Lattice Based Cryptography Tools and Applications

VIA

Shweta Agrawal IIT Madras

Image Credit: Hans Hoffman, UCB Art Museum

Computing on Encrypted Data Personalised Medicine

"The dream for tomorrow's medicine is to understand the links between DNA and disease — and to tailor therapies accordingly. But scientists have a problem: how to keep genetic data and medical records secure while still enabling the massive, cloud-based analyses needed to make meaningful associations."

E-mail: randy@glasbergen.com

"You don't look anything like the long haired, skinny kid I married 25 years ago. I need a DNA sample to make sure it's still you."

Check Hayden, E. (2015). Nature, 519, 400-401.

Computing on Encrypted Data Personalised Medicine

"The dream for tomorrow's medicine is to understand the links between DNA and disease — and to tailor therapies accordingly. But scientists have a problem: how to keep genetic data and medical records secure while still enabling the massive, cloud-based analyses needed to make meaningful associations."

"You don't look anything like the long haired, skinny kid I married 25 years ago. I need a DNA sample to make sure it's still you."

Check Hayden, E. (2015). Nature, 519, 400-401.

Doesn't FHE solve exactly this?

Prof. Bob wants to store encrypted file so that:

• Other Professors or admin assistants of CS group can open it

• Encrypt file for each of them?

• If someone quits or new person joins? Reencrypt ?

• Organizational nightmare !

Prof. Bob wants to store encrypted file so that:

Prof. Bob wants to store encrypted file so that:

What he really wants: Encryption for formula

Prof. Bob wants to store encrypted file so that:

What he really wants: Encryption for formula

PROF OR {Admin AND CS}

PROF OR {Admin AND CS}

CS Admin

Need New Tools & Techniques!

Main Tool: Lattice Trapdoors

Generate (f, T)

Generate (f, T) $f: D \to R$,

Generate (f, T) $f: D \rightarrow R$, One Way

Generate (f, T) $f: D \rightarrow R$, One Way

Generate (f, T) $f: D \rightarrow R$, One Way

Generate (f, T) $f: D \rightarrow R$, One Way

Trapdoor Functions

Generate (f, T) $f: D \rightarrow R$, One Way

Short Integer Solution Problem

Let
$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}$$
, $q = \operatorname{poly}(n)$, $m = \Omega(n \log q)$

Given matrix **A**, find "short" (low norm) vector **x** such that $\mathbf{A} \mathbf{x} = 0 \mod q \in \mathbb{Z}_q^n$

Learning With Errors Problem

Distinguish "noisy inner products" from uniform

Fix uniform $s \in \mathbb{Z}_q^n$

 a_i uniform $\in Z_q^n$, $e_i \sim \varphi \in Z_q$

 $a_i uniform \in Z_q^n$, $b_i uniform \in Z_q$

Lattice Based One Way Functions

Public Key $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, q = poly(n), $m = \Omega(n \log q)$

Lattice Based One Way Functions

Public Key $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, q = poly(n), $m = \Omega(n \log q)$

Based on SIS

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q \in \mathbb{Z}_q^n$

- Short x, surjective
- CRHF if SIS is hard [Ajt96...]

Lattice Based One Way Functions

Public Key $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, q = poly(n), $m = \Omega(n \log q)$

Based on SIS

 $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q \in \mathbb{Z}_q^n$

- Short x, surjective
- CRHF if SIS is hard [Ajt96...]

Based on LWE

$$g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t}\mathbf{A} + \mathbf{e}^{t} \mod q \in \mathbb{Z}_{q}^{m}$$

- Very short e, injective
- OWF if LWE is hard [Reg05...]

Image Credit: MP12 slides

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample
 - $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

And

- Given $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^{t}\mathbf{A} + \mathbf{e}^{t} \mod q$
- Find unique (s, e)

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample
 - $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample
 - $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

Preimage Sampleable Trapdoor Functions!

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample
 - $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

Preimage Sampleable Trapdoor Functions!

Generate (x, y) in two equivalent ways

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample
 - $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

Preimage Sampleable Trapdoor Functions! Generate (x, y) in two equivalent ways

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample
 - $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

Preimage Sampleable Trapdoor Functions! Generate (x, y) in two equivalent ways X OR

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample
 - $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample
 - $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample
 - $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

Same Distribution (Discrete Gaussian, Uniform) !

What do these trapdoors look like?

Multiple Bases

Parallelopipeds

Parallelopipeds

Good Basis

Good Basis

"Quite short" and "nearly orthogonal"

Good Basis

Good Basis

Bad Basis

Bad Basis

Output center of parallelopipid containing T

Output center of parallelopipid containing T Not So Accurate...

Basis quality and Hardness

- SVP, CVP, SIS (...) hard given arbitrary (bad) basis
- Some hard lattice problems are easy given a good basis
- Will exploit this asymmetry
Basis quality and Hardness

- SVP, CVP, SIS (...) hard given arbitrary (bad) basis
- Some hard lattice problems are easy given a good basis
- Will exploit this asymmetry

Use Short Basis as Cryptographic Trapdoor!

Inverting Our Function

Inverting Our Function

Recall $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$ Want

$$\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

Inverting Our Function

Recall $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$ Want

$$\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

The Lattice

Inverting Our Function

Recall $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$ Want $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

The Lattice

 $\mathbf{\Lambda} = \{\mathbf{x} : \mathbf{A}\mathbf{x} = 0 \mod q\} \subseteq \mathbb{Z}_q^m$

Inverting Our Function

Recall $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$ Want $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

The Lattice

$$\mathbf{\Lambda} = \{\mathbf{x} : \mathbf{A}\mathbf{x} = 0 \mod q\} \subseteq \mathbb{Z}_q^m$$

Short basis for Λ lets us sample from $f_{A}^{-1}(\mathbf{u})$ with correct distribution!

1. How to use short basis

1. How to use short basis

Randomized Nearest plane Algorithm

1. How to use short basis

- Randomized Nearest plane Algorithm
- Chris's talk

1. How to use short basis

- Randomized Nearest plane Algorithm
- Chris's talk

1. How to use short basis

- Randomized Nearest plane Algorithm
- Chris's talk

2. How to get short basis — this talk (almost)

Not a short basis but

Just as powerful

- Just as powerful
- More efficient

- Just as powerful
- More efficient
- Better parameters

- Just as powerful
- More efficient
- Better parameters
- Implies Type 1 trapdoors

Not a short basis but

- Just as powerful
- More efficient
- Better parameters
- Implies Type 1 trapdoors

Image Credit: https://us.macmillan.com/podcasts/podcast/better-at-everything/

Recall $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q \in \mathbb{Z}_q^n$ and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q \in \mathbb{Z}_q^m$

Recall $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q \in \mathbb{Z}_q^n$ and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q \in \mathbb{Z}_q^m$

Design $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ for Gadget Matrix G (fixed, public, offline)

Recall $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q \in \mathbb{Z}_q^n$ and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q \in \mathbb{Z}_q^m$

Design $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ for Gadget Matrix G (fixed, public, offline)

1

Randomize G ↔ A via <u>nice</u> unimodular transformation

2

Recall $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q \in \mathbb{Z}_q^n$ and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q \in \mathbb{Z}_q^m$

Design $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ for Gadget Matrix G (fixed, public, offline)

1

Randomize G ↔ A via <u>nice</u> unimodular transformation

3

Reduce

 $f_{\mathbf{A}}^{-1}, g_{\mathbf{A}}^{-1}$ to $f_{\mathbf{G}}^{-1}, g_{\mathbf{G}}^{-1}$

Recall $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q \in \mathbb{Z}_q^n$ and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q \in \mathbb{Z}_q^m$

Transformation in Step 2 is the trapdoor!

Recall $f_{\mathbf{G}}(\mathbf{x}) = \mathbf{G} \mathbf{x} \mod q \in \mathbb{Z}_q^n$ and $g_{\mathbf{G}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{G} + \mathbf{e}^t \mod q \in \mathbb{Z}_q^m$

Let $q = 2^k$ and $g = [1, 2, 4, \dots, 2^{k-1}] \in \mathbb{Z}_q^{1 \times k}$

Invert LWE: find *s* s.t. $s \cdot g + e = [s + e_0, 2s + e_1, \cdots 2^{k-1}s + e_{k-1}]$

- Get lsb(s) from $2^{k-1}s + e_{k-1}$
- Then get next bit of s and so on.
- Works as long as every $e_i \in [-q/4, q/4)$

Recall $f_{\mathbf{G}}(\mathbf{x}) = \mathbf{G} \mathbf{x} \mod q \in \mathbb{Z}_q^n$ and $g_{\mathbf{G}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{G} + \mathbf{e}^t \mod q \in \mathbb{Z}_q^m$

Let $q = 2^k$ and $g = [1, 2, 4, \dots, 2^{k-1}] \in \mathbb{Z}_q^{1 \times k}$

Invert LWE: find *s* s.t. $s \cdot g + e = [s + e_0, 2s + e_1, \cdots 2^{k-1}s + e_{k-1}]$

- Get lsb(s) from $2^{k-1}s + e_{k-1}$
- Then get next bit of s and so on.
- Works as long as every $e_i \in [-q/4, q/4)$

Invert SIS: sample Gaussian preimage **x** s.t. $u = \langle \mathbf{g} \mathbf{x} \rangle \mod q$

• For $i \in [0, ..., k-1]$, choose $x_i \leftarrow (2\mathbb{Z} + u)$, $u \leftarrow (u - x_i)/2 \in \mathbb{Z}$

• Let k= 2.
$$x_0 \leftarrow (2z_0 + u), \ u \leftarrow (u - 2z_0 - u)/2 = -z_0$$

 $x_1 \leftarrow (2z_1 - z_0)$
 $\langle \mathbf{g}, \mathbf{x} \rangle = 2z_0 + u + 2(2z_1 - z_0) = u + 4z_1 = u \mod 4$

S is Short Basis for $g = [1, 2, 4, \dots, 2^{k-1}]$

Note $\mathbf{g} = [1, 2, 4, \dots, 2^{k-1}]$

S is Short Basis for $g = [1, 2, 4, \dots, 2^{k-1}]$

Define gadget G : $\mathbf{G} = \mathbf{I}_n \otimes \mathbf{g}$

Step 1: $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ for Gadget G

S is Short Basis for $g = [1, 2, 4, \dots, 2^{k-1}]$

Define gadget G : $\mathbf{G} = \mathbf{I}_n \otimes \mathbf{g}$

 $f_{\mathbf{G}}^{-1}$, $g_{\mathbf{G}}^{-1}$ reduce to n parallel, offline calls to $f_{\mathbf{g}}^{-1}$, $g_{\mathbf{g}}^{-1}$

1. Sample $\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$, short Gaussian $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$,

1. Sample $\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$, short Gaussian $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$,

1. Sample $\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$, short Gaussian $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$,

= B G-BR
Step 2: Randomize G to A

1. Sample $\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$, short Gaussian $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$,

= B G-BR

A is uniform by leftover hash lemma!

Leftover Hash Lemma (oversimplified)

Di Contra

TA AN

Leftover Hash Lemma (oversimplified)

Let $\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$ uniform & $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$ Gaussian

If $m' \approx n \log q$, then,

 $(\mathbf{B}, \mathbf{BR}) \approx (\mathbf{B}, \mathbf{U})$

Leftover Hash Lemma (oversimplified)

Let $\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$ uniform & $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$ Gaussian

If $m' \approx n \log q$, then,

 $(\mathbf{B}, \mathbf{BR}) \approx (\mathbf{B}, \mathbf{U})$

Hence **A =**

В

G - BR

uniform

Step 2: Randomize G to A

Step 2: Randomize G to A Have A = B G - BR

Step 2: Randomize G to A Have $\mathbf{A} = \mathbf{B} \mathbf{G} \cdot \mathbf{BR}$

Define: **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$,

If
$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}$$

Step 2: Randomize G to A Have $\mathbf{A} = \mathbf{B} \mathbf{G} \cdot \mathbf{BR}$

Define: **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$,

If
$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}$$

&

Basis S for $\Lambda^{\perp}(\mathbf{G})$

Trapdoor R for A

Step 2: Randomize G to A Have $\mathbf{A} = \mathbf{B} \mathbf{G} \cdot \mathbf{BR}$

Define: **R** is a trapdoor for **A** with tag $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$,

If
$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{H} \cdot \mathbf{G}$$

Suppose **R** is a trapdoor for **A** with tag $\mathbf{I} \in \mathbb{Z}_q^{n \times n}$,

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$$

Suppose **R** is a trapdoor for **A** with tag $\mathbf{I} \in \mathbb{Z}_q^{n \times n}$,

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$$

Inverting LWE

Suppose **R** is a trapdoor for **A** with tag $\mathbf{I} \in \mathbb{Z}_q^{n \times n}$,

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$$

Inverting LWE

Want:

- Given $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q$
- Find unique (s, e)

Suppose **R** is a trapdoor for **A** with tag $\mathbf{I} \in \mathbb{Z}_q^{n \times n}$,

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$$

Inverting LWE

Want:

Compute:

- Given $\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \mod q$
- Find unique (s, e)

$$\mathbf{b}^{t} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{s}^{t} \cdot \mathbf{G} + \mathbf{e}^{t} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \mod q$$

Works if $\mathbf{e}^{t} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \in [-q/4, q/4)$

Inverting SIS

 $\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$

Inverting SIS

$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$

Want:

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample

$$\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

Inverting SIS

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$$

Want:

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$
- Sample

$$\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

Compute:

Sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ Output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{z}$ Then, $\mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{z} = \mathbf{G} \cdot \mathbf{z} = \mathbf{u}$

31

Are we done?

 $\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$

Are we done?

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$$

Compute:

Sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$ Output $\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{z}$

Then,

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{z} = \mathbf{G} \cdot \mathbf{z} = \mathbf{u}$$

32

Are we done?

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$$

Compute:

Sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$

Output
$$\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{z}$$

Then,

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{z} = \mathbf{G} \cdot \mathbf{z} = \mathbf{u}$$

Covariance of x leaks R!

Are we done?

$$\mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} = \mathbf{G}$$

Compute:

Sample $\mathbf{z} \leftarrow f_{\mathbf{G}}^{-1}(\mathbf{u})$

Output
$$\mathbf{x} = \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{z}$$

Then,

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{A} \cdot \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{z} = \mathbf{G} \cdot \mathbf{z} = \mathbf{u}$$

Covariance of x leaks R!

$$\Sigma := \mathbb{E}_{\mathbf{x}} \left[\mathbf{x} \cdot \mathbf{x}^t \right] = \mathbb{E}_{\mathbf{z}} \left[\mathbf{R} \cdot \mathbf{z} \mathbf{z}^t \cdot \mathbf{R}^t \right] \approx s^2 \cdot \mathbf{R} \mathbf{R}^t.$$

Image Credit: Chris Peikert

Want to output spherical Gaussian! Covariance Matrix $s^2 \mathbf{I}$

Want to output spherical Gaussian! Covariance Matrix $s^2 \mathbf{I}$

https://www.elegantthemes.com/

Fix using perturbation method [P'10]

Want to output spherical Gaussian! Covariance Matrix $s^2 \mathbf{I}$

Fix using perturbation method [P'10]

https://www.elegantthemes.com/

Convolution of Gaussians

Want to output spherical Gaussian! Covariance Matrix $s^2 \mathbf{I}$

Fix using perturbation method [P'10]

https://www.elegantthemes.com/

To fix covariance:

- Generate perturbation vector **p** with covariance $(s^2\mathbf{I} \mathbf{RR}^t)$
- Sample spherical z such that G z = u A p

• Output
$$\mathbf{x} = \mathbf{p} + \begin{bmatrix} \mathbf{R} \\ \mathbf{I} \end{bmatrix} \cdot \mathbf{z}$$

Want to output spherical Gaussian! Covariance Matrix $s^2 \mathbf{I}$

Fix using perturbation method [P'10]

https://www.elegantthemes.com/

Takeaway for Applications

Let $\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$, uniform $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$, Gaussian Let $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{G} - \mathbf{B}\mathbf{R} \end{bmatrix}$

Then, **A** uniform, admits LWE and SIS inversion $f_{\rm A}^{-1}, \ g_{\rm A}^{-1}$

Applications

Identity Based Encryption (IBE)

In short.....

Public Key Encryption in which ANY arbitrary string can be public key!

IBE: How does it work?

Identity Based Encryption

- Recall A (e) = u mod q hard to invert
- * Secret: e, Public : A, u

- Recall A (e) = u mod q hard to invert
- * Secret: e, Public : A, u $\{A\}e = u \mod q$

- Recall A (e) = u mod q hard to invert
- * Secret: e, Public : A, u

$$\left\{ A \right\} e = \left[u \right] \mod q$$

- Encrypt (A, u) :
 - Pick random vector s
 - * $C_0 = A^T s + noise$
 - * $C_1 = u^T s + noise + msg$

- Recall A (e) = u mod q hard to invert
- * Secret: e, Public : A, u

$$\left\{ A \right\} e = \left[u \right] \mod q$$

- Encrypt (A, u) :
 - Pick random vector s
 - * $C_0 = A^T s + noise$
 - * $C_1 = u^T s + noise + msg$
- Decrypt (e) :

*
$$\mathbf{e}^{\mathsf{T}} \mathbf{c}_0 - \mathbf{c}_1 = \mathsf{msg} + \mathsf{noise}$$
Regev PKE

Recall A (e) = u mod q hard to invert

* Secret: e, Public : A, u
A e = u mod q
* Encrypt (A, u) :
* Pick random vector s
*
$$C_0 = A^T s + noise$$

- * $C_1 = u^T s + noise + msg$
- Decrypt (e) :

*
$$\mathbf{e}^{\mathsf{T}} \mathbf{c}_0 - \mathbf{c}_1 = \mathsf{msg} + \mathsf{noise}$$

Regev PKE

Recall A (e) = u mod q hard to invert

* Secret: e, Public : A, u
A e = u mod q
* Encrypt (A, u) :
* Pick random vector s
*
$$c_0 = A^T s + noise$$

* $c_1 = u^T s + noise + msg$
* Decrypt (e) :
* $e^T c_0 - c_1 = msg + noise$

Want to embed vector id in ciphertext and secret key.

- Want to embed vector id in ciphertext and secret key.
- Let encryption matrix F_{id} be publicly computable function of id and public parameters.

- Want to embed vector id in ciphertext and secret key.
- Let encryption matrix F_{id} be publicly computable function of id and public parameters.
- Perform Regev PKE with encryption matrix F_{id}

- Want to embed vector id in ciphertext and secret key.
- Let encryption matrix F_{id} be publicly computable function of id and public parameters.
- Perform Regev PKE with encryption matrix F_{id}
- Figure out way to compute short vector e such that

- Want to embed vector id in ciphertext and secret key.
- Let encryption matrix F_{id} be publicly computable function of id and public parameters.
- Perform Regev PKE with encryption matrix F_{id}
- Figure out way to compute short vector e such that

Identity Based Encryption [CHKP10]

Identity Based Encryption [CHKP10] Let lidl=2 A_0 A_1^0 A_1^1 A_2^0 A_2^1 u

Parameters

Parameters

$$A_0 \left\{ A_1^0 \right\} \left\{ A_1^1 \right\} \left\{ A_2^0 \right\} \left\{ A_2^1 \right\} \left\{ u \right\}$$

• Master secret key : basis for A₀

Parameters

$$A_0 \left\{ A_1^0 \right\} \left\{ A_1^1 \right\} \left\{ A_2^0 \right\} \left\{ A_2^1 \right\} \left\{ u \right\}$$

- Master secret key : basis for A₀
- Secret Key for (id=01): short e such that $F_{01} = u \mod q$

Parameters

$$\left\{\begin{array}{c}A_{0}\end{array}\right\}\left\{\begin{array}{c}A_{1}^{0}\end{array}\right\}\left\{\begin{array}{c}A_{1}^{1}\end{array}\right\}\left\{\begin{array}{c}A_{2}^{0}\end{array}\right\}\left\{\begin{array}{c}A_{2}^{1}\end{array}\right\}\left(\begin{array}{c}U\right)$$

- Master secret key : basis for A₀
- Secret Key for (id=01): short e such that $F_{01} = u \mod q$

Where $F_{01} = [A_0 | A_1^0 | A_2^1]$ (one block per bit!)

Parameters

$$\left\{ \begin{array}{c} A_{0} \end{array} \right\} \left\{ \begin{array}{c} A_{1}^{0} \end{array} \right\} \left\{ \begin{array}{c} A_{1}^{1} \end{array} \right\} \left\{ \begin{array}{c} A_{2}^{0} \end{array} \right\} \left\{ \begin{array}{c} A_{2}^{1} \end{array} \right\} \left\{ \begin{array}{c} u \end{array} \right\}$$

- Master secret key : basis for A₀
- Secret Key for (id=01): short e such that $F_{01} = u \mod q$

Where $F_{01} = [A_0 | A_1^0 | A_2^1]$ (one block per bit!)

Figure out how to compute trapdoor for "extended" matrix [T₁IT₂IT₃]

Parameters

$$\begin{array}{c} A_{0} \end{array} \left\{ \begin{array}{c} A_{1}^{0} \end{array} \right\} \left\{ \begin{array}{c} A_{1}^{1} \end{array} \right\} \left\{ \begin{array}{c} A_{2}^{0} \end{array} \right\} \left\{ \begin{array}{c} A_{2}^{1} \end{array} \right\} \left\{ \begin{array}{c} u \end{array} \right\}$$

- Master secret key : basis for A₀
- Secret Key for (id=01): short e such that $F_{01} = u \mod q$

Where $F_{01} = [A_0 | A_1^0 | A_2^1]$ (one block per bit!)

- Figure out how to compute trapdoor for "extended" matrix $[T_1|T_2|T_3]$
- Encrypt (b, id=01): Uses regev PKE on matrix F₀₁

• Secret Key for (id=01) : low norm vector e such that

 $F_{01} e = [A_0 | A_1^0 | A_2^1] e = u \mod q$

• Secret Key for (id=01) : low norm vector e such that

 $F_{01} e = [A_0 | A_1^0 | A_2^1] e = u \mod q$

- Encrypt (b, id=01):
 - $c_0 = F_{01}^{T} s + noise$, $c_1 = u^{T} s + noise + msg$

Secret Key for (id=01) : low norm vector e such that

 $F_{01} e = [A_0 | A_1^0 | A_2^1] e = u \mod q$

- Encrypt (b, id=01):
 - $c_0 = F_{01}^T s + noise$, $c_1 = u^T s + noise + msg$
 - Decrypt
 - Compute $e^T c_0 c_1 = noise + msg \mod q$

Adversary Ad.

IBE Security

Adversary Ad.

Attacker wins if | Pr[b=b'] - 1/2 | is non-negligible

Security Model: Key Points

- Ch. needs to be able to answer private key queries of Ad.
- Ch. should <u>not</u> be able to answer query for id^{*} (hence can't have master trapdoor)
- Ch. should be able to generate challenge ciphertext so that Ad's answer is useful.

Simulation

Simulation

Let challenge identity id* = 11

Simulation

- Let challenge identity id* = 11
- Must not have SK for id*, hence don't have master secret (basis for A₀)!
- Let challenge identity id* = 11
- Must not have SK for id*, hence don't have master secret (basis for A₀)!
- Choose A₀, A₁¹, A₂¹ random (no TD)

- Let challenge identity id* = 11
- Must not have SK for id^{*}, hence don't have master secret (basis for A₀)!
- Choose A₀, A₁¹, A₂¹ random (no TD)
- Choose A₁⁰ A₂⁰ with TD

- Let challenge identity id* = 11
- Must not have SK for id*, hence don't have master secret (basis for A₀)!
- Choose A₀, A₁¹, A₂¹ random (no TD)
- Choose A₁⁰ A₂⁰ with TD
- Can compute basis of $F_{01} = [A_0 | A_1^0 | A_2^1]$

- Let challenge identity id* = 11
- Must not have SK for id*, hence don't have master secret (basis for A₀)!
- Choose A₀, A₁¹, A₂¹ random (no TD)
- Choose A₁⁰ A₂⁰ with TD
- Can compute basis of $F_{01} = [A_0 | A_1^0 | A_2^1]$
- Cannot compute basis of $F_{11} = [A_0 | A_1 | A_2]$

Parameters:

Parameters:

$$\left\{ \begin{array}{c} A_0 \end{array} \right\} \left\{ \begin{array}{c} A_1 \end{array} \right\} \left\{ \begin{array}{c} G \end{array} \right\} \left[\begin{array}{c} u \end{array} \right]$$

Independent of lidl!

Parameters:

Parameters:

Master Secret Key: Trapdoor for A₀

Master Secret Key: Trapdoor for A₀

KeyGen for identity id :

Parameters:

$$\left\{ \begin{array}{c} A_0 \end{array} \right\} \left\{ \begin{array}{c} A_1 \end{array} \right\} \left\{ \begin{array}{c} G \end{array} \right\} \left[\begin{array}{c} u \end{array} \right]$$

Master Secret Key: Trapdoor for A₀

KeyGen for identity id :

Let
$$F_{id} = [A_0 | A_1 + id \times G]$$

Parameters:

$$\left\{ \begin{array}{c} A_0 \end{array} \right\} \left\{ \begin{array}{c} A_1 \end{array} \right\} \left\{ \begin{array}{c} G \end{array} \right\} \left[\begin{array}{c} u \end{array} \right]$$

Master Secret Key: Trapdoor for A₀

KeyGen for identity id :

Parameters:

$$\left\{ \begin{array}{c} A_0 \end{array} \right\} \left\{ \begin{array}{c} A_1 \end{array} \right\} \left\{ \begin{array}{c} G \end{array} \right\} \left[\begin{array}{c} u \end{array} \right]$$

Master Secret Key: Trapdoor for A₀

KeyGen for identity id :

Know how to compute trapdoor for "extended" matrix $[A_0 | any]$

Efficient Identity Based Encryption [ABB10] Encryption for id' = Regev PKE on matrix F_{id}

Efficient Identity Based Encryption [ABB10] Encryption for id' = Regev PKE on matrix F_{id}

Pick random vector s

$$Let F_{id} = [A_0 | A_1 + id \times G]$$

$$\mathbf{L} \mathbf{C} = \mathbf{u}^{\mathsf{T}} \mathbf{S} + \mathbf{noise} + \mathbf{msg}$$

 $C' = F_{id}^T s + noise$

Efficient Identity Based Encryption [ABB10] Encryption for id' = Regev PKE on matrix F_{id}

Pick random vector s

• Let
$$F_{id} = [A_0 | A_1 + id \times G]$$
 Fixed size

 $C = u^T s + noise + msg$

 $C' = F_{id}^T s + noise$

 $C_0 = u^T s + noise + m and C_1 = F_{id}^T s + noise$

 $C_0 = u^T s + noise + m and C_1 = F_{id}^T s + noise$

Decryption : Regev decryption

 $C_0 = u^T s + noise + m and C_1 = F_{id}^T s + noise$

Decryption : Regev decryption

 \bigstar Let w = C₀ - e^TC₁

 $C_0 = u^T s + noise + m and C_1 = F_{id}^T s + noise$

Decryption : Regev decryption

$$\bigstar \text{ Let } \mathbf{w} = \mathbf{C}_0 - \mathbf{e}^{\mathsf{T}} \mathbf{C}_1$$

•
$$e^TC_1 = (F_{id} e)^Ts + noise$$

 $C_0 = u^T s + noise + m and C_1 = F_{id}^T s + noise$

Decryption : Regev decryption

$$\bigstar \text{ Let } \mathbf{w} = \mathbf{C}_0 - \mathbf{e}^{\mathsf{T}} \mathbf{C}_1$$

•
$$e^TC_1 = (F_{id} e)^Ts + noise$$

Since $F_{id} = u \mod q$, we have

 $C_0 = u^T s + noise + m and C_1 = F_{id}^T s + noise$

Decryption : Regev decryption

$$\bigstar \text{ Let } \mathbf{w} = \mathbf{C}_0 - \mathbf{e}^{\mathsf{T}} \mathbf{C}_1$$

•
$$e^TC_1 = (F_{id} e)^Ts + noise$$

Since
$$F_{id} = u \mod q$$
, we have

w = m + noise from which we can recover m.

Simulation: Let challenge identity = id*

Simulation: Let challenge identity = id*

• Don't have basis for A₀

Simulation: Let challenge identity = id*

- Don't have basis for A₀
- Have basis for G

Simulation: Let challenge identity = id*

- Don't have basis for A₀
- Have basis for G
- Let $A_1 = [A_0 R id^* \times G]$

Simulation: Let challenge identity = id*

- Don't have basis for A₀
- Have basis for G

Random low norm matrix

• Let $A_1 = [A_0 R - id^* \times G]$

Simulation: Let challenge identity = id*

- Have basis for G
- Let $A_1 = [A_0 R id^* \times G]$

Simulation: Let challenge identity = id*

- Have basis for G
- Let $A_1 = [A_0 R id^* \times G]$

• $F_{id} = [A_0 | A_0 R + (id - id^*)G]$

Simulation: Let challenge identity = id*

- Have basis for G
- Let $A_1 = [A_0 R id^* \times G]$

- $F_{id} = [A_0 | A_0 R + (id id^*)G]$
- Need to find basis for F_{id} given basis for G

Simulation: Let challenge identity = id*

- Have basis for G
- Let $A_1 = [A_0 R id^* \times G]$

- $F_{id} = [A_0 | A_0 R + (id id^*)G]$
- Need to find basis for F_{id} given basis for G

Let
$$\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$$
, uniform $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$, Gaussian
Let $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{G} - \mathbf{B}\mathbf{R} \end{bmatrix}$
Then, \mathbf{A} uniform, admits LWE and SIS inversion
 $f_{\mathbf{A}}^{-1}$, $g_{\mathbf{A}}^{-1}$

Let
$$\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$$
, uniform $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$, Gaussian
Let $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{G} - \mathbf{B}\mathbf{R} \end{bmatrix}$
Then, \mathbf{A} uniform, admits LWE and SIS inversion
 $f_{\mathbf{A}}^{-1}$, $g_{\mathbf{A}}^{-1}$

MP12

Let
$$\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$$
, uniform $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$, Gaussian
Let $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{G} - \mathbf{B}\mathbf{R} \end{bmatrix}$
Then, \mathbf{A} uniform, admits LWE and SIS inversion
 $f_{\mathbf{A}}^{-1}$, $g_{\mathbf{A}}^{-1}$

• $F_{id} = [A_0 | A_0 R + (id - id^*)G]$

MP12
Let
$$\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$$
, uniform $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$, Gaussian
Let $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{G} - \mathbf{B}\mathbf{R} \end{bmatrix}$
Then, \mathbf{A} uniform, admits LWE and SIS inversion

$$f_{\rm A}^{-1}, g_{\rm A}^{-1}$$

•
$$F_{id} = [A_0 | A_0 R + (id - id^*)G]$$

Can find basis for F_{id} given basis for G !

MP12

Let
$$\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$$
, uniform $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$, Gaussian
Let $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{G} - \mathbf{B}\mathbf{R} \end{bmatrix}$
Then, \mathbf{A} uniform, admits LWE and SIS inversion
 $f_{\mathbf{A}}^{-1}$, $g_{\mathbf{A}}^{-1}$

• $F_{id} = [A_0 | A_0 R + (id - id^*)G]$

Developed in ABB10

Can find basis for F_{id} given basis for G[']

Let
$$\mathbf{B} \in \mathbb{Z}_q^{n \times m'}$$
, uniform $\mathbf{R} \in \mathbb{Z}_q^{m' \times n \log q}$, Gaussian
Let $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{G} \cdot \mathbf{B}\mathbf{R} \end{bmatrix}$
Then, \mathbf{A} uniform, admits LWE and SIS inversion
 $f_{\mathbf{A}}^{-1}$, $g_{\mathbf{A}}^{-1}$

• $F_{id} = [A_0 | A_0 R + (id - id^*)G]$

Developed in ABB10

- Can find basis for F_{id} given basis for G¹
- Trapdoor vanishes for id = id*

Real System

Simulation

Efficient Identity Based Encryption [ABB10] $PP = A_0, A_1, G$ Real System Simulation

Efficient Identity Based Encryption [ABB10] $PP = A_0, A_1, G$ Real SystemSimulation

MSK = Trapdoor for A_0

Efficient Identity Based Encryption [ABB10] $PP = A_0, A_1, G$ Real SystemSimulationMSK= Trapdoor for A_0 MSK= Trapdoor for G

Efficient Identity Based Encryption [ABB10] $PP = A_0, A_1, G$ **Real System** Simulation MSK MSK = Trapdoor for A_0 = Trapdoor for G = Randomly chosen A_1

Effici	ent Identity Ba	sed Encr	yption [ABB10]
	PP = A	A ₀ , A ₁ , G	
Real System		Simulation	
MSK	= Trapdoor for A_0	MSK	= Trapdoor for G
A ₁	= Randomly chosen	A ₁	$= A_0 R - id^* G$
	Indistinguishable	since R is ra	ndom!

Effici	ent Identity Ba	sed Enci	ryption [ABB10]
	PP = A	A ₀ , A ₁ , G	
Real System		Simulation	
MSK	= Trapdoor for A_0	MSK	= Trapdoor for G
A ₁	= Randomly chosen	A ₁	$= A_0 R - id^* G$
	Indistinguishable	since R is ra	andom!
Encryption matrix F _{id}	$= [A_0 A_1 + id.G]$		

Efficient Identity Based Encryption [ABB10]				
$PP = A_0, A_1, G$				
Real System		Simulation		
MSK	= Trapdoor for A_0	MSK	= Trapdoor for G	
A ₁	= Randomly chosen	A ₁	$= A_0 R - id^* G$	
	Indistinguishable	since R is rar	ndom!	
Encryption matrix $F_{id} = [A_0 A_1 + id.G]$		Encryption matrix F _{id} = [A =	A ₀ I A ₁ +id.G] [A ₀ I A ₀ R + (id -id [*])G]	

Efficient Identity Based Encryption [ABB10]				
	PP = A	A ₀ , A ₁ , G		
Real System		Simulation		
MSK	= Trapdoor for A_0	MSK	= Trapdo	or for G
A ₁	= Randomly chosen	A ₁	$= A_0 R -$	id [*] G
	Indistinguishable	since R is ra	ndom!	
Encryption matrix F _{id} = [A ₀ IA ₁ +id.G]		Encryption matrix $F_{id} = [A_0 A_1 + id.G]$ = $[A_0 A_0 R + (id - id^*)G$] (id - <mark>id</mark> *)G]
Secret Key = short vector in F_{id}				

Efficient Identity Based Encryption [ABB10]				
	PP = A	A ₀ , A ₁ , G		
Real System		Simulation		
MSK	= Trapdoor for A_0	MSK	= Trapdo	or for G
A ₁	= Randomly chosen	A ₁	$= A_0 R -$	id [*] G
	Indistinguishable	since R is ra	ndom!	
Encryption matrix $F_{id} = [A_0 A_1 + id.G]$		Encryption matrix $F_{id} = [A_0 A_1 + id.G]$ = $[A_0 A_0 R + (id - id^*)G]$		
Secret Key = short vector in F_{id}		Secret Key	= short vec	tor in F _{id}

Efficient Identity Based Encryption [ABB10]				
$PP = A_0, A_1, G$				
Real System		Simulation		
MSK	= Trapdoor for A_0	MSK	= Trapdo	oor for G
A ₁	= Randomly chosen	A ₁	$= A_0 R -$	id [*] G
	Indistinguishable	since R is ra	andom!	
Encryption matrix $F_{id} = [A_0 A_1 + id.G]$		Encryption matrix F _{id} = [=	A ₀ IA ₁ +id.G] (id - <mark>id</mark> *)G]
Secret Key	y = short vector in F _{id}	Secret Key	= short vec	ctor in F _{id}
MSK → Key for any id				

Efficient Identity Based Encryption [ABB10]				
$PP = A_0, A_1, G$				
Real System		Simulation		
MSK	= Trapdoor for A_0	MSK	= Trapdo	oor for G
A ₁	= Randomly chosen	A ₁	$= A_0 R -$	id [*] G
	Indistinguishable	since R is ra	Indom!	
Encryption matrix $F_{id} = [A_0 A_1 + id.G]$		Encryption matrix F _{id} = [=	A ₀ I A ₁ +id.G = [A ₀ I A ₀ R +] (id - <mark>id</mark> *)G]
Secret Ke	y = short vector in F _{id}	Secret Key	= short vec	ctor in F _{id}
MSK → Key for any id		Trapdoor fo	or G → Key	for id \neq id [*]

Generalizing to Inner Product (KSW08)

Key : $y = (y_1, ..., y_n)$ CT : $x = (x_1, ..., x_n)$

Function f(x,y) = 1 If $\langle x, y \rangle = 0$ 0 otherwise

Generalizing to Inner Product (KSW08)

Key :
$$y = (y_1, ..., y_n)$$

CT : $x = (x_1, ..., x_n)$
Function f(x, y) = 1 If $\langle x . y \rangle = 0$

0 otherwise

Supports:

• OR -- Bob OR Alice $OR_{A,B}(z) = 1$ if z = A OR z = Bp(z) = (A - z)(B - z)

CNF/DNF formulas of bounded size

Generalizing to Inner Product (KSW08)

Key :
$$y = (y_1, ..., y_n)$$

Ciphertext Hides
Attributes x_i

Function f(x,y) = 1 If $\langle x, y \rangle = 0$ 0 otherwise

Supports:

• OR -- Bob OR Alice $OR_{A,B}(z) = 1$ if z = A OR z = Bp(z) = (A - z)(B - z)

CNF/DNF formulas of bounded size

Parameters for lxl = lyl = 4:

$$\left\{ \begin{array}{c} A_1 \end{array} \right\} \left\{ \begin{array}{c} A_2 \end{array} \right\} \left\{ \begin{array}{c} A_3 \end{array} \right\} \left\{ \begin{array}{c} A_4 \end{array} \right\} \quad \left\{ \begin{array}{c} A \end{array} \right\} \quad \left\{ \begin{array}{c} U \end{array} \right\}$$

Parameters for |x| = |y| = 4: $\left\{ \begin{array}{c} A_1 \end{array} \right\} \left\{ \begin{array}{c} A_2 \end{array} \right\} \left\{ \begin{array}{c} A_3 \end{array} \right\} \left\{ \begin{array}{c} A_4 \end{array} \right\} \quad \left\{ \begin{array}{c} A \end{array} \right\} \quad \bigcup \end{array}$

Master Secret Key: Trapdoor for A

◆ Parameters for IxI = IyI = 4: {A₁} {A₂} {A₃} {A₄} A ↓ Master Secret Key: Trapdoor for A ◆ Define F_v = [A I∑y_iA_i]

Parameters for |x| = |y| = 4: $\left\{ \begin{array}{c} A_1 \end{array} \right\} \left\{ \begin{array}{c} A_2 \end{array} \right\} \left\{ \begin{array}{c} A_3 \end{array} \right\} \left\{ \begin{array}{c} A_4 \end{array} \right\} \quad \left\{ \begin{array}{c} A \end{array} \right\} \quad \bigcup \\ \end{array}$

Master Secret Key: Trapdoor for A
♦ Define $F_y = [A | \Sigma y_i A_i]$

$$\left\{ \begin{array}{c} A \end{array} \atop \Sigma y_i A_i \right\} e_y = \left[u \right] \mod q$$

Parameters for |x| = |y| = 4: $A_1 \ A_2 \ A_3 \ A_4 \ A_4 \ A \ U$

Master Secret Key: Trapdoor for A
 Define $F_v = [A | \Sigma y_i A_i]$

$$\left\{ \begin{array}{c} A \\ \end{array} \\ \Sigma y_i A_i \end{array} \right\} \left[\begin{array}{c} e_y \\ e_y \end{array} \right] = \begin{array}{c} u \\ key \end{array} \right] u mod q$$

Encryption for vector $\mathbf{x} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4)$:

Generalizing to Inner Product (AFV11) Encryption for vector $x = (x_1 x_2 x_3 x_4)$:

- Pick random vector s
- $C = u^T s + noise + msg$
- $C' = A^T s + noise$

Generalizing to Inner Product (AFV11) Encryption for vector $x = (x_1 x_2 x_3 x_4)$:

- Pick random vector s
- $C = u^T s + noise + msg$
- $C' = A^T s + noise$

Set $C_i = (A_i + x_i G)^T s + noise$

Generalizing to Inner Product (AFV11) Encryption for vector $\mathbf{x} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4)$: * Pick random vector s

 $C = u^T s + noise + msg$

 $C' = A^T s + noise$

Ciphertext Hides Attributes x_i

Set $C_i = (A_i + x_i G)^T s + noise$

$$C_i = (A_i + x_i G)^T s + noise$$

- $C_i = (A_i + x_i G)^T s + noise$
- $C' = A^T s + noise$

$$C_{i} = (A_{i} + x_{i} G)^{T} s + noise$$

C' = A^T s + noise

$$A \neq \Sigma y_i A_i e_y \equiv u \mod q$$

Set
$$C_y = \Sigma y_i C_i$$

= $(\Sigma y_i A_i + \Sigma y_i x_i G)^T s + \Sigma y_i noise$
Generalizing to Inner Product (AFV11)

Decryption (CT_x, SK_y) :

$$C_i = (A_i + x_i G)^T s + noise$$

C' = A^T s + noise

$$\left\{ A \quad \left\{ \Sigma y_i A_i \right\} \quad e_y \quad \equiv \quad u \mod q \right\}$$

Set
$$C_y = \Sigma y_i C_i$$

= $(\Sigma y_i A_i + \Sigma y_i G)^T s + \Sigma y_i$ noise

Generalizing to Inner Product (AFV11)

Decryption (CT_x, SK_y) :

$$C_i = (A_i + x_i G)^T s + noise$$

 $C' = A^T s + noise$

$$\left\{ \begin{array}{c} A \\ \end{array} \\ \end{array} \\ \left\{ \begin{array}{c} \Sigma y_i A_i \\ \end{array} \right\} \\ e_y \\$$

Set
$$C_y = \Sigma y_i C_i$$

= $(\Sigma y_i A_i + \Sigma y_i G)^T s + \Sigma y_i$ noise
 $C' | C_y] = [A | \Sigma y_i A_i]^T s + noise$

Generalizing to Inner Product (AFV11)

Decryption (CT_x, SK_y) :

$$C_i = (A_i + x_i G)^T s + noise$$

 $C' = A^T s + noise$

$$\left\{ \begin{array}{c} A \\ \end{array} \\ \end{array} \\ \left\{ \begin{array}{c} \Sigma y_i A_i \\ \end{array} \right\} \\ \begin{array}{c} e_y \\ \end{array} \\ \end{array} \\ \end{array} \\ = \\ \begin{array}{c} u \\ \end{array} \\ \begin{array}{c} mod \\ u \\ \end{array} \\ \end{array} \\ \begin{array}{c} mod \\ q \\ \end{array} \\ \end{array}$$

Set
$$C_y = \Sigma y_i C_i$$

$$= (\Sigma y_i A_i + \Sigma) (G)^T S + \Sigma y_i \text{ noise}$$

$$[C'IC_y] = [A | \Sigma y_i A_i]^T S + \text{ noise}$$
But this is what we have the key for !
Perform Regev Decryption.

Generalizing to circuits (BGG+14)

Recall Ciphertext Structure

Recall Ciphertext Structure Encryption for vector $x = (x_1 x_2 x_3 x_4)$: Recall Ciphertext Structure Encryption for vector $\mathbf{x} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4)$: $C = u^T s + noise + msg, C' = A^Ts + noise$ Recall Ciphertext Structure Encryption for vector $\mathbf{x} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4)$: $C = \mathbf{u}^T \mathbf{s} + \text{noise} + \text{msg}, \ C' = A^T \mathbf{s} + \text{noise}$ $C_i = (A_i + \mathbf{x}_i \ G)^T \mathbf{s} + \text{noise}$ Recall Ciphertext Structure Encryption for vector $\mathbf{x} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4)$: $C = u^T s + noise + msg, C' = A^Ts + noise$ $C_i = (A_i + x_i \ G)^T s + noise$

Previously: Could evaluate on CT to obtain

Recall Ciphertext Structure Encryption for vector $\mathbf{x} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4)$: $C = \mathbf{u}^T \mathbf{s} + \text{noise} + \text{msg}, \ C' = A^T \mathbf{s} + \text{noise}$ $C_i = (A_i + \mathbf{x}_i \ \mathbf{G})^T \mathbf{s} + \text{noise}$

Previously: Could evaluate on CT to obtain

 $C_{<x, y>} = (A_y + <x, y>G)^T s + noise$

Recall Ciphertext Structure Encryption for vector $\mathbf{x} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4)$: $C = u^T s + noise + msg, C' = A^Ts + noise$ $C_i = (A_i + \mathbf{x}_i \ \mathbf{G})^T s + noise$

Previously: Could evaluate on CT to obtain

 $C_{<x, y>} = (A_y + <x, y>G)^T s + noise$

When <x, y> = 0, obtain CT that encodes f alone, Keygen may compute matching key Recall Ciphertext Structure Encryption for vector $\mathbf{x} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4)$: $C = u^T s + noise + msg, C' = A^Ts + noise$ $C_i = (A_i + \mathbf{x}_i \ G)^T s + noise$

Previously: Could evaluate on CT to obtain

 $C_{<x, y>} = (A_y + <x, y>G)^T s + noise$

When <x, y> = 0, obtain CT that encodes f alone, Keygen may compute matching key

Generalize to arbitrary f?

Recall Ciphertext Structure Encryption for vector $\mathbf{x} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4)$: $C = \mathbf{u}^T \mathbf{s} + \text{noise} + \text{msg}, \ C' = A^T \mathbf{s} + \text{noise}$ $C_i = (A_i + \mathbf{x}_i \ G)^T \mathbf{s} + \text{noise}$

Previously: Could evaluate on CT to obtain

 $C_{<x, y>} = (A_y + <x, y>G)^T s + noise$

When <x, y> = 0, obtain CT that encodes f alone, Keygen may compute matching key

Generalize to arbitrary f?

 $C_{f(x)} = (A_f + f(x) G)^T s + noise$

 $C_1 = (A_1 + x_1 G)^T s + noise$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$ Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$ Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$ Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

 $(A_1 + x_1 G)$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$ Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

 $(A_1 + x_1 G)$ $(A_2 + x_2 G)$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$ Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

 $(A_1 + x_1 G) G^{-1} (-A_2)$ $(A_2 + x_2 G)$

Recall $G G^{-1}(A) = A$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$

Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

 $(A_1 + x_1 G) G^{-1} (-A_2)$ $(A_2 + x_2 G)$

Recall $G G^{-1}(A) = A$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$

Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

 $(A_1 + x_1 G) G^{-1} (-A_2)$ $(A_2 + x_2 G) (x_1)$

Recall $G G^{-1}(A) = A$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$

Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

 $(A_1 + x_1 G) G^{-1} (-A_2) = (A_1 G^{-1} (-A_2) - x_1 A_2)$ $(A_2 + x_2 G) (x_1)$

Recall $G G^{-1}(A) = A$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$

Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

 $(A_1 + x_1 G) G^{-1} (-A_2) = (A_1 G^{-1} (-A_2) - x_1 A_2)$ $(A_2 + x_2 G) (x_1) = (x_1 A_2 + x_1 x_2 G)$

Recall $G G^{-1}(A) = A$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$

Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

+ $(A_1 + x_1 G) G^{-1} (-A_2) = (A_1 G^{-1} (-A_2) - x_1 A_2)$ + $(A_2 + x_2 G) (x_1) = (x_1 A_2 + x_1 x_2 G)$

Recall $G G^{-1}(A) = A$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$

Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

+ $(A_1 + x_1 G) G^{-1} (-A_2) = (A_1 G^{-1} (-A_2) - x_2 A_2)$ (A₂ + x₂ G) (x₁) = $(x_1 X_2 + x_1 X_2 G)$

Recall $G G^{-1}(A) = A$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$

Want $C_{x1 x2} = (A_{12} + x_1 x_2 G)^T s + noise$

Key Observation: x may be used in evaluation !

+
$$(A_1 + x_1 G) G^{-1} (-A_2) = (A_1 G^{-1} (-A_2) - x_2 A_2)$$

 $(A_2 + x_2 G) (x_1) = (x_1 X_2 + x_1 x_2 G)$
 $= (A_{12} + x_1 x_2 G)$

 $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$

Handling Multiplication [BGG+14] Let $R = G^{-1}(-A_2)$ $C_1 = (A_1 + x_1 G)^T s + noise$ $C_2 = (A_2 + x_2 G)^T s + noise$

G⁻¹ (-A₂) and x₁ are small and do not affect noise !

Handling Multiplication [BGG+14]
Let
$$\mathbf{R} = \mathbf{G}^{-1} (-\mathbf{A}_2)$$

 $C_1 = (\mathbf{A}_1 + \mathbf{x}_1 \mathbf{G})^T \mathbf{s} + \text{noise}$ $C_2 = (\mathbf{A}_2 + \mathbf{x}_2 \mathbf{G})^T \mathbf{s} + \text{noise}$
Then $C_{\mathbf{x}1 \mathbf{x}2} = \mathbf{R}^T \mathbf{C}_1 + \mathbf{x}_1 \mathbf{C}_2$
 $= (\mathbf{A}_{12} + \mathbf{x}_1 \mathbf{x}_2 \mathbf{G})^T \mathbf{s} + \text{noise}$
 $\mathbf{A}_{12} = \mathbf{A}_1 \mathbf{G}^{-1} (-\mathbf{A}_2)$

G⁻¹ (-A₂) and x₁ are small and do not affect noise !

Also have $C = u^T s + noise + msg$, $C' = A^T s + noise$

Handling Multiplication [BGG+14]
Let
$$\mathbf{R} = \mathbf{G}^{-1} (-\mathbf{A}_2)$$

 $C_1 = (\mathbf{A}_1 + \mathbf{x}_1 \mathbf{G})^T \mathbf{s} + \text{noise}$ $C_2 = (\mathbf{A}_2 + \mathbf{x}_2 \mathbf{G})^T \mathbf{s} + \text{noise}$
Then $C_{\mathbf{x}1 \mathbf{x}2} = \mathbf{R}^T \mathbf{C}_1 + \mathbf{x}_1 \mathbf{C}_2$
 $= (\mathbf{A}_{12} + \mathbf{x}_1 \mathbf{x}_2 \mathbf{G})^T \mathbf{s} + \text{noise}$
 $\mathbf{A}_{12} = \mathbf{A}_1 \mathbf{G}^{-1} (-\mathbf{A}_2)$

G⁻¹ (-A₂) and x₁ are small and do not affect noise !

Also have $C = u^T s + noise + msg$, $C' = A^T s + noise$ If $x_1x_2 = 0$, then C' | $C_{x1 x2} = [A | A_{12}]^T s + noise$
If $x_1x_2 = 0$, then C' | $C_{x1 x2} = [A | A_{12}]^T s + noise$

If $x_1x_2 = 0$, then C' | $C_{x1 x2} = [A | A_{12}]^T s + noise$

Key
$$\left\{ \begin{array}{c} A \end{array} \right\} A_{12} \left\{ \begin{array}{c} e_{12} \end{array} \right\} = \left[\begin{array}{c} u \end{array} \right] \mod q$$

If $x_1x_2 = 0$, then C' | $C_{x1 x2} = [A | A_{12}]^T s + noise$

Key
$$\left\{ A \right\} A_{12} = u \mod q$$

Perform Regev Decryption

If $x_1x_2 = 0$, then C' | $C_{x1 x2} = [A | A_{12}]^T s + noise$

Key
$$\left\{ A \right\} A_{12} = u \mod q$$

Perform Regev Decryption

 $(e_{12})^{T}[C' | C_{x1 x2}] = (e_{12})^{T}[A | A_{12}]^{T}s + (e_{12})^{T}noise = u^{T}s + noise$

If $x_1x_2 = 0$, then C' | $C_{x1 x2} = [A | A_{12}]^T s + noise$

Key
$$\left\{ \begin{array}{c} A \end{array} \right\} \left\{ \begin{array}{c} A_{12} \end{array} \right\} \left\{ \begin{array}{c} e_{12} \end{array} \right\} = \left[\begin{array}{c} u \end{array} \right] mod q$$

Perform Regev Decryption

 $C = u^T s + noise + msg$

 $(e_{12})^{T}[C' | C_{x1 x2}] = (e_{12})^{T}[A | A_{12}]^{T}s + (e_{12})^{T}noise = u^{T}s + noise$

If $x_1x_2 = 0$, then C' | $C_{x1 x2} = [A | A_{12}]^T s + noise$

Key
$$\left\{ A \right\} A_{12} = u \mod q$$

Perform Regev Decryption

 $C = u^T s + noise + msg$

 $(e_{12})^{T}[C' | C_{x1 x2}] = (e_{12})^{T}[A | A_{12}]^{T}s + (e_{12})^{T}noise = u^{T}s + noise$

If $x_1x_2 = 0$, then C' | $C_{x1 x2} = [A | A_{12}]^T s + noise$

Key
$$\left\{ A \right\} A_{12} = u \mod q$$

Perform Regev Decryption

 $C = u^T s + noise + msg$

 $(e_{12})^{T}[C' | C_{x1 x2}] = (e_{12})^{T}[A | A_{12}]^{T}s + (e_{12})^{T}noise = u^{T}s + noise$

= noise + msg

There exist "small" $\widehat{\mathbf{H}}_{f,\mathbf{x}}$, \mathbf{H}_{f} such that:

$$[\mathbf{A}_1 - x_1\mathbf{G} | \dots | \mathbf{A}_n - x_n\mathbf{G}] \widehat{\mathbf{H}}_{f,\mathbf{x}} = [\mathbf{A}_1 | \dots | \mathbf{A}_n] \mathbf{H}_f - f(\mathbf{x}) \mathbf{G}$$

There exist "small" $\widehat{\mathbf{H}}_{f,\mathbf{x}}$, \mathbf{H}_{f} such that:

$$[\mathbf{A}_1 - x_1\mathbf{G} | \dots | \mathbf{A}_n - x_n\mathbf{G}] \widehat{\mathbf{H}}_{f,\mathbf{x}} = [\mathbf{A}_1 | \dots | \mathbf{A}_n] \mathbf{H}_f - f(\mathbf{x}) \mathbf{G}$$

 A_{f}

There exist "small"
$$\widehat{\mathbf{H}}_{f,\mathbf{x}}$$
, \mathbf{H}_{f} such that:

$$[\mathbf{A}_1 - x_1\mathbf{G} | \dots | \mathbf{A}_n - x_n\mathbf{G}] \widehat{\mathbf{H}}_{f,\mathbf{x}} = [\mathbf{A}_1 | \dots | \mathbf{A}_n] \mathbf{H}_f - f(\mathbf{x}) \mathbf{G}$$

Recall $C_i = (A_i + x_i G)^T s + noise$

 A_{f}

There exist "small"
$$\widehat{\mathbf{H}}_{f,\mathbf{x}}$$
, \mathbf{H}_{f} such that:

$$[\mathbf{A}_1 - x_1\mathbf{G} | \dots | \mathbf{A}_n - x_n\mathbf{G}] \widehat{\mathbf{H}}_{f,\mathbf{x}} = [\mathbf{A}_1 | \dots | \mathbf{A}_n] \mathbf{H}_f - f(\mathbf{x}) \mathbf{G}$$

Recall $C_i = (A_i + x_i G)^T s + noise$

LHS implies that

 A_{f}

There exist "small"
$$\widehat{\mathbf{H}}_{f,\mathbf{x}}$$
, \mathbf{H}_{f} such that:

$$[\mathbf{A}_1 - x_1\mathbf{G} | \dots | \mathbf{A}_n - x_n\mathbf{G}] \widehat{\mathbf{H}}_{f,\mathbf{x}} = [\mathbf{A}_1 | \dots | \mathbf{A}_n] \mathbf{H}_f - f(\mathbf{x}) \mathbf{G}$$

Recall $C_i = (A_i + x_i G)^T s + noise$

LHS implies that

$$\mathsf{A}_{\mathsf{f}}$$

 $\widehat{\mathbf{H}}_{f,\mathbf{x}}^T [\mathbf{C}_1 | \dots | \mathbf{C}_n] = [\mathbf{A}_f - f(\mathbf{x}) \mathbf{G}]^T \mathbf{s} + \mathbf{noise}$

There exist "small"
$$\widehat{\mathbf{H}}_{f,\mathbf{x}}$$
, \mathbf{H}_{f} such that:

$$[\mathbf{A}_1 - x_1\mathbf{G} | \dots | \mathbf{A}_n - x_n\mathbf{G}] \widehat{\mathbf{H}}_{f,\mathbf{x}} = [\mathbf{A}_1 | \dots | \mathbf{A}_n] \mathbf{H}_f - f(\mathbf{x}) \mathbf{G}$$

Recall $C_i = (A_i + x_i G)^T s + noise$

LHS implies that

$$A_{f}$$

 $\widehat{\mathbf{H}}_{f,\mathbf{x}}^T [\mathbf{C}_1 | \dots | \mathbf{C}_n] = [\mathbf{A}_f - f(\mathbf{x}) \mathbf{G}]^T \mathbf{s} + \mathbf{noise}$

Keygen provides $A \downarrow A_f = u \mod q$

There exist "small"
$$\widehat{\mathbf{H}}_{f,\mathbf{x}}$$
, \mathbf{H}_{f} such that:

$$[\mathbf{A}_1 - x_1\mathbf{G} | \dots | \mathbf{A}_n - x_n\mathbf{G}] \widehat{\mathbf{H}}_{f,\mathbf{x}} = [\mathbf{A}_1 | \dots | \mathbf{A}_n] \mathbf{H}_f - f(\mathbf{x}) \mathbf{G}$$

Recall $C_i = (A_i + x_i G)^T s + noise$

LHS implies that

 A_{f}

 $\widehat{\mathbf{H}}_{f,\mathbf{x}}^T [\mathbf{C}_1 | \dots | \mathbf{C}_n] = [\mathbf{A}_f - f(\mathbf{x}) \mathbf{G}]^T \mathbf{s} + \mathbf{noise}$

Keygen provides $A + A_f = u \mod q$

Perform Regev Decryption as usual

Attribute based Encryption (ABE) [SW05]

Security Definition

Attacker wins if | Pr[b=b'] - 1/2 | is non-negligible

Security: Challenges

- •Challenger needs to be able to answer private key queries of Adversary: much more complex!
- Challenger can't have master trapdoor(Trapdoor for A)
- Must embed LWE challenge into challenge ciphertext

• Let x* be challenge attributes.

• Let x* be challenge attributes.

- Let x* be challenge attributes.
- As before, set $A_i = [AR_i x_i^* G]$

- Let x* be challenge attributes.
- As before, set $A_i = [AR_i x_i^* G]$

- Let x* be challenge attributes.
- As before, set $A_i = [AR_i x_i^* G]$
- $C_i = (A_i + x_i G)^T s + noise = (AR_i + (x_i x_i^*)G)^T s + noise$

- Let x* be challenge attributes.
- As before, set $A_i = [AR_i x_i^* G]$
- $C_i = (A_i + x_i G)^T s + noise = (AR_i + (x_i x_i^*)G)^T s + noise$

- Let x* be challenge attributes.
- As before, set $A_i = [AR_i x_i^* G]$
- $C_i = (A_i + x_i G)^T s + noise = (AR_i + (x_i x_i^*)G)^T s + noise$
- When $x = x^*$, challenge CT becomes $(AR_i)^T s + noise$

- Let x* be challenge attributes.
- As before, set $A_i = [AR_i x_i^* G]$
- $C_i = (A_i + x_i G)^T s + noise = (AR_i + (x_i x_i^*)G)^T s + noise$
- When $x = x^*$, challenge CT becomes $(AR_i)^T s + noise$

- Let x* be challenge attributes.
- As before, set $A_i = [AR_i x_i^* G]$
- $C_i = (A_i + x_i G)^T s + noise = (AR_i + (x_i x_i^*)G)^T s + noise$
- When $x = x^*$, challenge CT becomes $(AR_i)^T s + noise$
- Can be computed from LWE challenge

- Let x* be challenge attributes.
- As before, set $A_i = [AR_i x_i^* G]$
- $C_i = (A_i + x_i G)^T s + noise = (AR_i + (x_i x_i^*)G)^T s + noise$
- When $x = x^*$, challenge CT becomes $(AR_i)^T s + noise$
- Can be computed from LWE challenge

Strategy: Key Queries

Strategy: Key Queries

• Let x^* be challenge attributes, set $A_i = [AR_i - x_i^* G]$
• Let x^* be challenge attributes, set $A_i = [AR_i - x_i^* G]$

- Let x^* be challenge attributes, set $A_i = [AR_i x_i^* G]$
- Can show $A_f = [AR_f f(x^*)G]$ for "small" R_f

- Let x^* be challenge attributes, set $A_i = [AR_i x_i^* G]$
- Can show $A_f = [AR_f f(x^*)G]$ for "small" R_f

- Let x^* be challenge attributes, set $A_i = [AR_i x_i^* G]$
- Can show $A_f = [AR_f f(x^*)G]$ for "small" R_f

• Recall key
$$\left\{ A \mid A_{f} \right\} e_{f} \equiv u \mod q$$

- Let x^* be challenge attributes, set $A_i = [AR_i x_i^* G]$
- Can show $A_f = [AR_f f(x^*)G]$ for "small" R_f

• Recall key
$$\left\{ A \mid A_{f} \right\} e_{f} \equiv u \mod q$$

- Let x^* be challenge attributes, set $A_i = [AR_i x_i^* G]$
- Can show $A_f = [AR_f f(x^*)G]$ for "small" R_f

• Recall key
$$\left\{ A \mid A_{f} \right\} e_{f} \equiv u \mod q$$

- Let x^* be challenge attributes, set $A_i = [AR_i x_i^* G]$
- Can show $A_f = [AR_f f(x^*)G]$ for "small" R_f

• Recall key
$$\left\{ \begin{array}{c} A \\ \end{array} \\ A \\ \end{array} \\ \left\{ \begin{array}{c} A_f \\ \end{array} \right\} \\ e_f \\$$

• Need TD for $[A | A_f]$ when $f(x^*)$ not 0.

- Let x^* be challenge attributes, set $A_i = [AR_i x_i^* G]$
- Can show $A_f = [AR_f f(x^*)G]$ for "small" R_f

• Recall key
$$\left\{ \begin{array}{c} A \\ \end{array} \\ A \\ \end{array} \\ \left\{ \begin{array}{c} A_f \\ \end{array} \right\} \\ e_f \\$$

• Need TD for $[A | A_f]$ when $f(x^*)$ not 0.

- Let x^* be challenge attributes, set $A_i = [AR_i x_i^* G]$
- Can show $A_f = [AR_f f(x^*)G]$ for "small" R_f

• Recall key
$$\left\{ \begin{array}{c} A \\ \end{array} \\ A \\ \end{array} \\ \left\{ \begin{array}{c} A_f \\ \end{array} \right\} \\ e_f \\$$

- Need TD for $[A | A_f]$ when $f(x^*)$ not 0.
- Follows from MP12

- Let x^* be challenge attributes, set $A_i = [AR_i x_i^* G]$
- Can show $A_f = [AR_f f(x^*)G]$ for "small" R_f

• Recall key
$$\left\{ \begin{array}{c} A \\ \end{array} \\ A \\ \end{array} \\ \left\{ \begin{array}{c} A_f \\ \end{array} \right\} \\ e_f \\$$

- Need TD for $[A | A_f]$ when $f(x^*)$ not 0.
- Follows from MP12

- Need TD for [A | A_f] when f(x^{*}) \neq 0.
- $A_f = [AR_f f(x^*)G]$. Let $H = f(x^*)$.
- Recall

• Ciphertext Policy ABE

Ciphertext Policy ABE
Better parameters: Avoid subexp modulus to noise ratio

- Ciphertext Policy ABE
- Better parameters: Avoid subexp modulus to noise ratio
- Support uniform models of computation

- Ciphertext Policy ABE
- Better parameters: Avoid subexp modulus to noise ratio
- Support uniform models of computation
 - Partial progress in SK setting [AMY19]

- Ciphertext Policy ABE
- Better parameters: Avoid subexp modulus to noise ratio
- Support uniform models of computation
 - Partial progress in SK setting [AMY19]
 - PK setting? Turing machines?

- Ciphertext Policy ABE
- Better parameters: Avoid subexp modulus to noise ratio
- Support uniform models of computation
 - Partial progress in SK setting [AMY19]
 - PK setting? Turing machines?
- Adaptive Security

- Ciphertext Policy ABE
- Better parameters: Avoid subexp modulus to noise ratio
- Support uniform models of computation
 - Partial progress in SK setting [AMY19]
 - PK setting? Turing machines?
- Adaptive Security
- Broadcast Encryption

- Ciphertext Policy ABE
- Better parameters: Avoid subexp modulus to noise ratio
- Support uniform models of computation
 - Partial progress in SK setting [AMY19]
 - PK setting? Turing machines?
- Adaptive Security
- Broadcast Encryption
 - AY20 uses pairings and LWE, remove pairings?

- Ciphertext Policy ABE
- Better parameters: Avoid subexp modulus to noise ratio
- Support uniform models of computation
 - Partial progress in SK setting [AMY19]
 - PK setting? Turing machines?
- Adaptive Security
- Broadcast Encryption
 - AY20 uses pairings and LWE, remove pairings?

Thank You!

Image Credits : Hans Hoffman, Jackson Pollock