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Point Lattices and Lattice Parameters

(Point) Lattices

Traditional area of mathematics

◦ ◦ ◦
Lagrange Gauss Minkowski

Key to many algorithmic applications

Cryptanalysis (e.g., breaking low-exponent RSA)
Coding Theory (e.g., wireless communications)
Optimization (e.g., Integer Programming with fixed number of
variables)
Cryptography (e.g., Cryptographic functions from worst-case
complexity assumptions, Fully Homomorphic Encryption)
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Point Lattices and Lattice Parameters

Lattice Cryptography: a Timeline

1982: LLL basis reduction algorithm

Traditional use of lattice algorithms as a cryptanalytic tool

1996: Ajtai’s connection

Relates average-case and worst-case complexity of lattice problems
Application to one-way functions and collision resistant hashing

2002: Average-case/worst-case connection for structured lattices.
Key to efficient lattice cryptography.

2005: (Quantum) Hardness of Learning With Errors (Regev)

Similar to Ajtai’s connection, but for injective functions
Wide cryptographic applicability: PKE, IBE, ABE, FHE.
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Point Lattices and Lattice Parameters

Lattices: Definition

e1
e2

The simplest lattice in n-dimensional
space is the integer lattice

Λ = Zn

b1

b2

Other lattices are obtained by
applying a linear transformation

Λ = BZn (B ∈ Rd×n)
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Point Lattices and Lattice Parameters

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {b1, . . . ,bn} ⊂ Rn:

L =
n∑

i=1

bi · Z

= {Bx : x ∈ Zn}

The same lattice has many bases

L =
n∑

i=1

ci · Z

Definition (Lattice)

A discrete additive subgroup of Rn

b1

b2
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Point Lattices and Lattice Parameters

Determinant

Definition (Determinant)

det(L) = volume of the fundamental region P =
∑

i bi · [0, 1)

Different bases define different fundamental
regions

All fundamental regions have the same
volume

The determinant of a lattice can be
efficiently computed from any basis.

P b1

b2
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Point Lattices and Lattice Parameters

Density estimates

Definition (Centered Fundamental Parallelepiped)

P =
∑

i bi · [−1/2, 1/2)

vol(P(B)) = det(L)

{x + P(B) | x ∈ L} partitions Rn

For all sufficiently large S ⊆ Rn

|S ∩ L| ≈ vol(S)/ det(L)

b1

b2
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Point Lattices and Lattice Parameters

Minimum Distance and Successive Minima

Minimum distance

λ1 = min
x,y∈L,x6=y

‖x− y‖

= min
x∈L,x6=0

‖x‖

Successive minima (i = 1, . . . , n)

λi = min{r : dim span(B(r) ∩ L) ≥ i}

Examples

Zn: λ1 = λ2 = . . . = λn = 1
Always: λ1 ≤ λ2 ≤ . . . ≤ λn
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Point Lattices and Lattice Parameters

Distance Function and Covering Radius

Distance function

µ(t,L) = min
x∈L
‖t− x‖

Covering radius

µ(L) = max
t∈span(L)

µ(t,L)

Spheres of radius µ(L) centered around all
lattice points cover the whole space

tµ
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Point Lattices and Lattice Parameters

Smoothing a lattice

Consider an arbitrary lattice, and . . .

add noise
to each lattice point . . . more noise, and more
and more, until . . . we reach an almost uni-
form distribution

How much noise is needed?

At most ‖r‖ ≤ (log n) ·
√
nλn

Best done using Gaussian noise r of width

|ri | ≈ ηε ≤ (log n)λn.

ηε: the “smoothing parameter” of a lattice
[MR04].
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Point Lattices and Lattice Parameters

Minkowski’s convex body theorem

Theorem (Convex Body)

Let C ⊂ Rn be a symmetric convex body. If vol(C ) > 2n, then C contains
a nonzero integer vector

C = B−1[−r , r ]n has volume
det(B)−1(2r)n = 2n

C contains x ∈ Zn \ {0}
BC = [−r , r ]n contains Bx

λ1(L) ≤
√
nr =

√
n det(L)1/n

C
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Point Lattices and Lattice Parameters

Minkowski’s second theorem

Theorem (Minkowski)

λ1(L) ≤

(∏
i

λi (L)

)1/n

≤
√
n det(L)1/n

For Zn, λ1 = (
∏

i λi )
1/n = 1 is smaller than Minkowski’s bound by

√
n

λ1(L) can be arbitrarily smaller than Minkowski’s bound

(
∏

i λi (L))1/n is never smaller than Minkowski’s bound by more than√
n

Can you find lattices with (
∏

i λi (L))1/n ≥ Ω(
√
n) det(L)1/n within a

constant from Minkowski’s bound?
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Computational Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice L(B), find a (nonzero) lattice vector Bx (with x ∈ Zk) of
length (at most) ‖Bx‖ ≤ λ1

b1

b2
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Computational Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVPγ)

Given a lattice L(B), find a (nonzero) lattice vector Bx (with x ∈ Zk) of
length (at most) ‖Bx‖ ≤ γλ1

2λ1

b1

b2

λ1

Bx = 5b1 − 2b2
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Computational Problems

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice L(B) and a target point t, find a lattice vector Bx within
distance ‖Bx− t‖ ≤ µ from the target

t

b1

b2
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Computational Problems

Closest Vector Problem

Definition (Closest Vector Problem, CVPγ)
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Computational Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice L(B), find n linearly independent lattice vectors
Bx1, . . . ,Bxn of length (at most) maxi ‖Bxi‖ ≤ λn

b1

b2

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 18 / 43



Computational Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice L(B), find n linearly independent lattice vectors
Bx1, . . . ,Bxn of length (at most) maxi ‖Bxi‖ ≤ λn

b1

b2

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 18 / 43



Computational Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice L(B), find n linearly independent lattice vectors
Bx1, . . . ,Bxn of length (at most) maxi ‖Bxi‖ ≤ λn

b1

b2

Bx1

λ2

Bx2

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 18 / 43



Computational Problems
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Definition (Shortest Independent Vectors Problem, SIVPγ)
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Computational Problems Coding Theory

Coding theory

Problem

Reliable transmission of information over noisy channels

m

Sender wants to trasmit a message m
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Computational Problems Coding Theory

Coding theory

Problem

Reliable transmission of information over noisy channels

m
Bx

encode

The sender encodes m as a lattice point Bx and transmits it over a noisy
channel (e.g., multiantenna system)
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Computational Problems Coding Theory

Coding theory

Problem

Reliable transmission of information over noisy channels

m t
Bx

encode

Recepient receives a perturbed lattice point t = Bx + e, where e is a small
error vector
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Computational Problems Coding Theory

Coding theory

Problem

Reliable transmission of information over noisy channels

m t
Bx

encode m = CVP(B, t)

Recepient recovers the original message m by finding the lattice point Bx
closest to the target t.
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Computational Problems Coding Theory

Coding theory

Problem

Reliable transmission of information over noisy channels

m t
Bx

encode m = CVP(B, t)

CVP Decoding algorithm

SVP Evaluating error correction radius λ1/2

SIVP Related to distortion in vector quantization
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Computational Problems Coding Theory

Special Versions of CVP

Definition (Closest Vector Problem (CVP))

Given (L, t, d), with µ(t,L) ≤ d , find a lattice point within distance d
from t.

If d is arbitrary, then one can find the closest lattice vector by binary
search on d .

Bounded Distance Decoding (BDD): If d < λ1(L)/2, then there is at
most one solution. Solution is the closest lattice vector.

Absolute Distance Decoding (ADD): If d ≥ µ(L), then there is always
at least one solution. Solution may not be closest lattice vector.
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Computational Problems Coding Theory

Relations among lattice problems

SIVP ≈ ADD [MG’01]

SVP ≤ CVP [GMSS’99]

SIVP ≤ CVP [M’08]

BDD . SIVP

CVP . SVP [L’87]

GapSVP ≈ GapSIVP
[LLS’91,B’93]

GapSVP . BDD [LM’09]

GapSVP GapSIVP BDD

SIVP ADD

SVP CVP
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Computational Problems Coding Theory

ADD reduces to SIVP

ADD input: L and arbitrary t

Compute short vectors V = SIVP(L)

Use V to find a lattice vector within distance∑
i
1
2‖vi‖ ≤ (n/2)λn ≤ nµ from t

P
x

t

v1

v2
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Computational Problems Coding Theory

Geometry of Lattices

Geometry is a powerful tool to attack combinatorial problems

LP/SDP relaxation + randomized rounding
Lattices: reduce Subset-Sum to CVP

CVP can be easy: e.g., if Λ = Zn, then CVP(Λ, t) = bte
Rounding solves CVP whenever Λ has an orthogonal basis

b1

b2

Not all lattices have an
orthogonal basis

E.g. “exagonal” lattice

b1 ⊥ (2b2 − b1)

But they only generate a
sublattice
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Computational Problems Coding Theory

Size Reduction

b2

b1

t

b1: (short) lattice vector

t: arbitrary point

Can make t shorter by adding ±b1
Repeat until t is shortest

Remarks

t− t′ ∈ Λ

Key step in [LLL’82] basis reduction
algorithm

Technique is used in most other lattice
algorithms
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Computational Problems Coding Theory

Gram-Schmidt Orthogonalized Basis

Definition (Gram-Schmidt)

Basis B = [b1, . . . ,bn]

b∗i ∈ bi + [b1, . . . ,bi−1]Ri−1

b∗i ⊥ b1, . . . ,bi−1
b1

b2

B∗ is an orthogonal basis for the vector space BRn

B∗ is not a lattice basis for BZn

Still, B∗ is useful to evaluate the quality of lattice basis B

det(Λ) =
∏
i

‖b∗i ‖ ≤
∏
i

‖bi‖ (Hadamard)
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Computational Problems Coding Theory

Lattice rounding

B∗[0, 1]n is also a fundamental
region for Λ

Any t can be efficiently rounded
to v ∈ Λ

‖t− v‖ ≤ 1
2

√∑
i ‖b
∗
i ‖2

v solves CVP when
‖t− v‖ ≤ min ‖b∗i ‖/2

b∗1

b2b∗2

Lemma (Nearest Plane Algorithm [Babai 1986])

Rounding w.r.t B∗ approximates CVP within
√
n · maxi ‖b∗i ‖

mini ‖b∗i ‖
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1 Point Lattices and Lattice Parameters
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The Dual Lattice

The Dual Lattice

A vector space over R is a set of vectors V with

a vector addition operation x + y ∈ V
a scalar multiplication a · x ∈ V

The dual of a vector space V is the set V ∨ = Hom(V ,R) of linear
functions φ : V → R, typically represented as vectors x ∈ V , where
φx(y) = 〈x, y〉
The dual of a lattice Λ is defined similarly as the set of linear
functions φx : Λ→ Z represented as vectors x ∈ span(Λ).

Definition (Dual lattice)

The dual of a lattice Λ is the set of all vectors x ∈ span(Λ) such that
〈x, v〉 ∈ Z for all v ∈ Λ
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The Dual Lattice

Dual lattice: Examples

0

Integer lattice (Zn)∨

= Zn

Rotating (RΛ)∨

= R(Λ∨)

Scaling (q · Λ)∨

= 1
q · Λ

∨

Properties of dual:

Λ1 ⊆ Λ2 ⇐⇒ Λ∨1 ⊇ Λ∨2
(Λ∨)∨ = Λ

Operations on x ∈ Λ and
y ∈ Λ∨:

〈x, y〉 ∈ Z

but x + y has no geometric
meaning
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The Dual Lattice

Lattice Layers

0

Each dual vector v ∈ L∨,
partitions the lattice L into
layers orthogonal to v

Li = {x ∈ L | x · v = i}

Layers are at distance 1/‖v‖
µ(L) ≥ 1

2‖v‖

If λ1(L∨) is small, then µ(L) is
large.
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The Dual Lattice

Transference Theorems

Theorem (Banaszczyk)

For any lattice L
1 ≤ 2λ1(L) · µ(L∨) ≤ n.

Theorem (Banaszczyk)

For every i ,
1 ≤ λi (L) · λn−i+1(L∨) ≤ n.

Approximating λ1(L) within a factor n is in NP ∩ coNP

Same is true for λi , . . . , λn and µ.
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The Dual Lattice

BDD reduces to SIVP

BDD input: t close to L

Compute V = SIVP(L∨)

For each vi ∈ L∨, find the layer
Li = {x | x · vi = ci} closest to t

Output L1 ∩ L2 ∩ · · · ∩ Ln

Output is correct as long as

µ(t,L) ≤ λ1
2n
≤ 1

2λ∨n
≤ 1

2‖vi‖

0 t
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The Dual Lattice

Working modulo a lattice

Definition (Fundamental Region of a lattice)

P ⊂ Rn: {P + x | x ∈ L} is a partition of Rn.

(L,+) is a subgroup of (Rn,+)

One can form the quotien group Rn/L
Elements of Rn/L are cosets t + L
Any fundamental region P gives a set of
standard representatives

P =
∑

i bi · [0, 1) ≡ Rn/L
t + L is uniquely identified by

(B∨)t (mod 1)

P b1

b2
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The Dual Lattice

CVP and lattice cosets

0

te
v

Lattice Λ, target t

CVP: Find v such that e = t− v
is shortest possible

t′ = t + Bx

v = v′ − Bx

Definition

CVP (coset formulation) Given a
lattice coset t + L, find the
(approximately) shortest element of
t + L.
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Q-ary Lattices and Cryptography

Random lattices in Cryptography

0

Cryptography typically uses (random) lattices Λ
such that

Λ ⊆ Zd is an integer lattice
qZd ⊆ Λ is periodic modulo a small integer q.

Cryptographic functions based on q-ary lattices
involve only arithmetic modulo q.

Definition (q-ary lattice)

Λ is a q-ary lattice if qZn ⊆ Λ ⊆ Zn

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 36 / 43



Q-ary Lattices and Cryptography

Examples of q-ary lattices

Examples (for any A ∈ Zn×d
q )

Λq(A) = {x | x mod q ∈ ATZn
q} ⊆ Zd

Λ⊥q (A) = {x | Ax = 0 mod q} ⊆ Zd

Theorem

For any lattice Λ the following conditions are equivalent:

qZd ⊆ Λ ⊆ Zd

Λ = Λq(A) for some A

Λ = Λ⊥q (A) for some A

For any fixed A, the lattices Λq(A) and Λ⊥q (A) are different
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Q-ary Lattices and Cryptography

Duality of q-ary lattices

For any fixed A, the lattices Λq(A) and Λ⊥q (A) are different

For any A ∈ Zn×d
q there is a A′ ∈ Zk×d

q such that Λq(A) = Λ⊥q (A′).

For any A′ ∈ Zk×d
q there is a A ∈ Zn×d

q such that Λq(A) = Λ⊥q (A′).

The q-ary lattices associated to A are dual (up to scaling)

Λq(A)∨ =
1

q
Λ⊥q (A)

Λ⊥q (A)∨ =
1

q
Λq(A)
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Q-ary Lattices and Cryptography

Ajtai’s one-way function (SIS)

Parameters: m, n, q ∈ Z
Key: A ∈ Zn×m

q

Input: x ∈ {0, 1}m

Output: fA(x) = Ax mod q

m

xT

×

n A

f

Ax

Theorem (A’96)

For m > n lg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fA(x) = Ax mod q is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], ID
schemes [L’08], Signatures [LM’08,GPV’08,. . . ,DDLL’13] . . .

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 39 / 43



Q-ary Lattices and Cryptography

Ajtai’s one-way function (SIS)

Parameters: m, n, q ∈ Z
Key: A ∈ Zn×m

q

Input: x ∈ {0, 1}m

Output: fA(x) = Ax mod q

m

xT

×

n A
f

Ax

Theorem (A’96)

For m > n lg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fA(x) = Ax mod q is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], ID
schemes [L’08], Signatures [LM’08,GPV’08,. . . ,DDLL’13] . . .

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 39 / 43



Q-ary Lattices and Cryptography

Ajtai’s one-way function (SIS)

Parameters: m, n, q ∈ Z
Key: A ∈ Zn×m

q

Input: x ∈ {0, 1}m

Output: fA(x) = Ax mod q

m

xT

×

n A
f

Ax

Theorem (A’96)

For m > n lg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fA(x) = Ax mod q is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], ID
schemes [L’08], Signatures [LM’08,GPV’08,. . . ,DDLL’13] . . .

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 39 / 43



Q-ary Lattices and Cryptography

Ajtai’s function and q-ary lattices

fA(x) = Ax mod q, where x is short

The q-ary lattice Λ⊥q (A) is the kernel of fA

Finding collisions fA(x) = fA(y) is equivalent to finding short vectors
x− y ∈ Λ⊥q (A)

The output of fA(x) is the syndrome of x

Inverting fA(x) is the same as CVP in its syndrome decoding
formulation with lattice Λ⊥q (A) and target t ∈ x + Λ⊥q (A)

For fA to be a compression function, x is longer than 1
2λ1(Λ⊥q (A))

Remark

SIS ≡ Approximate ADD (Absolute Distance Decoding)
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Q-ary Lattices and Cryptography

Regev’s Learning With Errors (LWE)

A ∈ Zm×k
q , s ∈ Zk

q , e ∈ Em.

gA(s

; e

) = As

+ e

mod q

Learning with Errors: Given A
and gA(s, e), recover s.

Theorem (R’05)

The function gA(s, e) is hard to
invert on the average, assuming
SIVP is hard to approximate in the
worst-case.

k

sT

×

m A

+ e

g
b

Applications: CPA PKE [R’05], CCA PKE [PW’08], (H)IBE
[GPV’08,CHKP’10,ABB’10], FHE [. . . ,B’12,AP’13,GSW’13], . . .
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Q-ary Lattices and Cryptography

LWE and q-ary lattices

Learning with errors:

Input: A ∈ Zm×n
q and As+e, where e is small and s is arbitrary

Output: s, e

If e = 0, then As+e = As ∈ Λ(At)

Same as CVP in random q-ary lattice Λ(At) with random target
t = As+e

Usually e is shorter than 1
2λ1(Λ(AT )), and e is uniquely determined

Remark

LWE ≡ Approximate BDD (Bounded Distance Decoding)
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Output: s, e

If e = 0, then As+e = As ∈ Λ(At)

Same as CVP in random q-ary lattice Λ(At) with random target
t = As+e

Usually e is shorter than 1
2λ1(Λ(AT )), and e is uniquely determined

Remark

LWE ≡ Approximate BDD (Bounded Distance Decoding)
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Q-ary Lattices and Cryptography

Much more ...

Not covered in this introduction:

Gaussian measures and harmonic analysis

Lattices from Algebraic Number Theory

Other norms

Sphere packings

Average-case to Worst-case connection

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 43 / 43


	Point Lattices and Lattice Parameters
	Computational Problems
	Coding Theory

	The Dual Lattice
	Q-ary Lattices and Cryptography

