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Talk outline: Breaking classical crypto with lattices
1. Knapsacks
2. NTRU
3. Univariate Coppersmith: small solutions of polynomialsmodulo integers

• Breaking RSA with bad padding
4. Howgrave-Graham: solutions modulo divisors

• RSA partial key recovery
5. Multivariate extensions

• RSA short secret exponent
• Approx-GCD

6. Hidden number problem
• Breaking (EC)DSA



Warm-up 1: Solving knapsack problems with lattices
[Lagarias Odlyzko 1984]

Input: Integers a1, . . . ,an, target integer T .
Desired solution: zi ∈ {0,1} such that∑i aizi = T

Generate lattice basis
1 −a11 −a2. . . ...1 −anT


A solution∑i ziai = T corresponds to a vector

vz = (z1, z2, . . . ,0)
• We know |vz| ≤ √n.
• If the ai are large and random, then can use densityargument to show that |vz| is likely shortest vector.
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A few practical notes
Knapsack problem: Find zi ∈ {0,1} such that∑i aizi = T

w −a1w −a2. . . ...w −anT


• We can use weights w to try to “force” the zi to be small.
• In the 80s when the original papers were written, theystopped at “we hope LLL will find the shortest vector”.
• Solvable dimensions were small enough that LLL usuallyfound the shortest vector in practice. Not true anymore.



Practical note: Current feasible lattice reduction
• LLL: In practice on random lattices, get approximationfactor of (1.02)dim L [Nguyen Stehle]

• 12-2019: “We were able to reduce matrices of dimension4096 with 6675-bit integers in 4 days” [Kirchner EspitauFouque 2019]
• Implementation doesn’t seem to be public.

• BKZ/enumeration:
• 2017: 250-dimensional reduced basis, prunedenumeration (from latticechallenge.org) [Aono Nguyen2017]

fpLLL [Albrecht Bai Ducas Stehle Stevens Walter et al.] bestopen source implementation for LLL/BKZ



Finding small solutions to linear equations
Knapsack problem: Find zi ∈ {0,1} such that∑i aizi − T = 0

1 −a11 −a2. . . ...1 −anT


• We are asking for a particularly “short” integer solutionto a linear equation.
• Finding an integer solution to the relation is trivial:

1. If gcd(ai,aj) = 12. Then c1ai + c2aj = 1 for c1, c2 ∈ Z.3. Tc1ai + Tc2aj − T = 0 is an integer solution.
• In practice, lattice algorithms are good at findingsolutions we don’t want!



Warm-up 2: Lattice attacks on NTRU
[Coppersmith Shamir 1997]
Private Keyf , g ∈ Rq = Zq[x]/(xn + 1)fi, gi ∈ (−1,0,1)
f (x) = fn−1xn−1 + · · ·+ f1x + f0
g(x) = gn−1xn−1 + · · ·+ g1x + g0

Public Keyh = gf−1

Key recovery problem: Given h, find f , g such that fh = g.

Let Mh be the matrix representing multiplication by h. Then
(f0, . . . , fn−1)Mh mod q ≡ (g0, . . . , gn−1)

If we construct the lattice basis[In MhqIn
]

then (f0, f1, . . . , fn−1, g0, g1, . . . , gn−1) is a vector in this lattice.
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Lattices as a cryptanalytic tool

Many cryptanalysis problems can be formulated either as:
• Find a small solution to some polynomial/system ofequations subject to some constraints, or
• Find a polynomial with small coefficients

Often these approaches are dual.



Manipulating polynomials with lattices
We have already seen a couple of representations ofelements of polynomial rings (and friends):

f (x) = fn−1xn−1 + fn−2xn−2 + · · ·+ f1x + f0
Coefficient embedding:

(fn−1, fn−2, . . . f1, f0)
Evaluation embedding:

(f (z0), f (z1), . . . , f (zn−2), f (zn−1))

Both homomorphic under addition, so lattice preservesadditive structure.
Lattices introduce new geometric structure (e.g. `2 norms).
Lattice algorithms give us geometric guarantees, whichoften do not map exactly onto algebraic structure of cryptoproblems.
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Coppersmith’s method for univariate polynomials
[Coppersmith 96]

Theorem (Coppersmith)
Given a polynomial f of degree d and N, we can in polynomialtime find all integer roots ri satisfying

f (ri) ≡ 0 mod N
when |ri| < N1/d.



Why is this an interesting theorem?
1. A general method to solve polynomials mod N wouldbreak RSA: If c is a ciphertext,

xe − c ≡ 0 mod N
has a root x = m form our original message.

2. There is an efficient algorithm to solve equations modprimes.
• For a composite, factor into primes, solve mod eachprime, and use Chinese remainder theorem to liftsolution mod N.

3. By accepting a bound on solution size, Coppersmith’smethod lets us solve equations without factoring N.



Coppersmith’s Algorithm Outline
Input: polynomial f , modulus N.
Output: small roots r modulo N with |r| < R
We will construct a new polynomial Q(x) so that

Q(r) = 0 over the integers.

1. Ensure Q(r) ≡ 0 mod N by construction.
2. Find such a Q with |Q(r)| < N.

|Q(r)| = |Qdrd + Qd−1rd−1 + · · ·+ Q1r + Q0|
≤ |Qd|Rd + |Qd−1|Rd−1 + · · ·+ |Q1|R+ |Q0|

3. Compute integer roots of Q and output all small ones.
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Concrete example of manipulating polynomials
Input: f (x) = x3 + f2x2 + f1x + f0,N
Output: Q(x) ∈ 〈f (x),N〉 over Z[x].
If we only care about polynomials Q of degree 3, then

Q(x) = c3f (x) + c2Nx2 + c1Nx + c0N
with c3, c2, c1, c0 ∈ Z.

c3 (x3 + f2x2 + f1x + f0)
+ c2 Nx2
+ c1 Nx
+ c0 NQ3x3 + Q2x2 + Q1x + Q0
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If we only care about polynomials Q of degree 3, then

Q(x) = c3f (x) + c2Nx2 + c1Nx + c0N
with c3, c2, c1, c0 ∈ Z.
Coefficient embedding lattice basis:
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
Then (Q3,Q2,Q1,Q0) is a vector in this lattice.



Concrete example of manipulating polynomials
Input: f (x) = x3 + f2x2 + f1x + f0,N
Output: Q(x) ∈ 〈f (x),N〉 over Z[x].
If we only care about polynomials Q of degree 3, then

Q(x) = c3f (x) + c2Nx2 + c1Nx + c0N
with c3, c2, c1, c0 ∈ Z.
We wanted to bound |Q3|R3 + |Q2|R2 + |Q1|R+ |Q0| < N.Rescale lattice basis for convenience.
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
We want a vector in this lattice with small `1 norm.



Coppersmith’s method outline
Input: f (x) ∈ Z[x], N ∈ Z. Output: r s.t. f (r) ≡ 0 mod N.
Intermediate output: Q(x) such that Q(r) = 0 over Z.
1. Q(x) ∈ 〈f (x),N〉 so Q(r) ≡ 0 mod N by construction.
2. Construct lattice of scaled coefficient embedding ofsuitable polynomials.
3. Find short vector in lattice. If we use LLL, we want

|v|1 ≤ √n|v|2 ≤ 2(n−1)/4 det L1/ dim L < N

4. Factor polynomial corresponding to short vector to findinteger roots.



Achieving the Coppersmith bound r < N1/d
1. Generate lattice from subset of 〈f (x),N〉k.
2. Be clever about which of these polynomials you includein your lattice basis.
3. Allow higher degree polynomials.
• Interesting fact: The exponential approximation factorof LLL only results in a constant factor loss in the rootsize.

Theorem (CHHS 2016)
It is not possible to solve for r > N1/d with any method thatconstructs auxiliary polynomial Q(x) that preserves algebraicroots.
Open problem: Eliminate other classes of approaches.
Open problem: General systematic description of whichpolynomials to include in basis.
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Application: Breaking Textbook RSA
[Rivest Shamir Adleman 1977]

Public Key
N = pqmodulus
e encryptionexponent

Private Key
p,q primes
d decryption exponent(d = e−1 mod (p− 1)(q− 1))

Encryption
public key = (N, e)

ciphertext = messagee mod N

message = ciphertextd mod N



What’s wrong with this RSA example?
message = Integer(’squeamishossifrage’,base=35)
N = random_prime(2^512)*random_prime(2^512)
c = message^3 % N

sage: Integer(c^(1/3)).str(base=35)
’squeamishossifrage’

The message is too small.
This is why we use padding.
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N = random_prime(2^150)*random_prime(2^150)
message = Integer(’thepasswordfortodayisswordfish’,base=35)
c = message^3 % N

a = Integer(’thepasswordfortodayis000000000’,base=35)

X = Integer(’xxxxxxxxx’,base=35)
M = matrix([[X^3, 3*X^2*a, 3*X*a^2, a^3-c],

[0,N*X^2,0,0],[0,0,N*X,0],[0,0,0,N]])

B = M.LLL()
Q = B[0][0]*x^3/X^3+B[0][1]*x^2/X^2+B[0][2]*x/X+B[0][3]

sage: Q.roots(ring=ZZ)[0][0].str(base=35)
’swordfish’
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Finding solutions modulo divisors
Theorem (Howgrave-Graham)
Given degree d polynomial f , integer N, we can in polynomialtime find roots r modulo divisors B of N satisfying

f (r) ≡ 0 mod B
for |B| > Nβ , when |r| < Nβ2/d.
Proof.Same as Coppersmith’s univariate method, but find a vectorin the lattice less than Nβ < B.



Application: Factoring RSA with bits known

Theorem (Coppersmith)
Given half the bits (most or least significant) of a factor p, wecan factor an RSA modulus N = pq in polynomial time.
Proof.Let f (x) = x + a where a represents the most significant halfof bits of p and r least significant bits, so a+ r = p.
We have f (r) ≡ 0 mod p > N1/2.
Apply theorem with degree d = 1 and β = 1/2, so
|r| < Nβ2/d = N1/4.



p = random_prime(2^512); q = random_prime(2^512)
N = p*q

a = p - (p % 2^86)

X = 2^86
M = matrix([[X^2, 2*X*a, a^2], [0, X, a], [0, 0, N]])
B = M.LLL()

Q = B[0][0]*x^2/X^2+B[0][1]*x/X+B[0][2]

sage: a+Q.roots(ring=ZZ)[0][0] == p
True



p = random_prime(2^512); q = random_prime(2^512)
N = p*q

a = p - (p % 2^86)

sage: hex(a)
’a9759e8c9fba8c0ec3e637d1e26e7b88befeb03ac199d1190
76e3294d16ffcaef629e2937a03592895b29b0ac708e79830
4330240bc000000000000000000000’

Key recovery from partial information.

X = 2^86
M = matrix([[X^2, 2*X*a, a^2], [0, X, a], [0, 0, N]])
B = M.LLL()

Q = B[0][0]*x^2/X^2+B[0][1]*x/X+B[0][2]

sage: a+Q.roots(ring=ZZ)[0][0] == p
True
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Partial key recovery example
Input: f (x) = a+ x,N
Output: r < R s.t. f (r) ≡ 0 mod p, p|N, p ≥ N1/2
1. We chose the polynomial basis (x + a)2, (x + a),N.

2. This corresponds to a lattice basisR2 2Ra a20 R aN
 dim L = 3

det L = R3N
3. LLL will find us a vector of size about |v| ≈ det L1/ dim L.
4. The algorithm will find the root when we have

|Q(r)| ≤ |v| ≈ det L1/ dim L < p
(R3N)1/3 < N1/2

R < N1/6
We had lg r = 86 and lg p = 512.
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Partial key recovery and related attacks

RSA particularly susceptible to partial key recovery attacks.
• Can factor given 1/2 bits of p. [Coppersmith 96]
• Can factor given 1/4 bits of d. [Boneh Durfee Frankel 98]
• Can factor given 1/2 bits of d mod (p− 1). [Blömer May03]



p = random_prime(2^512); q = random_prime(2^512)
N = p*q

d = random_prime(2^254)
e = inverse_mod(d,(p-1)*(q-1))

d is relatively small. (But not that small.)

X = 2^764; Y = 2^254
M = matrix([[X, e*Y, -1], [0, Y*(N+1), 0], [0, 0, N+1]])

B = M.LLL()

sage: abs(B[0][0]/X) == d
True
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M = matrix([[X, e*Y, -1], [0, Y*(N+1), 0], [0, 0, N+1]])

B = M.LLL()

sage: abs(B[0][0]/X) == d
True
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Small RSA private exponent with lattices
Theorem (Wiener)
We can efficiently compute d when d < N1/4.
The RSA equation is

ed ≡ 1 mod (p− 1)(q− 1)
ed = 1+ k(N− (p+ q) + 1)

Let s = p+ q.
We would like to solve

ed = 1− ks+ k(N+ 1)
for d, k, s unknown.
We know k ≤ d and s ≈ √N.
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The RSA equation is

ed ≡ 1 mod (p− 1)(q− 1)
ed = 1+ k(N− (p+ q) + 1)

Let s = p+ q.
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for d, k, s unknown.
We know k ≤ d and s ≈ √N.



Small RSA private exponent with lattices
We would like to solve

ed = 1− ks+ k(N+ 1)
for d, k, s unknown.
Can write as ks+ ed − 1 ≡ 0 mod (N+ 1)
We would like to find small solutions x = ks, y = d for

f (x, y) = x + ey − 1 ≡ 0 mod (N+ 1).



Small RSA private exponent with lattices
Would like to solve equation

f (x, y) = x + ey − 1 ≡ 0 mod (N+ 1)
for solution x = ks, y = d. Bound |d| < X , |ks| < Y .
Create lattice basisX eY −1Y(N+ 1)

(N+ 1)
 dim L = 3

det L = XY(N+ 1)2

Corresponds to x + ey − 1, y(N+ 1), (N+ 1).Lattice reduction is actually finding equation
dx + (ks− 1)y − d = 0



Theorem (Boneh Durfee)
We can efficiently compute d when d < N0.292.
Boneh and Durfee use Coppersmith’s method to find smallsolutions x = k, y = (p+ q) to

xy − (N+ 1)x − 1 ≡ 0 mod e
Improvements: Use higher multiplicities and degree, beclever about choice of sublattice.

Open problem: Boneh and Durfee conjecture that theirmethod can be improved to d < N0.5.



Multivariate Coppersmith
Input: Multivariate polynomial f (x1, . . . , xm)
Output: Integers r1, . . . , rm such that

f (r1, . . . , rm) ≡ 0 mod N
Same approach works in this case, with some tweaks:
• To find solutions we solve a system ofm equationstaken from the short vectors in our lattice.
• May encounter algebraic independence issues: similarto Ring-LWE, additive lattice loses information aboutmultiplicative structure of ideal.
• Theorems are generally heuristic; no totally genericsolution is possible.
• Results are more ad hoc in general.

Open problem: Give a useful characterization of whenmultivariate Coppersmith method works.



Application: Approximate common divisors
[van Dijk Gentry Halevi Vaikuntanathan 2010]

Input: a1 = q1p+ r1, . . . ,am = qmp+ rm(1-d Ring-LWE over Z)
Problem: Find p, or equivalently the ri.

Multivariate Coppersmith-type cryptanalysis:1. Input f1(x) = a1 − x1, . . . fm(x) = am − xm.2. Construct a lattice of polynomial combinations.3. Findm short multivariate polynomials in this lattice.4. Find the common roots.
• Works for some parameters, but fails for small p due toapproximation factor of lattice reduction.
• Can be adapted to Ring-LWE, but results inhuge-dimensional lattices.

Open problem: Is there some way to adaptCoppersmith-type amplification (multiplicity, higher degree)to Ring-LWE setting in a feasible way?
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The hidden number problem
[Boneh Venkatesan 96]
Secret: Integer α. Public parameter: Integer n
Input: Pairs (ti,ai) where ai are most significant bits oftiα mod n.
Desired Output: α

Can formulate system of equations in unknownsr1, . . . , rm, α:
r1 − t1α+ a1 ≡ 0 mod n
r2 − t2α+ a2 ≡ 0 mod n

...
rm − tmα+ am ≡ 0 mod n

Here the ri are small.
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Solving the hidden number problem with CVP
Input: r1 − t1α+ a1 ≡ 0 mod n

...
rm − tmα+ am ≡ 0 mod n

in unknowns r1, . . . , rm, α, where |ri| < R.
Construct the lattice basis

M =


n n . . . nt1 t2 . . . tm


Solve CVP with target vector vt = (a1,a2, . . . ,am).
vk = (r1, r2, . . . , rm) will be a close vector in this lattice.



SVP embeddingLLL, BKZ implementations easier to use as a black box thantrying to implement CVP.
Input: r1 − t1α+ a1 ≡ 0 mod n

...
rm − tmα+ am ≡ 0 mod n

in unknowns r1, . . . , rm, α, where |ri| < R.
Construct the lattice basis

M =



n n . . . nt1 t2 . . . tm R/na1 a2 . . . am R


vr = (r1, r2, . . . , rm,Rα/n,R) is a short vector in this lattice.



SVP embeddingConstruct the lattice

M =



n n . . . nt1 t2 . . . tm R/na1 a2 . . . am R


Want vectorvr = (r1, r2, . . . , rm,Rα/n,R)

We have:
• dim L = m+ 2 det L = R2nm−1
• Ignoring approximation factors, LLL or BKZ will find avector

|v| ≤ (det L)1/ dim L
• We are searching for a vector with length
|vr| ≤ √m+ 2B.
• Thus we expect to find vr when

log R ≤ blog n(m− 1)/m− (logm)/2c



Solving the hidden number problem with lattices
We expect to find vr when

log R ≤ blog n(m− 1)/m− (logm)/2c
Boneh and Venkatesan are interested in the limitingbehavior:Works form =

√
log n and revealing √log n bits.

Possibly dumb but open question: Using highermultiplicities here doesn’t improve the determinant bound.Why not?



Application: (EC)DSA Key Recovery
Global Parameters Group of order n with generator G.
Private Key Integer d Public Key Q = dG
Signature Generation
Message Hash: hPer-Signature “nonce”: Integer kSignature on h: (r, s) r = x(kG) s = k−1(h+ dr) mod n

Hidden number problem application:Input ki with known MSBs (assume 0 wlog, so ki are “small”).HNP instance:
k1 − s−11 r1d − s−11 h1 ≡ 0 mod n
k2 − s−12 r2d − s−12 h2 ≡ 0 mod n

...
km − s−1m rmd − s−1m hm ≡ 0 mod n
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More Hidden Number Problem Open Problems

Open problem: There is also a Fourier analysis algorithmfor the hidden number problem but it requires many moresamples. Is there a smooth tradeoff that can becharacterized between these two algorithms?

Open problem: The original Boneh Venkatesan applicationwas to hardcore bits in Diffie-Hellman, but to my knowledgenobody has ever found a realistic scenario where this couldbe applied in the wild.



Summary
Numerous lattice constructions for cryptanalysis.
Open problem: Many of these applications feel like a “blackart”. Is there a systematic way to characterize when varioustechniques work without manual calculation for everyapplication? Examples:
• When does the approximation factor for LLL/BKZmatter and when does it not?
• When is the coefficient embedding better thanevaluation? (It makes a small difference sometimes inpractice.)
• When do amplification techniques like multiplicity work?
• Which polynomials in your ideal do you include in yourlattice basis?




