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Step 1:            for Gadget G 
fG(x) = G x mod q ∈ ℤn

q gG(s, e) = stG + et mod q ∈ ℤm
qRecall and

and

f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1] ∈ ℤ1×k
qq = 2kLet 

  Invert LWE: find s s.t. 
  

• Get lsb(s) from  
• Then get next bit of s and so on.  
• Works as long as every 

 

  

  
     

s ⋅ g + e = [s + e0, 2s + e1, ⋯ 2k−1s + ek−1]

2k−1s + ek−1

ei ∈ [−q/4,q/4)
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Step 1:            for Gadget G 
fG(x) = G x mod q ∈ ℤn

q gG(s, e) = stG + et mod q ∈ ℤm
qRecall and

and

f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1] ∈ ℤ1×k
qq = 2kLet 

  Invert LWE: find s s.t. 
  

• Get lsb(s) from  
• Then get next bit of s and so on.  
• Works as long as every 

 

  Invert SIS: sample Gaussian preimage x s.t.  

• For                             choose     
• Let k= 2.  

u = ⟨g x⟩ mod q

s ⋅ g + e = [s + e0, 2s + e1, ⋯ 2k−1s + ek−1]

2k−1s + ek−1

ei ∈ [−q/4,q/4)

i ∈ [0,…, k − 1], xi ← (2ℤ + u), u ← (u − xi)/2 ∈ ℤ
x0 ← (2z0 + u), u ← (u − 2z0 − u)/2 = − z0
x1 ← (2z1 − z0)
⟨g, x⟩ = 2z0 + u + 2(2z1 − z0) = u + 4z1 = u mod 4



Step 1:            for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod qS
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G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod q

          S is Short Basis for                          

S

g = [1, 2, 4,⋯, 2k−1]
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Step 1:            for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod q

          S is Short Basis for                          

S

g = [1, 2, 4,⋯, 2k−1]

Define gadget G : 
  

G = In ⊗ g ⋯ g ⋯
⋯ g ⋯

⋯ g ⋯

⋱
∈ ℤn×nk

q
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Step 1:            for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod q

          S is Short Basis for                          

S

g = [1, 2, 4,⋯, 2k−1]

                     reduce to n parallel, offline calls to f −1
G , g−1

G

Define gadget G : 
  

G = In ⊗ g ⋯ g ⋯
⋯ g ⋯

⋯ g ⋯

⋱
∈ ℤn×nk

q

f −1
g , g−1

g

!26
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Step 2: Randomize G to A 

2. Define  A = GB
I

I

-R

1. Sample B ∈ ℤn×m′ �
q , short Gaussian R ∈ ℤm′ �×n log q

q ,

=

A is uniform by leftover hash lemma!

G - BRB
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Leftover Hash Lemma (oversimplified)

If

( B, BR ) ≈ ( B, U )

 Let B ∈ ℤn×m′�
q R ∈ ℤm′�×n log q

quniform & Gaussian

 then,m′� ≈ n log q,

 Let

G - BRB Hence  A = uniform
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Step 2: Randomize G to A 
Have A = G - BRB

Define:  R is a trapdoor for A with tag H ∈ ℤn×n
q ,

A ⋅ [R
I ] = H ⋅ GIf

Λ⊥(G)

S
&

Basis        
for        

Trapdoor R
for A        

Λ⊥(A)

SABasis        
for        
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Step 3: Reduce         to                
Suppose  R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I ] = G

f −1
G , g−1

Gf −1
A , g−1

A
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Suppose  R is a trapdoor for A with tag I ∈ ℤn×n
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A ⋅ [R
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f −1
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Inverting LWE

f −1
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Suppose  R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I ] = G

f −1
G , g−1
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• Given                                      

• Find unique   

bt = stA + et mod q
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Inverting LWE

f −1
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Step 3: Reduce         to                
Suppose  R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I ] = G

f −1
G , g−1

G

bt ⋅ [R
I ] = st ⋅ G + et ⋅ [R

I ] mod q
• Given                                      

• Find unique   

bt = stA + et mod q

(s, e)

Want:

Inverting LWE

et ⋅ [R
I ] ∈ [−q/4,q/4)

Compute:

Works if

f −1
A , g−1

A
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A ⋅ [R
I ] = G

f −1
G , g−1

G

Inverting SIS

f −1
A , g−1

AStep 3: Reduce         to                
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A ⋅ [R
I ] = G

f −1
G , g−1

G

Want:
• Given                                      

• Sample  

    with prob 

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp( −∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Inverting SIS

f −1
A , g−1

AStep 3: Reduce         to                
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A ⋅ [R
I ] = G

f −1
G , g−1

G

Want:
• Given                                      

• Sample  

    with prob 

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp( −∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Inverting SIS

A ⋅ x = A ⋅ [R
I ] ⋅ z = G ⋅ z = u

x = [R
I ] ⋅ z

Compute:
Sample 

Output 

z ← f −1
G (u)

Then, 

f −1
A , g−1

AStep 3: Reduce         to                
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G
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Step 3: Reduce         to                
A ⋅ [R

I ] = G

f −1
A , g−1

A f −1
G , g−1

G

A ⋅ x = A ⋅ [R
I ] ⋅ z = G ⋅ z = u

x = [R
I ] ⋅ z

Compute:
Sample 

Output 

z ← f −1
G (u)

Then, 

Are we done?

Covariance of x leaks R!

Image Credit: Chris Peikert

A First Attempt

I Given u, sample z f�1
G (u) and output x =

⇥
R
I

⇤
z 2 f�1

A (u) ?

I x1 = Rz has a non-spherical Gaussian distribution of covariance

⌃ := Ex
⇥
x · xt

⇤
= Ez

⇥
R · zzt ·Rt

⇤
⇡ s2 ·RR

t.

Covariance can be measured — and it leaks R! (up to rotation)

12 / 18
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Want to output spherical Gaussian! 
Covariance Matrix s2I
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Step 3: Reduce         to                f −1
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A f −1
G , g−1

G

Fix using perturbation method [P’10] 
https://www.elegantthemes.com/

Want to output spherical Gaussian! 
Covariance Matrix s2I
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Step 3: Reduce         to                f −1
A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10] 
https://www.elegantthemes.com/

Want to output spherical Gaussian! 
Covariance Matrix s2I

‘Convolution’ Sampling Algorithm [P’10]

I Given trapdoor R of A, syndrome u, and std dev s > s1(R),

1 Generate perturbation p with covariance ⌃2 := s2 I�RR
t > 0.

2 Sample spherical z s.t. Gz = u�Ap.

3 Output x = p+
⇥
R
I

⇤
z. (Note: Ax = Ap+Gz = u.)

+ =

RR
t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of 
Gaussians
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+ =
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t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of 
Gaussians

To fix covariance: 
• Generate perturbation vector p with covariance  

• Sample spherical z such that  

• Output 

(s2I − RRt)

G z = u − A p

x = p + [R
I ] ⋅ z
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A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10] 
https://www.elegantthemes.com/

Want to output spherical Gaussian! 
Covariance Matrix s2I

‘Convolution’ Sampling Algorithm [P’10]

I Given trapdoor R of A, syndrome u, and std dev s > s1(R),

1 Generate perturbation p with covariance ⌃2 := s2 I�RR
t > 0.

2 Sample spherical z s.t. Gz = u�Ap.

3 Output x = p+
⇥
R
I

⇤
z. (Note: Ax = Ap+Gz = u.)

+ =

RR
t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of 
Gaussians

To fix covariance: 
• Generate perturbation vector p with covariance  

• Sample spherical z such that  

• Output 

(s2I − RRt)

G z = u − A p

x = p + [R
I ] ⋅ z

A ⋅ x = Ap + A [R
I ] ⋅ z

A ⋅ [R
I ] = G

Check

= Ap + Gz = u
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Takeaway for Applications

Let A = G - BRB

A

 Let B ∈ ℤn×m′�
q , R ∈ ℤm′�×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A
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Identity Based Encryption (IBE)

Public Key Encryption in which ANY 
arbitrary string can be public key!

In short………..



IBE: How does it work?

Bob

Key Server 
• Master Secret 
• Public Parameters

Alice encrypts with 
bob@iitm.ac.in

Receives 
 Private Key  
for bob@iitm.ac.in

Bob decrypts with  
 Private Key

Alice

Requests private key, 
authenticates

1

2

3

4



Setup

Extract

Encrypt Decrypt

Public Params PP

Master secret key MSK

Security 
Parameter λ

Identity ID

Secret key SK

Message 
     m Ciphertext 

       C
Message 
     m

Identity Based Encryption
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 Regev PKE

❖ Encrypt (A, u) : 

❖ Pick random vector s

❖ c0 = AT s + noise 

❖ c1 = uT s + noise + msg 

❖ Decrypt (e) : 

❖ eT c0 – c1 = msg + noise

Small only
 if  e is small

A e u mod q≡

❖ Recall A (e) = u mod q hard to invert

❖ Secret: e, Public : A, u

Encryption 
matrix A
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Broad structure IBE
❖ Want to embed vector id in ciphertext and secret key.

❖ Let encryption matrix Fid be publicly computable function 
of id and public parameters.

❖ Perform Regev PKE with encryption matrix Fid

❖ Figure out way to compute short vector e such that

Fid e u mod q≡
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Let |id|=2
Identity Based Encryption [CHKP10]
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    Where F01 = [A0| A1
0|A2
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• Master secret key       : basis for A0

• Secret Key for (id=01) :  short e such that  F01  e = u mod q 

    Where F01 = [A0| A1
0|A2

1] (one block per bit!)

• Figure out how to compute trapdoor for “extended” matrix [T1|T2|T3]

• Encrypt (b, id=01): Uses regev PKE on matrix F01 

uA0 A1
0 A1

1 A2
0 A2

1

Let |id|=2

•  Parameters 

Identity Based Encryption [CHKP10]
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• Secret Key for (id=01) :   low norm vector e such that 

    F01 e = [A0| A1
0|A2

1] e = u mod q

Let |id|=2
Identity Based Encryption [CHKP10]
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• Secret Key for (id=01) :   low norm vector e such that 

    F01 e = [A0| A1
0|A2

1] e = u mod q

• Encrypt (b, id=01):

• c0 = F01 
T s + noise,  c1 = uT s + noise + msg

Let |id|=2
Identity Based Encryption [CHKP10]
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• Secret Key for (id=01) :   low norm vector e such that 

    F01 e = [A0| A1
0|A2

1] e = u mod q

• Encrypt (b, id=01):

• c0 = F01 
T s + noise,  c1 = uT s + noise + msg

• Decrypt 

• Compute eT c0 - c1 = noise + msg mod q

Let |id|=2
Identity Based Encryption [CHKP10]
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PK
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Pick b random, C* = Enc( m_b, ID*)
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IBE Security

Challenger  Ch.

Adversary  Ad.

PK

Guess b’ 

m0, m1 

Pick b random, C* = Enc( m_b, ID*)

,  dID2 ,  dID3 , …,  dIDmdID1

  ,  ID2 ,   ID3 ,  …,  IDmID1   

Get instance of 
hard problem H

Output G as 
answer for H

ID* 



IBE Security

Attacker wins if  | Pr[b=b’] - ½ |   is non-negligible  
Challenger  Ch.

Adversary  Ad.

PK

Guess b’ 

m0, m1 

Pick b random, C* = Enc( m_b, ID*)

,  dID2 ,  dID3 , …,  dIDmdID1

  ,  ID2 ,   ID3 ,  …,  IDmID1   

Get instance of 
hard problem H

Output G as 
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ID* 
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Security Model: Key Points

• Ch. needs to be able to answer private key 
queries of Ad.


• Ch. should not be able to answer query for id* 

(hence can’t have master trapdoor)


• Ch. should be able to generate challenge 
ciphertext so that Ad’s answer is useful. 
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• Let challenge identity id* = 11

• Must not have SK for id*, hence don’t have master 
secret (basis for A0)! 

• Choose A0, A1
1, A2

1 random (no TD)

• Choose A1
0 A2

0 with TD

• Can compute basis of F01 =[ A0| A1
0|A2

1]

• Cannot compute basis of F11 =[ A0| A1
1|A2

1]

Simulation
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�46

Parameters: A0 G uA1

Efficient Identity Based Encryption [ABB10]



�46

Parameters:

Master Secret Key: Trapdoor for A0 

A0 G uA1

Efficient Identity Based Encryption [ABB10]



�46

Parameters:

Master Secret Key: Trapdoor for A0 

KeyGen for identity id :

A0 G uA1

Efficient Identity Based Encryption [ABB10]



�46

Parameters:

Master Secret Key: Trapdoor for A0 

KeyGen for identity id :

A0 G uA1

Let Fid = [A0 | A1 + id×G]   

Efficient Identity Based Encryption [ABB10]



�46

Parameters:

Master Secret Key: Trapdoor for A0 

KeyGen for identity id :

mod q

key

e u≡Fid

A0 G uA1

Let Fid = [A0 | A1 + id×G]   

Efficient Identity Based Encryption [ABB10]



�46

Parameters:

Master Secret Key: Trapdoor for A0 

KeyGen for identity id :

mod q

key

e u≡Fid

A0 G uA1

Let Fid = [A0 | A1 + id×G]   

Know how to compute trapdoor for “extended” matrix 
[A0| any ]

Efficient Identity Based Encryption [ABB10]
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❖ Pick random vector s 

❖ Let Fid = [A0 | A1 + id×G]   

❖ C  = uT s + noise + msg

❖ C’ = Fid
Ts + noise

Fixed 
size

Encryption for id’ = Regev PKE on matrix Fid

Efficient Identity Based Encryption [ABB10]



�48

C0 = uTs + noise + m and C1= Fid
Ts + noise    

Efficient Identity Based Encryption [ABB10]



�48

C0 = uTs + noise + m and C1= Fid
Ts + noise    

Decryption : Regev decryption

Efficient Identity Based Encryption [ABB10]



�48

❖ Let w = C0 – eTC1    

C0 = uTs + noise + m and C1= Fid
Ts + noise    

Decryption : Regev decryption

Efficient Identity Based Encryption [ABB10]



�48

❖ Let w = C0 – eTC1    

❖ eTC1= (Fid e)Ts + noise

C0 = uTs + noise + m and C1= Fid
Ts + noise    

Decryption : Regev decryption

Efficient Identity Based Encryption [ABB10]



�48

❖ Let w = C0 – eTC1    

❖ eTC1= (Fid e)Ts + noise

❖   Since Fid e = u mod q, we have 

C0 = uTs + noise + m and C1= Fid
Ts + noise    

Decryption : Regev decryption

Efficient Identity Based Encryption [ABB10]



�48

❖ Let w = C0 – eTC1    

❖ eTC1= (Fid e)Ts + noise

❖   Since Fid e = u mod q, we have 

w = m + noise from which we can recover m.

C0 = uTs + noise + m and C1= Fid
Ts + noise    

Decryption : Regev decryption

Efficient Identity Based Encryption [ABB10]
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• Fid
 = [A0| A0R  + (id –id*)G]

• Can find basis for Fid given basis for G !

• Trapdoor vanishes for id = id*
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Let A = G - BRB

A

 Let B ∈ ℤn×m′�
q , R ∈ ℤm′�×n log q
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PP = A0, A1, G
Real System Simulation 

MSK            = Trapdoor for A0 MSK            = Trapdoor for G

A1                       = Randomly chosen

Encryption 
matrix  Fid  = [A0|A1+id.G]

Secret Key   = short vector in Fid Secret Key   = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]   

 = [A0 | A0R + (id -id*)G]

A1                       = A0R – id* G

MSK ➔ Key for any id Trapdoor for G ➔ Key for id ≠ id* 

Indistinguishable since R is random!

Efficient Identity Based Encryption [ABB10]
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Generalizing to Inner Product (KSW08)

Key : y = (y1, …, yn)

Supports: 
• OR –- Bob OR Alice  

•CNF/DNF formulas of bounded size

Function f( x, y)  = 1 If  <x . y> = 0

0   otherwise

CT  :  x = (x1, …, xn)
Ciphertext Hides 

Attributes xi

ORA,B(z) = 1 if z = A OR z = B

p(z) = (A − z)(B − z)
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❖ Pick random vector s 

❖ C  = uT s + noise + msg

❖ C’ = ATs + noise 

Ciphertext Hides 
Attributes xi

Encryption for vector x = (x1 x2 x3 x4) :

❖ Set Ci = (Ai + xi G)T s + noise
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Set Cy = Σ yi Ci

     =  (Σ yi Ai + Σ yi xi G )Ts + Σ yi noise✕

But this is what we have the key for ! 
Perform Regev Decryption.

Ci = (Ai + xi G)T s + noise

[ C’|Cy ]    = [A | Σ yi Ai ] Ts + noise

mod qey u≡ ΣyiAiA

Decryption 
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)
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C  = uT s + noise + msg,  C’ = ATs + noise 

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure 

Previously: Could evaluate on CT to obtain  

 C<x, y> = (Ay + <x, y> G)T s + noise

 Cf(x) = (Af + f(x) G)T s + noise

When <x, y> = 0, obtain CT that encodes f alone,  
Keygen may compute matching key

Generalize to arbitrary f?
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 Cx1 x2 = RT C1 + x1 C2 
           = (A12 + x1x2 G)T s + noise
   A12  = A1 G-1 (-A2)

 C2 = (A2 + x2 G)T s + noise

Then

G-1 (-A2) and x1 are small and do not affect noise !

R = G-1 (-A2)Let

C  = uT s + noise + msg,  C’ = ATs + noise Also have
 If x1x2  = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise 
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mod qe12 u≡A12AKey

 If x1x2  = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise 

Perform Regev Decryption

 (e12)T [C’ | Cx1 x2] = (e12)T [A | A12]Ts + (e12)T noise = uT s + noise
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-
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mod qef u≡AfAKeygen provides 
matching key

 Recall Ci = (Ai + xi G)T s + noise

 LHS implies that
̂H T
f,x [ C1 |…… |Cn ] = [Af − f(x) G]Ts + noise

[ A1 − x1G |…… |An − xnG ] ̂H f,x = [ A1 |… |An] Hf − f(x) G

There exist “small”                such that:      ̂H f,x, Hf

Af⏟
Perform Regev Decryption as usual
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Encrypt

KeyGen Decrypt

SetUp

Attribute based Encryption (ABE) [SW05]



Security Definition

Attacker wins if  | Pr[b=b’] - ½ |   is non-negligible  

Challenger  Ch.

Adversary  Ad.

PK

Guess b’

m0, m1 

Choose random b. Return ct* = Enc( PK, x*, mb)

f1, f2 ……fm
sk(f1), sk(f2),……sk(fm)

       where fi(x*)=0

x*
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Security: Challenges

•Challenger needs to be able to answer private key   
queries of Adversary: much more complex!  

•Challenger can’t have master trapdoor(Trapdoor for A) 

• Must embed LWE challenge into challenge ciphertext 
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Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf 

• Recall key

• Need TD for [A | Af ] when f(x*) not 0. 

• Follows from MP12

mod qef u≡AfA
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• Need TD for [A | Af ] when f(x*)      0.  
• Af = [ARf – f(x*)G] . Let H = f(x*). 
• Recall

Then  AR - H G A

 Let A ∈ ℤn×m′�
q R ∈ ℤm′�×n log q

q uniform, small

admits LWE and SIS inversion.

Strategy: Key Queries
≠
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Thank You!
Image Credits : Hans Hoffman, Jackson Pollock


