Using Lattices for
Cryptanalysis

Nadia Heninger
ucsD

January 23, 2020

Talk outline: Breaking classical crypto with lattices

1.

2.

3.

Knapsacks
NTRU
Univariate Coppersmith: small solutions of polynomials

modulo integers
® Breaking RSA with bad padding

. Howgrave-Graham: solutions modulo divisors

® RSA partial key recovery

Multivariate extensions

® RSA short secret exponent
* Approx-GCD

. Hidden number problem

® Breaking (EC)DSA

Warm-up 1: Solving knapsack problems with lattices

[Lagarias Odlyzko 1984]
Input: Integers a4,...,ap, target integer T.

Desired solution: z; € {0,1} suchthat) ;a;z; =T

Warm-up 1: Solving knapsack problems with lattices
[Lagarias Odlyzko 1984]
Input: Integers a4,...,ap, target integer T.

Desired solution: z; € {0,1} suchthat) ;a;z; =T

Generate lattice basis

1 —a,
1 —a>

1 —a,
-

A solution), z;a; = T corresponds to a vector

Vv, = (21,22,...,0)

e We know |v,| < /n.

e |f the o; are large and random, then can use density
argument to show that |v,| is likely shortest vector.

A few practical notes

Knapsack problem: Find z; € {0,1} suchthat >, a;z, =T

w —a,
w —ay

W —Qp
T

e We can use weights w to try to “force” the z; to be small.

¢ |In the 80s when the original papers were written, they
stopped at “we hope LLL will find the shortest vector”.

¢ Solvable dimensions were small enough that LLL usually
found the shortest vector in practice. Not true anymore.

Practical note; Current feasible lattice reduction

e LLL: In practice on random lattices, get approximation
factor of (1.02)4™t [Nguyen Stehle]
® 12-2019: “We were able to reduce matrices of dimension
4096 with 6675-bit integers in 4 days” [Kirchner Espitau
Fouque 2019]
* Implementation doesn't seem to be public.

e BKZ/enumeration:

e 2017: 250-dimensional reduced basis, pruned
enumeration (from latticechallenge.org) [Aono Nguyen
2017]

fpLLL [Albrecht Bai Ducas Stehle Stevens Walter et al.] best
open source implementation for LLL/BKZ

Finding small solutions to linear equations
Knapsack problem: Find z; € {0,1} such that > ,0;z, — T =0

1 —01-
1 —dady

1 —ay
T

e We are asking for a particularly “short” integer solution
to a linear equation.

¢ Finding an integer solution to the relation is trivial:
1. If ng((J,‘7 Gj) =1
2. Then ¢ia; + 0, = 1for ¢q,¢; € Z.
3. Tcia; + Te,a; — T = 0'is an integer solution.

¢ In practice, lattice algorithms are good at finding
solutions we don't want!

Warm-up 2: Lattice attacks on NTRU

[Coppersmith Shamir 1997]

Private Key Public Key
f:8 € Ry = ZqlX]/(x" + 1) h=gf
fi.8i € (—1,0,1)

fO) =foorX" -+ fix + fo
gX) =g X"+ gix+ &

Key recovery problem: Given h, find f, g such that fh = g.

Warm-up 2: Lattice attacks on NTRU

[Coppersmith Shamir 1997]

Private Key Public Key
f:8 € Ry = ZqlX]/(x" + 1) h=gf
fi.8i € (—1,0,1)

fO) =foorX" -+ fix + fo
gX) =g X"+ gix+ &

Key recovery problem: Given h, find f, g such that fh = g.
Let My, be the matrix representing multiplication by h. Then
(fos- -+ fn—1)Mp mod q = (8o, - - - ,8n—1)

If we construct the lattice basis

qln

then (fo,f1,.--,fn-1,80,81,---,8n_1) iS @ vector in this lattice.

Lattices as a cryptanalytic tool

Many cryptanalysis problems can be formulated either as:

¢ Find a small solution to some polynomial/system of
equations subject to some constraints, or

¢ Find a polynomial with small coefficients

Often these approaches are dual.

Manipulating polynomials with lattices

We have already seen a couple of representations of
elements of polynomial rings (and friends):

fOX) =fooax" N+ foaX" 2 4+ fix + fo

Coefficient embedding: Evaluation embedding:

(fa=1:fn—2,---f1./o0) (f(20).f(21), - f(2n-2),f(2n-1))

Manipulating polynomials with lattices

We have already seen a couple of representations of
elements of polynomial rings (and friends):

fOX) =fooax" N+ foaX" 2 4+ fix + fo

Coefficient embedding: Evaluation embedding:

(fa=1:fn—2,---f1./o0) (f(20).f(21), - f(2n-2),f(2n-1))

Both homomorphic under addition, so lattice preserves
additive structure.

Lattices introduce new geometric structure (e.g. £, norms).

Lattice algorithms give us geometric guarantees, which
often do not map exactly onto algebraic structure of crypto
problems.

Coppersmith’'s method for univariate polynomials
[Coppersmith 96]

Theorem (Coppersmith)

Given a polynomial f of degree d and N, we can in polynomial
time find all integer roots r; satisfying

f(ri) =0 mod N

when |rj] < N/¢,

Why is this an interesting theorem?

1. A general method to solve polynomials mod N would
break RSA: If cis a ciphertext,

x¢ —c=0mod N
has a root x = m for m our original message.

2. There is an efficient algorithm to solve equations mod
primes.

® For a composite, factor into primes, solve mod each
prime, and use Chinese remainder theorem to lift
solution mod N.

3. By accepting a bound on solution size, Coppersmith’s
method lets us solve equations without factoring N.

Coppersmith's Algorithm Outline

Input: polynomial f, modulus N.
Output: small roots r modulo N with |r| < R

We will construct a new polynomial Q(x) so that

Q(r)=0 over the integers.

Coppersmith's Algorithm Outline
Input: polynomial f, modulus N.
Output: small roots r modulo N with |r| <R
We will construct a new polynomial Q(x) so that

Q(r)=0 over the integers.

1. Ensure Q(r) = 0 mod N by construction.
f(r) =0 mod N and N =0 mod N so any polynomial
combination is as well. If
Q) = s(X)f (x) + tx)N
with s(x), t(x) € Z[x], then by construction
Q(r)=0mod N

Coppersmith's Algorithm Outline

Input: polynomial f, modulus N.
Output: small roots r modulo N with |r| < R

We will construct a new polynomial Q(x) so that
Q(r)=0 over the integers.
1. Ensure Q(r) = 0 mod N by construction.
2. Find such a Q with |Q(r)| < N.

1Q(N)| = 1Qur? + Qu_1r®" + -+ Qir + Qo|
< |QalRY + |Qg_1|R*™" + -+ + Q1R+ |Qo]

Coppersmith's Algorithm Outline

Input: polynomial f, modulus N.
Output: small roots r modulo N with |r| < R

We will construct a new polynomial Q(x) so that
Q(r)=0 over the integers.
1. Ensure Q(r) = 0 mod N by construction.
2. Find such a Q with |Q(r)| < N.

1Q(N)| = 1Qur? + Qu_1r®" + -+ Qir + Qo|
< |QalRY + |Qg_1|R*™" + -+ + Q1R+ |Qo]

3. Compute integer roots of Q and output all small ones.

Concrete example of manipulating polynomials

Input: f(x) = x3 + fox? + fix + foN
Output: Q(x) € (f(x), N) over Z[x].

If we only care about polynomials Q of degree 3, then
Q(x) = caf(x) + ©aNx? + c1Nx + ¢oN

with ¢3, ¢, ¢, ¢ € Z.

g (¢ + fLX* + fix + fo)

> Nx?2

C1 Nx

Co N
Q3x3 + Qx* + Qix + Qo

++ +

Concrete example of manipulating polynomials

Input: f(x) = x3 + fox? + fix + foN
Output: Q(x) € (f(x),N) over Z[x].

If we only care about polynomials Q of degree 3, then
Q(x) = caf(x) + caNx? + ciNx + coN
with ¢3, ¢, ¢, ¢ € Z.
Coefficient embedding lattice basis:
1T 2 f fo
N

N
N

Then (Qs, Q2,Q1, Qo) is a vector in this lattice.

Concrete example of manipulating polynomials

Input: f(x) = x3 + fox? + fix + foN
Output: Q(x) € (f(x), N) over Z[x].

If we only care about polynomials Q of degree 3, then
Q(x) = caf (x) + c2Nx? + c1Nx + coN
with ¢3, ¢, ¢, ¢ € Z.

We wanted to bound |Q3|R3 + |Q,|R? + |Q1|R + |Qo| < N.
Rescale lattice basis for convenience.

R® LR fiR fo
NR2
NR
N

We want a vector in this lattice with small ¢, norm.

Coppersmith’'s method outline

Input: f(x) € Z[x], N € Z. Output: r s.t. f(r) = 0 mod N.
Intermediate output: Q(x) such that Q(r) = 0 over Z.

1.

2.

Q(x) € (f(x),N) so Q(r) = 0 mod N by construction.

Construct lattice of scaled coefficient embedding of
suitable polynomials.

. Find short vector in lattice. If we use LLL, we want

vy < Vnlv|p <2007/ 4det 1/ dimb <

. Factor polynomial corresponding to short vector to find

integer roots.

Achieving the Coppersmith bound r < N'/@
1. Generate lattice from subset of (f(x), N)X.

2. Be clever about which of these polynomials you include
in your lattice basis.

3. Allow higher degree polynomials.

¢ Interesting fact: The exponential approximation factor
of LLL only results in a constant factor loss in the root
size.

Achieving the Coppersmith bound r < N'/@
1. Generate lattice from subset of (f(x), N)X.

2. Be clever about which of these polynomials you include
in your lattice basis.

3. Allow higher degree polynomials.

¢ Interesting fact: The exponential approximation factor
of LLL only results in a constant factor loss in the root
size.

Theorem (CHHS 2016)

It is not possible to solve for r > N'/¢ with any method that
constructs auxiliary polynomial Q(x) that preserves algebraic
roots.

Open problem: Eliminate other classes of approaches.

Open problem: General systematic description of which
polynomials to include in basis.

Application: Breaking Textbook RSA

[Rivest Shamir Adleman 1977]

Public Key Private Key
N = pg modulus p,q primes
e encryption d decryption exponent
exponent (d=e"mod (p—1)g—1))
Encryption

public key = (N, e)

ciphertext = message® mod N

[\
7

/

message = ciphertextd mod N

What's wrong with this RSA example?

message = Integer(’squeamishossifrage’,base=35)
N = random_prime(2°512)*random_prime(2°512)
c = message”™3 % N

What's wrong with this RSA example?

message = Integer(’squeamishossifrage’,base=35)
N = random_prime(2°512)*random_prime(2°512)
c = message”3 % N

sage: Integer(c~(1/3)).str(base=35)
’squeamishossifrage’

What's wrong with this RSA example?

message = Integer(’squeamishossifrage’,base=35)
N = random_prime(2°512)*random_prime(2°512)
c = message”™3 % N

sage: Integer(c~(1/3)) .str(base=35)
’squeamishossifrage’

The message is too small.

This is why we use padding.

N = random_prime(2~150)*random_prime(2~150)
message = Integer(’thepasswordfortodayisswordfish’,base=35)
c = message~™3 % N

N = random_prime(2~150)*random_prime (2~150)
message = Integer(’thepasswordfortodayisswordfish’,base=35)
c = message™3 % N

sage: int(c~(1/3))==message
False

N = random_prime(2~150)*random_prime(2~150)
message = Integer(’thepasswordfortodayisswordfish’,base=35)
c = message™3 % N

This is a stereotyped message. We might be
able to guess the format.

N = random_prime(2~150)*random_prime(2~150)
message = Integer(’thepasswordfortodayisswordfish’,base=35)
c = message~™3 % N

a = Integer(’thepasswordfortodayis000000000° ,base=35)

N = random_prime(2~150)*random_prime(2~150)
message = Integer(’thepasswordfortodayisswordfish’,base=35)
c = message~™3 % N

a = Integer(’thepasswordfortodayis000000000° ,base=35)
X = Integer (’xxxxxxxxx’,base=35)
M = matrix([[X~3, 3*X"2*a, 3*X*a~2, a~3-c],

[0,N*X~2,0,0], [0,0,N*X,0], [0,0,0,N]])

N = random_prime(2~150)*random_prime(2~150)
message = Integer(’thepasswordfortodayisswordfish’,base=35)
c = message~™3 % N

a = Integer(’thepasswordfortodayis000000000° ,base=35)

X = Integer (’xxxxxxxxx’,base=35)

M = matrix([[X~3, 3*X"2*a, 3*X*a~2, a~3-c],
[0,N*X"~2,0,0], [0,0,N*X,0],[0,0,0,N]])

B = M.LLL(Q)

B[0] [0]*x~3/X~3+B[0] [1]*x~2/X~2+B[0] [2] *x/X+B[0] [3]

o
]

N = random_prime(2~150)*random_prime(2~150)
message = Integer(’thepasswordfortodayisswordfish’,base=35)
c = message~™3 % N

a = Integer(’thepasswordfortodayis000000000° ,base=35)

X = Integer (’xxxxxxxxx’,base=35)

M = matrix([[X~3, 3*X"2*a, 3*X*a~2, a~3-c],
[0,N*X"~2,0,0], [0,0,N*X,0],[0,0,0,N]])

B = M.LLL(Q)

Q = B[0] [0]*x~3/X~3+B[0] [1]*x~2/X~2+B[0] [2] *x/X+B[0] [3]

sage: Q.roots(ring=ZZ) [0] [0] .str(base=35)
’swordfish’

Finding solutions modulo divisors

Theorem (Howgrave-Graham)

Given degree d polynomial f, integer N, we can in polynomial
time find roots r modulo divisors B of N satisfying

f(r)=0mod B
for |B| > NP, when |r| < N#/d,
Proof.
Same as Coppersmith’s univariate method, but find a vector

in the lattice less than N° < B.
]

Application: Factoring RSA with bits known

Theorem (Coppersmith)
Given half the bits (most or least significant) of a factor p, we
can factor an RSA modulus N = pq in polynomial time.

Proof.
Let f(x) = x + a where a represents the most significant half
of bits of p and r least significant bits, so a +r = p.

We have f(r) = 0 mod p > N'/2,

Apply theorem with degreed =1and g =1/2, so
Ir| < NB*/d = N1/4,

O

random_prime(2~512); q = random_prime(2°512)
p*q

p - (p% 2°86)

random_prime(2°512); q = random_prime(2°512)
N = pxq

o
I

a=p- (p% 2°86)

sage: hex(a)
’a9759e8c9fba8c0ec3e637d1e26e7b88befeb03ac199d1190
76e3294d16ffcaef629e2937203592895b29b0ac708e79830
4330240bc000000000000000000000°

Key recovery from partial information.

>

=

random_prime(2~512); q = random_prime(2°512)
p*q

p - (p% 2°86)
2°86

matrix([[X~2, 2*X*a, a~2], [0, X, al, [0, O, N11)
M.LLL()

p = random_prime(2°512); q = random_prime(2°512)
N = p*xq

a=p- (p% 2°86)

>
I

286
matrix([[X~2, 2*X*a, a~2], [0, X, al, [0, 0, N11)
B = M.LLL()

=
]

Q = B[0] [0]1*x~2/X~2+B[0] [1]*x/X+B[0] [2]

sage: a+Q.roots(ring=7Z) [0][0] == p
True

Partial key recovery example

Input: f(x) =a+x,N
Output:r <R st f(r)=0modp, pIN, p>N'/?

1. We chose the polynomial basis (x + a)?, (x + a), N.

Partial key recovery example

Input: f(x) =a+x,N
Output:r <R st f(r)=0modp, pIN, p>N'/?

1. We chose the polynomial basis (x + a)?, (x + a), N.
2. This corresponds to a lattice basis

2 2
{R 2Ra a] S

0 R a 3
N detL = R°N

Partial key recovery example

Input: f(x) =a+x,N
Output:r <R st f(r)=0modp, pIN, p>N'/?

1. We chose the polynomial basis (x + a)?, (x + a), N.
2. This corresponds to a lattice basis

2 2
% zga C; dimL =3
N detl = R3N

3. LLL will find us a vector of size about |v| ~ det L/ dimL,

Partial key recovery example

Input: f(x) =a+x,N
Output:r <R st f(r)=0modp, pIN, p>N'/?

1. We chose the polynomial basis (x + a)?, (x + a), N.
2. This corresponds to a lattice basis

R2 2Ra o>
5 RGC; dimL =3
N detl = R3N

3. LLL will find us a vector of size about |v| ~ det L/ dimL,
4. The algorithm will find the root when we have
1Q(r)| < |v| ~ det L/ dimL < p
(R3N)1/3 < N1/2
R < N'/®

We had Igr =86 and Igp = 512.

Partial key recovery and related attacks

RSA particularly susceptible to partial key recovery attacks.

e Can factor given 1/2 bits of p. [Coppersmith 96]
e Can factor given 1/4 bits of d. [Boneh Durfee Frankel 98]

e Can factor given 1/2 bits of d mod (p — 1). [Bldmer May
03]

random_prime(2~512); q = random_prime(2~512)
N = p*xq

o)
I

random_prime (2°254)
inverse_mod(d, (p-1)*(q-1))

d is relatively small. (But not that small.)

e

>

random_prime(2~512); q = random_prime(2~512)
p*q

random_prime (2°254)
inverse_mod(d, (p-1)*(q-1))

27°764; Y = 27254
matrix([[X, exY, -1], [0, Y+x(N+1), 0], [0, O, N+111)

M.LLL(Q)

p = random_prime(2°512); q = random_prime(2°512)
N = p*xq

d = random_prime(2°254)
e = inverse_mod(d, (p-1)*(g-1))

>~
Il

27°764; Y = 27254
M = matrix([[X, exY, -1]1, [0, Yx(N+1), 0], [0, O, N+1]])

B = M.LLLQO)

sage: abs(B[0][0]/X) ==
True

Small RSA private exponent with lattices

Theorem (Wiener)
We can efficiently compute d when d < N'/4,

The RSA equation is

ed=1mod (p—1)(q—1)
ed=1+k(N-(p+q)+1)

Small RSA private exponent with lattices

Theorem (Wiener)
We can efficiently compute d when d < N'/4,

The RSA equation is

ed=1mod (p—1)(q—1)
ed=1+k(N-(p+q)+1)

Lets=p+q.
We would like to solve

ed =1—ks+k(N+1)

for d, k, s unknown.
We know k < d and s ~ v/N.

Small RSA private exponent with lattices

We would like to solve
ed=1—ks+k(N+1)
for d, k, s unknown.

Can write as
ks+ed—1=0mod (N+1)

We would like to find small solutions x = ks,y = d for

fx,y)=x+ey—1=0mod (N+1).

Small RSA private exponent with lattices
Would like to solve equation
fx,y)=x+ey—1=0mod (N+ 1)
for solution x = ks,y = d. Bound |d| < X, |ks| < Y.

Create lattice basis

X eY —1)
dimL =3
Y(IN+ 1) B 2
{ (N—l—’l)] detL =XY(N+1)

Correspondstox+ey —1,y(N+1), (N+1).
Lattice reduction is actually finding equation

dx+(ks—1)y—-d=0

Theorem (Boneh Durfee)
We can efficiently compute d when d < N°2°2,

Boneh and Durfee use Coppersmith’'s method to find small
solutionsx =k, y = (p+q) to

x¥—(N+1)x—-1=0mode

Improvements: Use higher multiplicities and degree, be
clever about choice of sublattice.

Open problem: Boneh and Durfee conjecture that their
method can be improved to d < N°>.

Multivariate Coppersmith
Input: Multivariate polynomial f(x1,...,Xm)

Output: Integersrq,...,rm such that
f(r1,....,rm) =0 mod N

Same approach works in this case, with some tweaks:

¢ To find solutions we solve a system of m equations
taken from the short vectors in our lattice.

e May encounter algebraic independence issues: similar
to Ring-LWE, additive lattice loses information about
multiplicative structure of ideal.

e Theorems are generally heuristic; no totally generic
solution is possible.

¢ Results are more ad hoc in general.

Open problem: Give a useful characterization of when
multivariate Coppersmith method works.

Application: Approximate common divisors
[van Dijk Gentry Halevi Vaikuntanathan 2010]

Input: a1 =q1p+nr,...,.0m=qmp +m

(1-d Ring-LWE over 7)

Problem: Find p, or equivalently the r;.

Application: Approximate common divisors
[van Dijk Gentry Halevi Vaikuntanathan 2010]

Input: a1 =q1p+nr,...,.0m=qmp +m

(1-d Ring-LWE over 7)

Problem: Find p, or equivalently the r;.

Multivariate Coppersmith-type cryptanalysis:

Input f1(x) = a1 — X1, ... fm(X) = am — Xm.

Construct a lattice of polynomial combinations.
Find m short multivariate polynomials in this lattice.
Find the common roots.

PN =

e Works for some parameters, but fails for small p due to
approximation factor of lattice reduction.

e Can be adapted to Ring-LWE, but results in
huge-dimensional lattices.

Open problem: Is there some way to adapt
Coppersmith-type amplification (multiplicity, higher degree)
to Ring-LWE setting in a feasible way?

The hidden number problem
[Boneh Venkatesan 96]

Secret: Integer a. Public parameter: Integer n

Input: Pairs (t;, ;) where a; are most significant bits of
tiac mod n.

Desired Output: o

The hidden number problem
[Boneh Venkatesan 96]

Secret: Integer a. Public parameter: Integer n

Input: Pairs (t;, ;) where a; are most significant bits of
tiac mod n.

Desired Output: o

Can formulate system of equations in unknowns
I’1,...,I’m,042

ri—tia+a; =0modn
r, —tba+a, =0modn

Here the r; are small.

Solving the hidden number problem with CVP

ri—tia+a; =0modn
Input:

rm—tma+0m =0 modn
in unknowns rq, ..., rm,a, where |r;| < R.

Construct the lattice basis

ti t ... tm

Solve CVP with target vector v; = (01,02, ...,0m).

vk = (r,ra,...,rm) will be a close vector in this lattice.

SVP embedding

LLL, BKZ implementations easier to use as a black box than
trying to implement CVP.
ri —tia+a; =0modn
Input:
rm—tmoa+0dm =0 modn
inunknowns ry,...,rm,a, where |rj| <R.

Construct the lattice basis

n
n
M =
n
t1 tz ... tm R/n
a1 a; ... Om R

Ve = (r,ra,...,rm,Ra/n,R) is a short vector in this lattice.

SVP embedding

Construct the lattice

n
n
M =
n
t b ... tm
a, ap ... am
We have:

e dmL=m+2

Want vector
Ve = (r,ra,...,rm,Ra/n,R)
R/n

detl = R2nM—1

¢ Ignoring approximation factors, LLL or BKZ will find a

vector

‘V| < (det L)’I/dimL

e We are searching for a vector with length

V| < V/m + 2B.

e Thus we expect to find v, when

logR < [logn(m —1)/m — (logm)/2]

Solving the hidden number problem with lattices

We expect to find v, when

logR < [logn(m —1)/m — (logm)/2]

Boneh and Venkatesan are interested in the limiting
behavior:

Works for m = /log n and revealing /log n bits.

Possibly dumb but open question: Using higher
multiplicities here doesn’'t improve the determinant bound.
Why not?

Application: (EC)DSA Key Recovery
Global Parameters Group of order n with generator G.

Private Key Integer d Public Key Q = dG
Signature Generation

Message Hash: h

Per-Signature “nonce”: Integer k

Signature on h: (r,s) r=x(kG) s=k="(h+dr)modn

Application: (EC)DSA Key Recovery
Global Parameters Group of order n with generator G.

Private Key Integer d Public Key Q = dG

Signature Generation

Message Hash: h

Per-Signature “nonce”: Integer k

Signature on h: (r,s) r=x(kG) s=k="(h+dr)modn

Hidden number problem application:
Input k; with known MSBs (assume 0 wlog, so k; are “small”).
HNP instance:

ki —51_1r1d—s1‘1h1 =0modn

ko —s5'rad —s;'hy = 0 mod n

km — 5,771rmd — s,‘,ﬂhm =0modn

More Hidden Number Problem Open Problems

Open problem: There is also a Fourier analysis algorithm
for the hidden number problem but it requires many more
samples. Is there a smooth tradeoff that can be
characterized between these two algorithms?

Open problem: The original Boneh Venkatesan application
was to hardcore bits in Diffie-Hellman, but to my knowledge
nobody has ever found a realistic scenario where this could
be applied in the wild.

Summary

Numerous lattice constructions for cryptanalysis.

Open problem: Many of these applications feel like a “black
art”. Is there a systematic way to characterize when various
techniques work without manual calculation for every
application? Examples:
e When does the approximation factor for LLL/BKZ
matter and when does it not?

e When is the coefficient embedding better than
evaluation? (It makes a small difference sometimes in
practice.)

e When do amplification techniques like multiplicity work?

e Which polynomials in your ideal do you include in your
lattice basis?

LLL ALL THE
KEYSI

