
How$“Quantum”$is$the$D2Wave$Machine?$

Seung&Woo&Shin&
UC&Berkeley&

Simons&Ins5tute&3/27/2014&

&

(Joint&work&with&Graeme&Smith,&John&A.&Smolin,&and&Umesh&Vazirani)&





Are$we$meaning$the$same$thing,$when$we$say$“quantum”?$



What$is$a$“quantum$device”?$

“quantumness”&

Quantum&physics&is&important&in&the&

design&of&transistors.&

But&at&every&useful&level&of&abstrac5on,&

the&laptop&is&of&course&classical&.&.&.&



What$is$a$“quantum$device”?$

“quantumness”&

Minimal$requirements$for$a$QC$
$

A)&LargeTscale&quantum&behavior&

B)&Suitable&faultTtolerance&

C)&Universality&

&&&&&(or,&demonstra5on&of&a&useful&

&&&&&algorithm)&



What$is$a$“quantum$device”?$

“quantumness”&

Minimal$requirements$for$a$QC$
$

A)&LargeTscale&quantum&behavior&

B)&Suitable&faultTtolerance&

C)&Universality&

&&&&&(or,&demonstra5on&of&a&useful&

&&&&&algorithm)&

?&



1110101110101000& 0110101000101110&

How&do&we&study&the&physics&of&a&black&box?&



Quantum$tunneling?$vs.$Classical$thermal$effects?$

En
er
gy
$

Image&source:&wiki/quantum_annealing&



Compare&DTWave’s&inputToutput&behavior&to&classical$simulated$annealing&and&
Quantum$Monte$Carlo&simula5ons!&

&
1000&random&instances,&1000&runs&on&each&instance.&

Boixo$et$al.$2013$arxiv:1304.4595$

Instance&#1&

Instance&#2&

Instance&#3&

Instance&#4&

.&

.&

.&

.&

#1000&

DW&&&&&&&&&SA&&&&&&&&QMC&

Success&probabili5es&

0.992&

0.817&

0.024&

0.150&

.&

.&

.&

.&

0.882&

0.754&

0.621&

0.584&

0.011&

.&

.&

.&

.&

0.572&

0.921&

0.792&

0.001&

0.089&

.&

.&

.&

.&

0.976&

3

FIG. 2: Correlations. Shown are scatter plots of correla-
tions of the success probabilities p(s) for di↵erent methods
compared against the D-Wave device. The colour scale indi-
cates how many of the instances are found in a pixel of the
plots. The red lines indicate perfect correlations. Panel A
shows the correlations of the D-Wave device with itself by
choosing two di↵erent gauges. This data shows the baseline
imperfections in the correlations due to calibration errors in
the D-Wave device. Panel B shows the correlations of the
D-Wave device with simulated quantum annealing (SQA) us-
ing the same annealing schedule as the D-Wave device. This
correlation is nearly as good as in panel A, indicating that
the two methods are well correlated. Panels C and D show
the much poorer correlations of the D-Wave device with sim-
ulated annealing (SA) and classical spin dynamics (SD). The
SA is most sensitive to the annealing time and we show data
for 5000 updates per spin. Correlation plots for di↵erent an-
nealing schedules for SA are shown in the Supplementary Ma-
terial.

problem on the device (see Methods and Supplementary
Material): no better correlations than the device with it-
self can be expected due to calibration errors. Panel B)
shows a scatter plot of the hardness of instances for the
simulated quantum annealer and the D-Wave device for
a single gauge. The high density in the lower left corner
(hard for both methods) and the upper right corner (easy
for both methods) confirms the similarities between the
D-Wave device and a simulated quantum annealer. The
similarity to panel A) suggests a strong correlation with
SQA, to within calibration uncertainties. To quantify
the degree of correlation we performed a variant of a �2-
test of the di↵erences between the success probabilities
s (see Supplementary Material for details). As expected
we obtain a value of �2/M ⇡ 1 between two di↵erent
gauges on the D-Wave device since the gauge-to-gauge
variation was used to determine the expected error on s
on the device. The statistical test for panel B) gives a
value of �2/M ⇡ 1.2, almost as good as the correlation
of the D-Wave device with itself. Panels C and D show
the correlations with a simulated classical annealer (SA)
and classical mean-field spin dynamics (SD). The corre-

FIG. 3: Correlations of gauge-averaged data. Panels
A-D show scatter plots of correlations of the success proba-
bilities p(s) obtained after averaging the success probabilities
over eight di↵erent gauges of each instance on the device. The
red lines indicate perfect correlation. Panel A is for the D-
Wave device between two sets of eight di↵erent gauges. This
data shows the baseline imperfections in the correlations due
to calibration errors in the D-Wave device. Panel B is for the
simulated quantum annealer (SQA) using a single transverse
field and the D-Wave device, with the latter averaged over
16 random gauges. This correlation is nearly as good as in
panel A, indicating good correlations between the two meth-
ods. Panel C and D show the poorer correlations of simulated
annealing (SA) and classical spin dynamics (SD) respectively.

lations are weaker, as can be seen both visually and by
a �2 test giving �2/M > 2.24 for SA and �2/M ⇡ 9.5
for SD. Some instances are easily solved by the classi-
cal mean-field dynamics, simulated annealing, simulated
quantum annealing, and the device. However, as can be
expected from inspection of their respective distributions
in figure 1, there is no apparent correlation between the
hard instances for the spin dynamics model and the suc-
cess probability on the device, nor does there appear to
be a correlation for instances of intermediate hardness,
in contrast to the correlations seen in panel A). Similarly,
there are poor correlations with a classical spin dynamics
model.

Due to calibration errors of the device the correlation
plots – including those between two di↵erent gauges on
the D-Wave device – show some anti-correlated instances
in the lower right and upper left corner. To reduce these
calibration errors we can average the success probabilities
s on the device over eight gauge choices. The resulting
correlation plots, shown in figure 3, show much improved
correlations of the device with itself (panel A), which are
again comparable to the correlations of SQA with the
device (panel B). Simulated annealing (panel C) does not
correlate as well and classical mean-field spin dynamics
(panel D) again correlate poorly. A �2 analysis of this
data, discussed in detail in the Supplementary Material,
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FIG. 2: Energy-success distributions. Shown is the joint
probability distribution p(s,�) (colour scale) of success prob-
ability s and the final state energy � measured relative to
the ground state. We find very similar results for the D-Wave
device (panel A) and the simulated quantum annealer (panel
B). The distribution for simulated classical annealing (panel
C) matches poorly and for spin dynamics (panel D) matches
only moderately. For the D-Wave device and SQA the hard-
est instances result predominantly in low-lying excited states,
while easy instances result in ground states. For SA most
instances concentrate around intermediate success probabili-
ties and the ground state as well as low-lying excited states.
For classical spin dynamics there is a significantly higher inci-
dence of relatively high excited states than for DW, as well as
far fewer excited states for easy instances. The histograms of
figure 1, representing p(s), are recovered when summing these
distributions over �. SA distributions for di↵erent numbers
of sweeps are shown in the supplementary material.

classical annealer (panel C) and spin dynamics (panel D).

The third test, shown in figure 3, is perhaps the most
enlightening, as it plots the correlation of the success
probabilities between the DW data and the other models.
As a reference for the best correlations we may expect,
we show in panel A) the correlations between two di↵er-
ent sets of eight gauges (di↵erent embeddings of the same
problem on the device, see Methods and supplementary
material): no better correlations than the device with it-
self can be expected due to calibration errors. Panel B)
shows a scatter plot of the hardness of instances for the
simulated quantum annealer and the D-Wave device after
gauge averaging. The high density in the lower left cor-
ner (hard for both methods) and the upper right corner
(easy for both methods) confirms the similarities between
the D-Wave device and a simulated quantum annealer.
The two are also well correlated for instances of inter-
mediate hardness. The similarity to panel A) suggests
almost perfect correlation with SQA, to within calibra-
tion uncertainties.

FIG. 3: Correlations. Panels A-C show scatter plots of
correlations of the success probabilities p(s) obtained from
di↵erent methods. The red lines indicate perfect correlation.
Panel A is for the D-Wave device between two sets of eight
di↵erent gauges. This data shows the baseline imperfections
in the correlations due to calibration errors in the D-Wave de-
vice. Panel B is for the simulated quantum annealer (SQA)
and the D-Wave device, with the latter averaged over 16 ran-
dom gauges. This correlation is nearly as good as in panel A,
indicating good correlations between the two methods.. Panel
C is for the classical spin dynamics and the D-Wave device,
and shows poor correlation. Panel D shows the correlation
between success probability and the mean Hamming distance
of excited states found at the end of the annealing forN = 108
spin instances with local random fields. Easy (hard) instances
tend to have a small (large) Hamming distance. The colour
scale indicates how many of the instances are found in a pixel
of the plots.

In panel C) we show the correlation between the classi-
cal spin dynamics model and the device. Some instances
are easily solved by the classical mean-field dynamics,
simulated quantum annealing, and the device. However,
as can be expected from inspection of their respective
distributions in figure 1, there is no apparent correlation
between the hard instances for the spin dynamics model
and the success probability on the device, nor does there
appear to be a correlation for instances of intermediate
hardness, in contrast to the correlations seen in panel A).
Similarly, there are poor correlations [22] with a classical
spin dynamics model of reference [23].

The correlations between the simulated classical an-
nealer and the D-Wave device, shown in the supplemen-
tary material, are significantly worse than between SQA
and the device.

We next provide evidence for the bimodality being due
to quantum e↵ects. Our first evidence comes from the
simulated quantum annealer. When lowering the temper-
ature thermal updates are suppressed, quantum tunnel-
ing dominates thermal barrier crossing, and we observe
a stronger bimodality; indeed a similar bimodal distri-
bution arises also in an ensemble of (zero-temperature)

0"

40"

20"

in
st
an
ce
s"

3
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ing the same annealing schedule as the D-Wave device. This
correlation is nearly as good as in panel A, indicating that
the two methods are well correlated. Panels C and D show
the much poorer correlations of the D-Wave device with sim-
ulated annealing (SA) and classical spin dynamics (SD). The
SA is most sensitive to the annealing time and we show data
for 5000 updates per spin. Correlation plots for di↵erent an-
nealing schedules for SA are shown in the Supplementary Ma-
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panel A, indicating good correlations between the two meth-
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lations are weaker, as can be seen both visually and by
a �2 test giving �2/M > 2.24 for SA and �2/M ⇡ 9.5
for SD. Some instances are easily solved by the classi-
cal mean-field dynamics, simulated annealing, simulated
quantum annealing, and the device. However, as can be
expected from inspection of their respective distributions
in figure 1, there is no apparent correlation between the
hard instances for the spin dynamics model and the suc-
cess probability on the device, nor does there appear to
be a correlation for instances of intermediate hardness,
in contrast to the correlations seen in panel A). Similarly,
there are poor correlations with a classical spin dynamics
model.

Due to calibration errors of the device the correlation
plots – including those between two di↵erent gauges on
the D-Wave device – show some anti-correlated instances
in the lower right and upper left corner. To reduce these
calibration errors we can average the success probabilities
s on the device over eight gauge choices. The resulting
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data, discussed in detail in the Supplementary Material,

10

FIG. 21: Scaling without gauge averaging. Shown is the
total e↵ort on the D-Wave device for a single gauge choice.
The higher percentiles are not shown for large systems since
1000 repetitions of the annealing failed to find the ground
states for these hardest instances.

ulated classical annealer in figure 22 and the energy-
success distribution p(s,�) of the simulated classical an-
nealer in figure 23. As can already be expected from
the di↵erent success distributions (figure 1 of the main
text), the classical annealer does not correlate well with
the D-Wave device and p(s,�) is significantly di↵erent.

FIG. 22: Correlations between the D-Wave device and
a simulated classical annealer. Shown are correlations at
A) 500 sweeps, B) 1000 sweeps, C) 5000 sweeps and D) 10000
sweeps. The correlations are worse than for the simulated
quantum annealer.

FIG. 23: Energy-success distributions for the simu-
lated classical annealer. Shown is the joint probability
distribution p(s,�) (colour scale) of success probability s and
the final state energy� measured relative to the ground state.
Shown are results for the simulated annealer at A) 500 sweeps,
B) 1000 sweeps, C) 5000 sweeps and D) 10000 sweeps. In-
creasing the annealing time increases the success probability
and decreases the energy of states found. The distribution is
always significantly di↵erent from that of the D-Wave device.

VI. SCALING

A. Scaling of the exact solvers

In this section we present the scaling of the time to
solution for the various exact solvers used. Timings are
from our reference CPU, except for the biqmac algorithm

FIG. 24: Scaling with problem size for the exact
solvers.
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over classical algorithms.
To perform quantum annealing, we map each of the

Ising variables �z

i

to the Pauli z-matrix (which defines the
“computational basis”) and add a transverse magnetic
field in the x-direction to induce quantum fluctuations,
obtaining the time-dependent N -qubit Hamiltonian

H(t) = �A(t)
X

i

�x

i

+ B(t)HIsing , t 2 [0, t
f

] . (2)

Quantum annealing at positive temperature T starts
in the limit of a strong transverse field and weak prob-
lem Hamiltonian, A(0) � max(k

B

T , B(0)), with the sys-
tem state close to the ground state of the transverse field
term, the equal superposition state (in the computational
basis) of all N qubits. Monotonically decreasing A(t) and
increasing B(t), the system evolves towards the ground
state of the problem Hamiltonian, with B(t

f

) � A(t
f

).
Unlike adiabatic quantum computing [16], which has

a similar schedule but assumes fully coherent adiabatic
ground state evolution at zero temperature, quantum
annealing [4–6, 10] is a positive temperature method
involving an open quantum system coupled to a thermal
bath. Nevertheless, one expects that similar to adiabatic
quantum computing, small gaps to excited states may
thwart finding the ground state. In hard optimisation
problems, the smallest gaps of avoided level crossings
have been found to close exponentially fast with in-
creasing problem size [17–19], suggesting an exponential
scaling of the required annealing time t

f

with problem
size N .

Experimental results
We performed our experiments on a D-Wave One chip,
a device comprised of superconducting flux qubits with
programmable couplings (see Methods). Of the 128
qubits on the device, 108 were fully functioning and were
used in our experiments. The “chimera” connectivity
graph of these qubits is shown in figure 1 in the sup-
plementary material. Instead of trying to map specific
optimisation problem to the connectivity graph of the
chip [20, 21], we chose random spin glass problems that
can be directly realised. For each coupler J

ij

in the de-
vice we randomly assigned a value of either +1 or �1,
giving rise to a very rough energy landscape. Local fields
h
i

6= 0 give a bias to individual spins, tending to make
the problem easier to solve for annealers. We thus set
all h

i

= 0 for most data shown here and provide data
with local fields in the supplementary material. We per-
formed experiments for problems of sizes ranging from
N = 8 to N = 108. For each problem size N , we selected
1000 di↵erent instances by choosing 1000 sets of di↵er-
ent random couplings J

ij

= ±1 (and for some of the data
also random fields h

i

= ±1). For each of these instances,
we performed M = 1000 annealing runs and determined
whether the system reached the ground state.

Our strategy is to discover the operating mechanism of
the D-Wave device (DW) by comparing to three models:
simulated classical annealing (SA), simulated quantum

FIG. 1: Success probability distribu-
tions. Shown are normalized histograms p(s) =
(number of instances with probability s)/K of the suc-
cess probabilities of finding the ground states for N = 108
qubits and K = 1000 di↵erent spin glass instances. We find
similar bimodal distributions for the D-Wave results (DW,
panel A) and the simulated quantum annealer (SQA, panel
B), and somewhat similar distributions for spin dynamics
(SD, panel D). The unimodal distribution for the simulated
annealer (SA, panel C) clearly does not match. The D-Wave
data is taken with gauge averaging of 16 sets. Note the
di↵erent vertical axis scale for D).

annealing (SQA), and classical spin dynamics (SD). We
study both the distribution of the success probabilities
and the correlations between the D-Wave device and the
models.

For our first test, we counted for each instance the
number of runs MGS in which the ground state was
reached, to determine the success probability as s =
MGS/M . Plots of the distribution of s are shown in
figure 1, where we see that the DW results match well
with SQA, moderately with SD, and poorly with SA.
We find a unimodal distribution for the simulated an-
nealer model for all schedules, temperatures and anneal-
ing times we tried, with a peak position that moves to
the right as one increases t

f

(see supplementary mate-
rial). In contrast, the D-Wave device, the simulated
quantum annealer and the spin dynamics model exhibit
a bimodal distribution, with a clear split into easy and
hard instances. Moderately increasing t

f

in the simu-
lated quantum annealer makes the bimodal distribution
more pronounced, as does lowering the temperature (see
supplementary material).

As a second test, we show in figure 2 results for the
joint probability distribution p(s,�), which also includes
the probability distribution for the final state energy �
measured relative to the ground state. We find that the
distribution for the D-Wave device (panel A) is very sim-
ilar to that of the simulated quantum annealer (panel
B), whereas it is quite di↵erent from that of a simulated
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reached, to determine the success probability as s =
MGS/M . Plots of the distribution of s are shown in
figure 1, where we see that the DW results match well
with SQA, moderately with SD, and poorly with SA.
We find a unimodal distribution for the simulated an-
nealer model for all schedules, temperatures and anneal-
ing times we tried, with a peak position that moves to
the right as one increases t

f

(see supplementary mate-
rial). In contrast, the D-Wave device, the simulated
quantum annealer and the spin dynamics model exhibit
a bimodal distribution, with a clear split into easy and
hard instances. Moderately increasing t

f

in the simu-
lated quantum annealer makes the bimodal distribution
more pronounced, as does lowering the temperature (see
supplementary material).

As a second test, we show in figure 2 results for the
joint probability distribution p(s,�), which also includes
the probability distribution for the final state energy �
measured relative to the ground state. We find that the
distribution for the D-Wave device (panel A) is very sim-
ilar to that of the simulated quantum annealer (panel
B), whereas it is quite di↵erent from that of a simulated
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FIG. 1: Qubits and couplers in the D-Wave device.
The D-Wave One Rainer chip consists of 4 ⇥ 4 unit cells of
eight qubits, connected by programmable inductive couplers
as shown by lines.

I. OVERVIEW

Here we provide additional details in support of the
main text. Section II shows details of the chimera graph
used in our study and the choice of graphs for our simula-
tions. Section III expands upon the algorithms employed
in our study. Section IV presents additional success prob-
ability histograms for di↵erent numbers of qubits and for
instances with magnetic fields, explains the origin of easy
and hard instances, and explains how the final state can
be improved via a simple error reduction scheme. Section
V presents further correlation plots and provide more
details on gauge averaging. Section VI gives details on
how we determined the scaling plots and how quantum
speedup can be detected on future devices. Finally, sec-
tion VII explains how the spectral gaps were calculated
by quantum Monte Carlo (QMC) simulations.

II. THE CHIMERA GRAPH OF THE D-WAVE
DEVICE.

The qubits and couplers in the D-Wave device can be
thought of as the vertices and edges, respectively, of a
bipartite graph, called the “chimera graph”, as shown in
figure 1. This graph is built from unit cells containing
eight qubits each. Within each unit cell the qubits and
couplers realise a complete bipartite graph K4,4 where
each of the four qubits on the left is coupled to all of
the four on the right and vice versa. Each qubit on the
left is furthermore coupled to the corresponding qubit
in the unit cell above and below, while each of the ones
on the right is horizontally coupled to the correspond-
ing qubits in the unit cells to the left and right (with
appropriate modifications for the boundary qubits). Of
the 128 qubits in the device, the 108 working qubits used
in the experiments are shown in green, and the couplers
between them are marked as black lines.

For our scaling analysis we follow the standard pro-
cedure for scaling of finite dimensional models by con-
sidering the chimera graph as an L ⇥ L square lattice
with an eight-site unit cell and open boundary condi-
tions. The sizes we typically used in our numerical sim-
ulations are L = 1, . . . , 8 corresponding to N = 8L2 =
8, 32, 72, 128, 200, 288, 392 or 512 spins. For the simu-
lated annealers and exact solvers on sizes of 128 and
above we used a perfect chimera graph. For sizes below
128 where we compare to the device we use the working
qubits within selections of L⇥L eight-site unit cells from
the graph shown in figure 1.

In references [29, 33] it was shown that an optimi-
sation problem on a complete graph with

p
N vertices

can be mapped to an equivalent problem on a chimera
graph with N vertices through minor-embedding. The
tree width of

p
N mentioned in the main text arises from

this mapping. See Section VIA for additional details
about the tree width and tree decomposition of a graph.

III. CLASSICAL ALGORITHMS

A. Simulated annealing

Simulated annealing (SA) is performed by using the
Metropolis algorithm to sequentially update one spin af-
ter the other. One pass through all spins is called one
sweep, and the number of sweeps is our measure of the
annealing time for SA. Our highly optimised simulated

Figure:&Boixo&et&al.&(2013)&
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III. CLASSICAL ALGORITHMS

A. Simulated annealing

Simulated annealing is a Monte Carlo optimization al-
gorithm that uses local updates in an Ising model to
mimic the performance of a classical, thermal, annealer.
It is thus the appropriate model for a device in which
quantum e↵ects are limited to triggering thermal fluctu-
ations of the otherwise classical spins. We expect that a
simulated annealer would describe the D-Wave device if
decoherence were strong enough to turn it into a classical
device.

Simulated annealing (SA) has been performed by us-
ing the Metropolis algorithm to sequentially update one
spin after the other. One pass through all spins is called
one sweep, and the number of sweeps is our measure of
the annealing time for SA. Our highly optimised simu-
lated annealing code, based on a variant of the algorithm
in Ref. [3, 4], uses multi-spin coding to simultaneously
perform 64 simulations in parallel on a single CPU core:
each bit of a 64-bit integer represents the state of a spin
in one of the 64 simulations and all 64 spins are updated
at once. A similar code for GPUs uses 32-bit integers and
additionally performs many independent annealing runs
and updates many spins in parallel in multiple threads.

The performance of our codes on the classical reference
hardware is shown in Table I. We use high-end chips at
the time of writing, an 8-core Intel Xeon E5-2670 “Sandy
Bridge” CPU and an Nvidia Tesla K20X “Kepler” GPU.
To find a ground state of our hardest 108-spin instances
with a probability of 99%, this translates to a median
annealing 32µs on a single core of the CPU, 4µs on eight
cores, and 0.8µs on the GPU, which should be compared
to 15µs pure annealing time on the D-Wave device for
the same problems.

For the performance comparisons simulated annealing
was performed with a “linear” schedule, shown in fig-
ure 3a, where the inverse temperature � = 1/k

B

T is in-
creased linearly, thus cooling the system. An optimized
schedule, using the average specific heat to guide the an-
nealing schedule [5] changes the total required annealing
time by a few percent and we thus focused on the linear
schedule. For quantitative correlation analyses we also
performed classical annealing with an annealing sched-
ule motivated by the D-Wave device. Here we increased
� in the simulation in the same way as the Ising cou-
plings and longitudinal magnetic fields are increased in
the device (see figure 3b).

spin flips per ns relative speed

Intel Xeon E5-2670, 1 core 5 1

Intel Xeon E5-2670, 8 cores 40 8

Nvidia Tesla K20X GPU 210 42

TABLE I: Performance of the classical annealer on our refer-
ence CPU and GPU.

FIG. 2: Correlation between simulated quantum an-
nealers. Axes corresponds to success probabilities and pix-
els are colour-coded according to the number of instances.
A) correlations between continuous- and discrete time Monte
Carlo simulations. The scatter observed here is a measure for
the dependence of success probabilities on details of the simu-
lated quantum annealing implementation, for instances with
N = 108 spins performing 10,000 sweeps. B) Correlations
between two independent sets of 1000 simulations with dif-
ferent initial starting points. Schedule II and 10,000 sweeps
are used, see figure 3. Both simulations were performed at
T = 0.1.

B. Simulated quantum annealing

“Simulated quantum annealing” (SQA) is a classi-
cal annealing algorithm based on quantum Monte Carlo
(QMC) simulations following the same annealing sched-
ule as a quantum annealer, but using Monte Carlo dy-
namics instead of the unitary (or dissipative) evolution of
the system in a quantum annealer (QA). While the term
QA has often been used generically for both cases [6–8],
some publications have used various terms to distinguish
between these two types evolution dynamics: “Path-
Integral Monte Carlo-QA” versus “Real Time-QA” in
Refs. [7, 9], “Quantum Monte Carlo Annealing” ver-
sus “QA with real time adiabatic evolution” in Ref. [8],
and “Simulated Quantum Annealing” versus “Quantum
Annealing” in Ref. [10]. We use the latter convention.

SQA performs a path-integral QMC simulation of a
transverse field quantum Ising model. The path-integral
formulation maps the quantum spin system to a clas-
sical spin system by adding an extra spatial dimension

FIG. 3: Annealing schedules used for Monte Carlo
codes A) schedule I, the linear schedule. B) schedule II, the
schedule of the D-Wave device.
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III. CLASSICAL ALGORITHMS

A. Simulated annealing

Simulated annealing is a Monte Carlo optimization al-
gorithm that uses local updates in an Ising model to
mimic the performance of a classical, thermal, annealer.
It is thus the appropriate model for a device in which
quantum e↵ects are limited to triggering thermal fluctu-
ations of the otherwise classical spins. We expect that a
simulated annealer would describe the D-Wave device if
decoherence were strong enough to turn it into a classical
device.

Simulated annealing (SA) has been performed by us-
ing the Metropolis algorithm to sequentially update one
spin after the other. One pass through all spins is called
one sweep, and the number of sweeps is our measure of
the annealing time for SA. Our highly optimised simu-
lated annealing code, based on a variant of the algorithm
in Ref. [3, 4], uses multi-spin coding to simultaneously
perform 64 simulations in parallel on a single CPU core:
each bit of a 64-bit integer represents the state of a spin
in one of the 64 simulations and all 64 spins are updated
at once. A similar code for GPUs uses 32-bit integers and
additionally performs many independent annealing runs
and updates many spins in parallel in multiple threads.

The performance of our codes on the classical reference
hardware is shown in Table I. We use high-end chips at
the time of writing, an 8-core Intel Xeon E5-2670 “Sandy
Bridge” CPU and an Nvidia Tesla K20X “Kepler” GPU.
To find a ground state of our hardest 108-spin instances
with a probability of 99%, this translates to a median
annealing 32µs on a single core of the CPU, 4µs on eight
cores, and 0.8µs on the GPU, which should be compared
to 15µs pure annealing time on the D-Wave device for
the same problems.

For the performance comparisons simulated annealing
was performed with a “linear” schedule, shown in fig-
ure 3a, where the inverse temperature � = 1/k

B

T is in-
creased linearly, thus cooling the system. An optimized
schedule, using the average specific heat to guide the an-
nealing schedule [5] changes the total required annealing
time by a few percent and we thus focused on the linear
schedule. For quantitative correlation analyses we also
performed classical annealing with an annealing sched-
ule motivated by the D-Wave device. Here we increased
� in the simulation in the same way as the Ising cou-
plings and longitudinal magnetic fields are increased in
the device (see figure 3b).

spin flips per ns relative speed

Intel Xeon E5-2670, 1 core 5 1

Intel Xeon E5-2670, 8 cores 40 8

Nvidia Tesla K20X GPU 210 42

TABLE I: Performance of the classical annealer on our refer-
ence CPU and GPU.

FIG. 2: Correlation between simulated quantum an-
nealers. Axes corresponds to success probabilities and pix-
els are colour-coded according to the number of instances.
A) correlations between continuous- and discrete time Monte
Carlo simulations. The scatter observed here is a measure for
the dependence of success probabilities on details of the simu-
lated quantum annealing implementation, for instances with
N = 108 spins performing 10,000 sweeps. B) Correlations
between two independent sets of 1000 simulations with dif-
ferent initial starting points. Schedule II and 10,000 sweeps
are used, see figure 3. Both simulations were performed at
T = 0.1.

B. Simulated quantum annealing

“Simulated quantum annealing” (SQA) is a classi-
cal annealing algorithm based on quantum Monte Carlo
(QMC) simulations following the same annealing sched-
ule as a quantum annealer, but using Monte Carlo dy-
namics instead of the unitary (or dissipative) evolution of
the system in a quantum annealer (QA). While the term
QA has often been used generically for both cases [6–8],
some publications have used various terms to distinguish
between these two types evolution dynamics: “Path-
Integral Monte Carlo-QA” versus “Real Time-QA” in
Refs. [7, 9], “Quantum Monte Carlo Annealing” ver-
sus “QA with real time adiabatic evolution” in Ref. [8],
and “Simulated Quantum Annealing” versus “Quantum
Annealing” in Ref. [10]. We use the latter convention.

SQA performs a path-integral QMC simulation of a
transverse field quantum Ising model. The path-integral
formulation maps the quantum spin system to a clas-
sical spin system by adding an extra spatial dimension

FIG. 3: Annealing schedules used for Monte Carlo
codes A) schedule I, the linear schedule. B) schedule II, the
schedule of the D-Wave device.
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FIG. 2: Correlations. Shown are scatter plots of correla-
tions of the success probabilities p(s) for di↵erent methods
compared against the D-Wave device. The colour scale indi-
cates how many of the instances are found in a pixel of the
plots. The red lines indicate perfect correlations. Panel A
shows the correlations of the D-Wave device with itself by
choosing two di↵erent gauges. This data shows the baseline
imperfections in the correlations due to calibration errors in
the D-Wave device. Panel B shows the correlations of the
D-Wave device with simulated quantum annealing (SQA) us-
ing the same annealing schedule as the D-Wave device. This
correlation is nearly as good as in panel A, indicating that
the two methods are well correlated. Panels C and D show
the much poorer correlations of the D-Wave device with sim-
ulated annealing (SA) and classical spin dynamics (SD). The
SA is most sensitive to the annealing time and we show data
for 5000 updates per spin. Correlation plots for di↵erent an-
nealing schedules for SA are shown in the Supplementary Ma-
terial.

problem on the device (see Methods and Supplementary
Material): no better correlations than the device with it-
self can be expected due to calibration errors. Panel B)
shows a scatter plot of the hardness of instances for the
simulated quantum annealer and the D-Wave device for
a single gauge. The high density in the lower left corner
(hard for both methods) and the upper right corner (easy
for both methods) confirms the similarities between the
D-Wave device and a simulated quantum annealer. The
similarity to panel A) suggests a strong correlation with
SQA, to within calibration uncertainties. To quantify
the degree of correlation we performed a variant of a �2-
test of the di↵erences between the success probabilities
s (see Supplementary Material for details). As expected
we obtain a value of �2/M ⇡ 1 between two di↵erent
gauges on the D-Wave device since the gauge-to-gauge
variation was used to determine the expected error on s
on the device. The statistical test for panel B) gives a
value of �2/M ⇡ 1.2, almost as good as the correlation
of the D-Wave device with itself. Panels C and D show
the correlations with a simulated classical annealer (SA)
and classical mean-field spin dynamics (SD). The corre-

FIG. 3: Correlations of gauge-averaged data. Panels
A-D show scatter plots of correlations of the success proba-
bilities p(s) obtained after averaging the success probabilities
over eight di↵erent gauges of each instance on the device. The
red lines indicate perfect correlation. Panel A is for the D-
Wave device between two sets of eight di↵erent gauges. This
data shows the baseline imperfections in the correlations due
to calibration errors in the D-Wave device. Panel B is for the
simulated quantum annealer (SQA) using a single transverse
field and the D-Wave device, with the latter averaged over
16 random gauges. This correlation is nearly as good as in
panel A, indicating good correlations between the two meth-
ods. Panel C and D show the poorer correlations of simulated
annealing (SA) and classical spin dynamics (SD) respectively.

lations are weaker, as can be seen both visually and by
a �2 test giving �2/M > 2.24 for SA and �2/M ⇡ 9.5
for SD. Some instances are easily solved by the classi-
cal mean-field dynamics, simulated annealing, simulated
quantum annealing, and the device. However, as can be
expected from inspection of their respective distributions
in figure 1, there is no apparent correlation between the
hard instances for the spin dynamics model and the suc-
cess probability on the device, nor does there appear to
be a correlation for instances of intermediate hardness,
in contrast to the correlations seen in panel A). Similarly,
there are poor correlations with a classical spin dynamics
model.

Due to calibration errors of the device the correlation
plots – including those between two di↵erent gauges on
the D-Wave device – show some anti-correlated instances
in the lower right and upper left corner. To reduce these
calibration errors we can average the success probabilities
s on the device over eight gauge choices. The resulting
correlation plots, shown in figure 3, show much improved
correlations of the device with itself (panel A), which are
again comparable to the correlations of SQA with the
device (panel B). Simulated annealing (panel C) does not
correlate as well and classical mean-field spin dynamics
(panel D) again correlate poorly. A �2 analysis of this
data, discussed in detail in the Supplementary Material,
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cal mean-field dynamics, simulated annealing, simulated
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hard instances for the spin dynamics model and the suc-
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FIG. 2: Energy-success distributions. Shown is the joint
probability distribution p(s,�) (colour scale) of success prob-
ability s and the final state energy � measured relative to
the ground state. We find very similar results for the D-Wave
device (panel A) and the simulated quantum annealer (panel
B). The distribution for simulated classical annealing (panel
C) matches poorly and for spin dynamics (panel D) matches
only moderately. For the D-Wave device and SQA the hard-
est instances result predominantly in low-lying excited states,
while easy instances result in ground states. For SA most
instances concentrate around intermediate success probabili-
ties and the ground state as well as low-lying excited states.
For classical spin dynamics there is a significantly higher inci-
dence of relatively high excited states than for DW, as well as
far fewer excited states for easy instances. The histograms of
figure 1, representing p(s), are recovered when summing these
distributions over �. SA distributions for di↵erent numbers
of sweeps are shown in the supplementary material.

classical annealer (panel C) and spin dynamics (panel D).

The third test, shown in figure 3, is perhaps the most
enlightening, as it plots the correlation of the success
probabilities between the DW data and the other models.
As a reference for the best correlations we may expect,
we show in panel A) the correlations between two di↵er-
ent sets of eight gauges (di↵erent embeddings of the same
problem on the device, see Methods and supplementary
material): no better correlations than the device with it-
self can be expected due to calibration errors. Panel B)
shows a scatter plot of the hardness of instances for the
simulated quantum annealer and the D-Wave device after
gauge averaging. The high density in the lower left cor-
ner (hard for both methods) and the upper right corner
(easy for both methods) confirms the similarities between
the D-Wave device and a simulated quantum annealer.
The two are also well correlated for instances of inter-
mediate hardness. The similarity to panel A) suggests
almost perfect correlation with SQA, to within calibra-
tion uncertainties.

FIG. 3: Correlations. Panels A-C show scatter plots of
correlations of the success probabilities p(s) obtained from
di↵erent methods. The red lines indicate perfect correlation.
Panel A is for the D-Wave device between two sets of eight
di↵erent gauges. This data shows the baseline imperfections
in the correlations due to calibration errors in the D-Wave de-
vice. Panel B is for the simulated quantum annealer (SQA)
and the D-Wave device, with the latter averaged over 16 ran-
dom gauges. This correlation is nearly as good as in panel A,
indicating good correlations between the two methods.. Panel
C is for the classical spin dynamics and the D-Wave device,
and shows poor correlation. Panel D shows the correlation
between success probability and the mean Hamming distance
of excited states found at the end of the annealing forN = 108
spin instances with local random fields. Easy (hard) instances
tend to have a small (large) Hamming distance. The colour
scale indicates how many of the instances are found in a pixel
of the plots.

In panel C) we show the correlation between the classi-
cal spin dynamics model and the device. Some instances
are easily solved by the classical mean-field dynamics,
simulated quantum annealing, and the device. However,
as can be expected from inspection of their respective
distributions in figure 1, there is no apparent correlation
between the hard instances for the spin dynamics model
and the success probability on the device, nor does there
appear to be a correlation for instances of intermediate
hardness, in contrast to the correlations seen in panel A).
Similarly, there are poor correlations [22] with a classical
spin dynamics model of reference [23].

The correlations between the simulated classical an-
nealer and the D-Wave device, shown in the supplemen-
tary material, are significantly worse than between SQA
and the device.

We next provide evidence for the bimodality being due
to quantum e↵ects. Our first evidence comes from the
simulated quantum annealer. When lowering the temper-
ature thermal updates are suppressed, quantum tunnel-
ing dominates thermal barrier crossing, and we observe
a stronger bimodality; indeed a similar bimodal distri-
bution arises also in an ensemble of (zero-temperature)
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FIG. 2: Correlations. Shown are scatter plots of correla-
tions of the success probabilities p(s) for di↵erent methods
compared against the D-Wave device. The colour scale indi-
cates how many of the instances are found in a pixel of the
plots. The red lines indicate perfect correlations. Panel A
shows the correlations of the D-Wave device with itself by
choosing two di↵erent gauges. This data shows the baseline
imperfections in the correlations due to calibration errors in
the D-Wave device. Panel B shows the correlations of the
D-Wave device with simulated quantum annealing (SQA) us-
ing the same annealing schedule as the D-Wave device. This
correlation is nearly as good as in panel A, indicating that
the two methods are well correlated. Panels C and D show
the much poorer correlations of the D-Wave device with sim-
ulated annealing (SA) and classical spin dynamics (SD). The
SA is most sensitive to the annealing time and we show data
for 5000 updates per spin. Correlation plots for di↵erent an-
nealing schedules for SA are shown in the Supplementary Ma-
terial.

problem on the device (see Methods and Supplementary
Material): no better correlations than the device with it-
self can be expected due to calibration errors. Panel B)
shows a scatter plot of the hardness of instances for the
simulated quantum annealer and the D-Wave device for
a single gauge. The high density in the lower left corner
(hard for both methods) and the upper right corner (easy
for both methods) confirms the similarities between the
D-Wave device and a simulated quantum annealer. The
similarity to panel A) suggests a strong correlation with
SQA, to within calibration uncertainties. To quantify
the degree of correlation we performed a variant of a �2-
test of the di↵erences between the success probabilities
s (see Supplementary Material for details). As expected
we obtain a value of �2/M ⇡ 1 between two di↵erent
gauges on the D-Wave device since the gauge-to-gauge
variation was used to determine the expected error on s
on the device. The statistical test for panel B) gives a
value of �2/M ⇡ 1.2, almost as good as the correlation
of the D-Wave device with itself. Panels C and D show
the correlations with a simulated classical annealer (SA)
and classical mean-field spin dynamics (SD). The corre-

FIG. 3: Correlations of gauge-averaged data. Panels
A-D show scatter plots of correlations of the success proba-
bilities p(s) obtained after averaging the success probabilities
over eight di↵erent gauges of each instance on the device. The
red lines indicate perfect correlation. Panel A is for the D-
Wave device between two sets of eight di↵erent gauges. This
data shows the baseline imperfections in the correlations due
to calibration errors in the D-Wave device. Panel B is for the
simulated quantum annealer (SQA) using a single transverse
field and the D-Wave device, with the latter averaged over
16 random gauges. This correlation is nearly as good as in
panel A, indicating good correlations between the two meth-
ods. Panel C and D show the poorer correlations of simulated
annealing (SA) and classical spin dynamics (SD) respectively.

lations are weaker, as can be seen both visually and by
a �2 test giving �2/M > 2.24 for SA and �2/M ⇡ 9.5
for SD. Some instances are easily solved by the classi-
cal mean-field dynamics, simulated annealing, simulated
quantum annealing, and the device. However, as can be
expected from inspection of their respective distributions
in figure 1, there is no apparent correlation between the
hard instances for the spin dynamics model and the suc-
cess probability on the device, nor does there appear to
be a correlation for instances of intermediate hardness,
in contrast to the correlations seen in panel A). Similarly,
there are poor correlations with a classical spin dynamics
model.

Due to calibration errors of the device the correlation
plots – including those between two di↵erent gauges on
the D-Wave device – show some anti-correlated instances
in the lower right and upper left corner. To reduce these
calibration errors we can average the success probabilities
s on the device over eight gauge choices. The resulting
correlation plots, shown in figure 3, show much improved
correlations of the device with itself (panel A), which are
again comparable to the correlations of SQA with the
device (panel B). Simulated annealing (panel C) does not
correlate as well and classical mean-field spin dynamics
(panel D) again correlate poorly. A �2 analysis of this
data, discussed in detail in the Supplementary Material,
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III. CLASSICAL ALGORITHMS

A. Simulated annealing

Simulated annealing is a Monte Carlo optimization al-
gorithm that uses local updates in an Ising model to
mimic the performance of a classical, thermal, annealer.
It is thus the appropriate model for a device in which
quantum e↵ects are limited to triggering thermal fluctu-
ations of the otherwise classical spins. We expect that a
simulated annealer would describe the D-Wave device if
decoherence were strong enough to turn it into a classical
device.

Simulated annealing (SA) has been performed by us-
ing the Metropolis algorithm to sequentially update one
spin after the other. One pass through all spins is called
one sweep, and the number of sweeps is our measure of
the annealing time for SA. Our highly optimised simu-
lated annealing code, based on a variant of the algorithm
in Ref. [3, 4], uses multi-spin coding to simultaneously
perform 64 simulations in parallel on a single CPU core:
each bit of a 64-bit integer represents the state of a spin
in one of the 64 simulations and all 64 spins are updated
at once. A similar code for GPUs uses 32-bit integers and
additionally performs many independent annealing runs
and updates many spins in parallel in multiple threads.

The performance of our codes on the classical reference
hardware is shown in Table I. We use high-end chips at
the time of writing, an 8-core Intel Xeon E5-2670 “Sandy
Bridge” CPU and an Nvidia Tesla K20X “Kepler” GPU.
To find a ground state of our hardest 108-spin instances
with a probability of 99%, this translates to a median
annealing 32µs on a single core of the CPU, 4µs on eight
cores, and 0.8µs on the GPU, which should be compared
to 15µs pure annealing time on the D-Wave device for
the same problems.

For the performance comparisons simulated annealing
was performed with a “linear” schedule, shown in fig-
ure 3a, where the inverse temperature � = 1/k

B

T is in-
creased linearly, thus cooling the system. An optimized
schedule, using the average specific heat to guide the an-
nealing schedule [5] changes the total required annealing
time by a few percent and we thus focused on the linear
schedule. For quantitative correlation analyses we also
performed classical annealing with an annealing sched-
ule motivated by the D-Wave device. Here we increased
� in the simulation in the same way as the Ising cou-
plings and longitudinal magnetic fields are increased in
the device (see figure 3b).

spin flips per ns relative speed

Intel Xeon E5-2670, 1 core 5 1

Intel Xeon E5-2670, 8 cores 40 8

Nvidia Tesla K20X GPU 210 42

TABLE I: Performance of the classical annealer on our refer-
ence CPU and GPU.

FIG. 2: Correlation between simulated quantum an-
nealers. Axes corresponds to success probabilities and pix-
els are colour-coded according to the number of instances.
A) correlations between continuous- and discrete time Monte
Carlo simulations. The scatter observed here is a measure for
the dependence of success probabilities on details of the simu-
lated quantum annealing implementation, for instances with
N = 108 spins performing 10,000 sweeps. B) Correlations
between two independent sets of 1000 simulations with dif-
ferent initial starting points. Schedule II and 10,000 sweeps
are used, see figure 3. Both simulations were performed at
T = 0.1.

B. Simulated quantum annealing

“Simulated quantum annealing” (SQA) is a classi-
cal annealing algorithm based on quantum Monte Carlo
(QMC) simulations following the same annealing sched-
ule as a quantum annealer, but using Monte Carlo dy-
namics instead of the unitary (or dissipative) evolution of
the system in a quantum annealer (QA). While the term
QA has often been used generically for both cases [6–8],
some publications have used various terms to distinguish
between these two types evolution dynamics: “Path-
Integral Monte Carlo-QA” versus “Real Time-QA” in
Refs. [7, 9], “Quantum Monte Carlo Annealing” ver-
sus “QA with real time adiabatic evolution” in Ref. [8],
and “Simulated Quantum Annealing” versus “Quantum
Annealing” in Ref. [10]. We use the latter convention.

SQA performs a path-integral QMC simulation of a
transverse field quantum Ising model. The path-integral
formulation maps the quantum spin system to a clas-
sical spin system by adding an extra spatial dimension

FIG. 3: Annealing schedules used for Monte Carlo
codes A) schedule I, the linear schedule. B) schedule II, the
schedule of the D-Wave device.

e�
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Then,$what$is$the$role$of$transverse$field?$

Classical'Models'for'D/Wave?'
! Boixo%et%al.%[1]:%Novel%argument%for%proving%quantumness.%
D;Wave%and%Simulated%Quantum%Annealing%exhibits%bimodal%
signature,%but%could%not%find%a%classical%algorithm%that%matches,%
including%Simulated%Annealing,%which%has%unimodal%signature.%
! Smolin,%Smith%[2]:%SimulaHon%of%classical%rotor%models%also%
exhibits%bimodal%signature%;;%unimodal%distribuHon%was%simply%a%
consequence%of%independence%between%different%runs.%
! Authors%of%[1]%responded%in%[3]%that%their%conclusions%were%
based%on%more%detailed%correlaHon%analysis.%In%parHcular,%the%
correlaHon%between%DW%and%SQA%is%higher%than%the%correlaHon%
between%DW%and%classical%models,%including%rotor%models.%
! Ques5on:%Could%there%be%a%classical%model%for%D;Wave%that%
also%shows%a%good%correlaHon?%
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Background 

Role of transverse field 
! If%we%remove%the%transverse%field%A(t)%from%our%model,%we%obtain%
O(2)%simulated%annealing,%which%shows%unimodal%signature.%
! How%does%the%transverse%field%affect%the%evoluHon?%

⇒ Provides%gradaHon%in%the%magnitude%of%z;components.%

!  Reminiscent%of%the%relaHonship%between%cuts%and%eigenvectors%
of%graphs%in%spectral%graph%theory.%

Our model 
! Use%O(2)%rotor%model%as%in%Smolin%and%Smith%[2],%but%
simulate%by%Metropolis%algorithm%rather%than%integraHng%
the%equaHon%of%moHon.%

Noise%Model%(O(2)%Metropolis)%
At%each%Hme%step,%perform%the%following%update:%%
i.  For%each%spin,%pick%%%%%%uniformly%at%random%and%
compute%the%change%in%energy%%%%%%%%%%if%the%spin%was%
to%move%to%%%%%%.%%

ii. Update%%%%%%%%%%%%%%%%with%probability%%%%%%%%%%%%%%%.%%%

Model%
Each%spin%is%represented%by%a%unit%vector%poinHng%at%
some%angle%%%%%.%The%Hamiltonian%is%given%by%
%
%
At%zero%temperature,%each%spin%aligns%with%the%net%
effecHve%field%at%that%locaHon.%At%finite%temperature,%
spins%get%perturbed%as%follows:%

✓i

Hi = �A(t) cos ✓i +B(t)
X

Jij sin ✓i sin ✓j
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Experiments were performed on the dataset provided in [3], which is 
the same dataset that was used in the experiments of [1]. 
Parameters : T=0.22GHz, duration=250,000 steps. 
Correlation coefficient R with D-Wave is about 0.89. 
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Time%t%

Annealing'schedule'of'D/Wave'(approximate)'A(t)%

B(t)%

~0.08 provably deterministic  
~0.15 empirically deterministic  

0.15~0.4 branching of fixed points 
behaves like SA 0.4~ 

theoretically equivalent to SA 0.6~ 

# of fixed points 
(empirical data) 

2.7 
(t=0.15) 

5.6 
(t=0.175) 

13.3 
(t=0.20) 

28.1 
(t=0.30) 

28.3 
(t=0.40) 

1 
(t=0.10) 

! The%number%of%branches%is%
surprisingly%low,%considering%the%
problem%size%(N=108).%
! Olen%there%exists%a%strongly%
preferred%branch,%making%the%
process%even%more%determinisHc.%

Evolution of the system 
! At%zero%temperature,%i.e.%in%the%absence%of%noise,%the%simulaHon%
can%be%viewed%as%a%fixed%point%iteraHon%procedure.%%
! By%a%theorem%in%topology,%all%fixed%points%(equilibria)%are%
reachable%from%the%starHng%point.%
! Thus,%as%Hme%t%changes,%the%model%traces%the%fixed%points%
(equilibria)%of%the%Hme;dependent%update%funcHon.%

! A%case%study:%the%instance%13;55;29%has%two%branches%at%
t=0.1725%up%to%two;fold%symmetry%of%z;flips%of%all%spins.%
! Comparison%of%the%two%branches%suggests%that%the%
orientaHon%between%large;scale%clusters%gets%determined%
during%the%branching.%
! As%t%increases,%smaller;scale%clusters%become%involved.%
! Other%instances%show%similar%behavior.%

What happens at branching points? 

! To%confirm%our%intuiHve%picture%about%the%reasons%behind%
high%correlaHon%with%D;Wave,%we%show%the%following%algorithm%
also%achieves%high%correlaHon%R=0.90.%

! Up%to%t=0.4,%simulate%our%model%as%usual.%
! At%t=0.4,%let%the%system%reach%a%fixed%point%by%dropping%
the%temperature%to%zero%and%simulaHng%many%steps%with%
non;evolving%Hamiltonian.%
! Resume%the%simulaHon%from%t=0.4,%but%with%the%
transverse%field%A(t)%completely%turned%off.%The%rest%of%the%
evoluHon%is%equivalent%to%simulated%annealing%that%starts%
at%an%already%low%temperature.%

! The%model%indicates%that%8;spin%supernodes%with%highly%
stable%local%configuraHons%get%fixed%early.%The%main%challenge%is%
breaking%their%two;fold%symmetry%based%on%interacHon%with%
other%supernodes.%In%this%sense,%the%effecHve%problem%size%may%
be%thought%of%as%closer%to%#%of%supernodes%(=16)%rather%than%#%
of%spins%(=108).%The%last%stage%of%the%schedule,%which%is%
equivalent%to%SA%at%low%temperature,%is%effecHvely%local%search%
in%the%neighborhood%of%the%current%configuraHon.%

This%work%was%supported%by%ARO%Grant%W911NF;09;1;0440%and%NSF%Grant%
CCF;0905626.%
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! Figure shows the less 
frequent of the two 
branches. 

! Blue edge: 
ferromagnetic interaction 

! Red edge: 
antiferromagnetic 
interaction 

! Black spins are the ones 
where the sign of the z-
component differs 
between the two 
branches. 

! Thus, the orientation 
between the white 
cluster and the black 
cluster is determined 
during this branching 
process. 
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over classical algorithms.
To perform quantum annealing, we map each of the

Ising variables �z

i

to the Pauli z-matrix (which defines the
“computational basis”) and add a transverse magnetic
field in the x-direction to induce quantum fluctuations,
obtaining the time-dependent N -qubit Hamiltonian

H(t) = �A(t)
X

i

�x

i

+ B(t)HIsing , t 2 [0, t
f

] . (2)

Quantum annealing at positive temperature T starts
in the limit of a strong transverse field and weak prob-
lem Hamiltonian, A(0) � max(k

B

T , B(0)), with the sys-
tem state close to the ground state of the transverse field
term, the equal superposition state (in the computational
basis) of all N qubits. Monotonically decreasing A(t) and
increasing B(t), the system evolves towards the ground
state of the problem Hamiltonian, with B(t

f

) � A(t
f

).
Unlike adiabatic quantum computing [16], which has

a similar schedule but assumes fully coherent adiabatic
ground state evolution at zero temperature, quantum
annealing [4–6, 10] is a positive temperature method
involving an open quantum system coupled to a thermal
bath. Nevertheless, one expects that similar to adiabatic
quantum computing, small gaps to excited states may
thwart finding the ground state. In hard optimisation
problems, the smallest gaps of avoided level crossings
have been found to close exponentially fast with in-
creasing problem size [17–19], suggesting an exponential
scaling of the required annealing time t

f

with problem
size N .

Experimental results
We performed our experiments on a D-Wave One chip,
a device comprised of superconducting flux qubits with
programmable couplings (see Methods). Of the 128
qubits on the device, 108 were fully functioning and were
used in our experiments. The “chimera” connectivity
graph of these qubits is shown in figure 1 in the sup-
plementary material. Instead of trying to map specific
optimisation problem to the connectivity graph of the
chip [20, 21], we chose random spin glass problems that
can be directly realised. For each coupler J

ij

in the de-
vice we randomly assigned a value of either +1 or �1,
giving rise to a very rough energy landscape. Local fields
h
i

6= 0 give a bias to individual spins, tending to make
the problem easier to solve for annealers. We thus set
all h

i

= 0 for most data shown here and provide data
with local fields in the supplementary material. We per-
formed experiments for problems of sizes ranging from
N = 8 to N = 108. For each problem size N , we selected
1000 di↵erent instances by choosing 1000 sets of di↵er-
ent random couplings J

ij

= ±1 (and for some of the data
also random fields h

i

= ±1). For each of these instances,
we performed M = 1000 annealing runs and determined
whether the system reached the ground state.

Our strategy is to discover the operating mechanism of
the D-Wave device (DW) by comparing to three models:
simulated classical annealing (SA), simulated quantum

FIG. 1: Success probability distribu-
tions. Shown are normalized histograms p(s) =
(number of instances with probability s)/K of the suc-
cess probabilities of finding the ground states for N = 108
qubits and K = 1000 di↵erent spin glass instances. We find
similar bimodal distributions for the D-Wave results (DW,
panel A) and the simulated quantum annealer (SQA, panel
B), and somewhat similar distributions for spin dynamics
(SD, panel D). The unimodal distribution for the simulated
annealer (SA, panel C) clearly does not match. The D-Wave
data is taken with gauge averaging of 16 sets. Note the
di↵erent vertical axis scale for D).

annealing (SQA), and classical spin dynamics (SD). We
study both the distribution of the success probabilities
and the correlations between the D-Wave device and the
models.

For our first test, we counted for each instance the
number of runs MGS in which the ground state was
reached, to determine the success probability as s =
MGS/M . Plots of the distribution of s are shown in
figure 1, where we see that the DW results match well
with SQA, moderately with SD, and poorly with SA.
We find a unimodal distribution for the simulated an-
nealer model for all schedules, temperatures and anneal-
ing times we tried, with a peak position that moves to
the right as one increases t

f

(see supplementary mate-
rial). In contrast, the D-Wave device, the simulated
quantum annealer and the spin dynamics model exhibit
a bimodal distribution, with a clear split into easy and
hard instances. Moderately increasing t

f

in the simu-
lated quantum annealer makes the bimodal distribution
more pronounced, as does lowering the temperature (see
supplementary material).

As a second test, we show in figure 2 results for the
joint probability distribution p(s,�), which also includes
the probability distribution for the final state energy �
measured relative to the ground state. We find that the
distribution for the D-Wave device (panel A) is very sim-
ilar to that of the simulated quantum annealer (panel
B), whereas it is quite di↵erent from that of a simulated

D-Wave SQA 

SA Rotor model 
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FIG. 2: Energy-success distributions. Shown is the joint
probability distribution p(s,�) (colour scale) of success prob-
ability s and the final state energy � measured relative to
the ground state. We find very similar results for the D-Wave
device (panel A) and the simulated quantum annealer (panel
B). The distribution for simulated classical annealing (panel
C) matches poorly and for spin dynamics (panel D) matches
only moderately. For the D-Wave device and SQA the hard-
est instances result predominantly in low-lying excited states,
while easy instances result in ground states. For SA most
instances concentrate around intermediate success probabili-
ties and the ground state as well as low-lying excited states.
For classical spin dynamics there is a significantly higher inci-
dence of relatively high excited states than for DW, as well as
far fewer excited states for easy instances. The histograms of
figure 1, representing p(s), are recovered when summing these
distributions over �. SA distributions for di↵erent numbers
of sweeps are shown in the supplementary material.

classical annealer (panel C) and spin dynamics (panel D).

The third test, shown in figure 3, is perhaps the most
enlightening, as it plots the correlation of the success
probabilities between the DW data and the other models.
As a reference for the best correlations we may expect,
we show in panel A) the correlations between two di↵er-
ent sets of eight gauges (di↵erent embeddings of the same
problem on the device, see Methods and supplementary
material): no better correlations than the device with it-
self can be expected due to calibration errors. Panel B)
shows a scatter plot of the hardness of instances for the
simulated quantum annealer and the D-Wave device after
gauge averaging. The high density in the lower left cor-
ner (hard for both methods) and the upper right corner
(easy for both methods) confirms the similarities between
the D-Wave device and a simulated quantum annealer.
The two are also well correlated for instances of inter-
mediate hardness. The similarity to panel A) suggests
almost perfect correlation with SQA, to within calibra-
tion uncertainties.

FIG. 3: Correlations. Panels A-C show scatter plots of
correlations of the success probabilities p(s) obtained from
di↵erent methods. The red lines indicate perfect correlation.
Panel A is for the D-Wave device between two sets of eight
di↵erent gauges. This data shows the baseline imperfections
in the correlations due to calibration errors in the D-Wave de-
vice. Panel B is for the simulated quantum annealer (SQA)
and the D-Wave device, with the latter averaged over 16 ran-
dom gauges. This correlation is nearly as good as in panel A,
indicating good correlations between the two methods.. Panel
C is for the classical spin dynamics and the D-Wave device,
and shows poor correlation. Panel D shows the correlation
between success probability and the mean Hamming distance
of excited states found at the end of the annealing forN = 108
spin instances with local random fields. Easy (hard) instances
tend to have a small (large) Hamming distance. The colour
scale indicates how many of the instances are found in a pixel
of the plots.

In panel C) we show the correlation between the classi-
cal spin dynamics model and the device. Some instances
are easily solved by the classical mean-field dynamics,
simulated quantum annealing, and the device. However,
as can be expected from inspection of their respective
distributions in figure 1, there is no apparent correlation
between the hard instances for the spin dynamics model
and the success probability on the device, nor does there
appear to be a correlation for instances of intermediate
hardness, in contrast to the correlations seen in panel A).
Similarly, there are poor correlations [22] with a classical
spin dynamics model of reference [23].

The correlations between the simulated classical an-
nealer and the D-Wave device, shown in the supplemen-
tary material, are significantly worse than between SQA
and the device.

We next provide evidence for the bimodality being due
to quantum e↵ects. Our first evidence comes from the
simulated quantum annealer. When lowering the temper-
ature thermal updates are suppressed, quantum tunnel-
ing dominates thermal barrier crossing, and we observe
a stronger bimodality; indeed a similar bimodal distri-
bution arises also in an ensemble of (zero-temperature)
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FIG. 2: Energy-success distributions. Shown is the joint
probability distribution p(s,�) (colour scale) of success prob-
ability s and the final state energy � measured relative to
the ground state. We find very similar results for the D-Wave
device (panel A) and the simulated quantum annealer (panel
B). The distribution for simulated classical annealing (panel
C) matches poorly and for spin dynamics (panel D) matches
only moderately. For the D-Wave device and SQA the hard-
est instances result predominantly in low-lying excited states,
while easy instances result in ground states. For SA most
instances concentrate around intermediate success probabili-
ties and the ground state as well as low-lying excited states.
For classical spin dynamics there is a significantly higher inci-
dence of relatively high excited states than for DW, as well as
far fewer excited states for easy instances. The histograms of
figure 1, representing p(s), are recovered when summing these
distributions over �. SA distributions for di↵erent numbers
of sweeps are shown in the supplementary material.

classical annealer (panel C) and spin dynamics (panel D).

The third test, shown in figure 3, is perhaps the most
enlightening, as it plots the correlation of the success
probabilities between the DW data and the other models.
As a reference for the best correlations we may expect,
we show in panel A) the correlations between two di↵er-
ent sets of eight gauges (di↵erent embeddings of the same
problem on the device, see Methods and supplementary
material): no better correlations than the device with it-
self can be expected due to calibration errors. Panel B)
shows a scatter plot of the hardness of instances for the
simulated quantum annealer and the D-Wave device after
gauge averaging. The high density in the lower left cor-
ner (hard for both methods) and the upper right corner
(easy for both methods) confirms the similarities between
the D-Wave device and a simulated quantum annealer.
The two are also well correlated for instances of inter-
mediate hardness. The similarity to panel A) suggests
almost perfect correlation with SQA, to within calibra-
tion uncertainties.

FIG. 3: Correlations. Panels A-C show scatter plots of
correlations of the success probabilities p(s) obtained from
di↵erent methods. The red lines indicate perfect correlation.
Panel A is for the D-Wave device between two sets of eight
di↵erent gauges. This data shows the baseline imperfections
in the correlations due to calibration errors in the D-Wave de-
vice. Panel B is for the simulated quantum annealer (SQA)
and the D-Wave device, with the latter averaged over 16 ran-
dom gauges. This correlation is nearly as good as in panel A,
indicating good correlations between the two methods.. Panel
C is for the classical spin dynamics and the D-Wave device,
and shows poor correlation. Panel D shows the correlation
between success probability and the mean Hamming distance
of excited states found at the end of the annealing forN = 108
spin instances with local random fields. Easy (hard) instances
tend to have a small (large) Hamming distance. The colour
scale indicates how many of the instances are found in a pixel
of the plots.

In panel C) we show the correlation between the classi-
cal spin dynamics model and the device. Some instances
are easily solved by the classical mean-field dynamics,
simulated quantum annealing, and the device. However,
as can be expected from inspection of their respective
distributions in figure 1, there is no apparent correlation
between the hard instances for the spin dynamics model
and the success probability on the device, nor does there
appear to be a correlation for instances of intermediate
hardness, in contrast to the correlations seen in panel A).
Similarly, there are poor correlations [22] with a classical
spin dynamics model of reference [23].

The correlations between the simulated classical an-
nealer and the D-Wave device, shown in the supplemen-
tary material, are significantly worse than between SQA
and the device.

We next provide evidence for the bimodality being due
to quantum e↵ects. Our first evidence comes from the
simulated quantum annealer. When lowering the temper-
ature thermal updates are suppressed, quantum tunnel-
ing dominates thermal barrier crossing, and we observe
a stronger bimodality; indeed a similar bimodal distri-
bution arises also in an ensemble of (zero-temperature)

Rotor model 
All figures are from [1] 
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III. CLASSICAL ALGORITHMS

A. Simulated annealing

Simulated annealing is a Monte Carlo optimization al-
gorithm that uses local updates in an Ising model to
mimic the performance of a classical, thermal, annealer.
It is thus the appropriate model for a device in which
quantum e↵ects are limited to triggering thermal fluctu-
ations of the otherwise classical spins. We expect that a
simulated annealer would describe the D-Wave device if
decoherence were strong enough to turn it into a classical
device.

Simulated annealing (SA) has been performed by us-
ing the Metropolis algorithm to sequentially update one
spin after the other. One pass through all spins is called
one sweep, and the number of sweeps is our measure of
the annealing time for SA. Our highly optimised simu-
lated annealing code, based on a variant of the algorithm
in Ref. [3, 4], uses multi-spin coding to simultaneously
perform 64 simulations in parallel on a single CPU core:
each bit of a 64-bit integer represents the state of a spin
in one of the 64 simulations and all 64 spins are updated
at once. A similar code for GPUs uses 32-bit integers and
additionally performs many independent annealing runs
and updates many spins in parallel in multiple threads.

The performance of our codes on the classical reference
hardware is shown in Table I. We use high-end chips at
the time of writing, an 8-core Intel Xeon E5-2670 “Sandy
Bridge” CPU and an Nvidia Tesla K20X “Kepler” GPU.
To find a ground state of our hardest 108-spin instances
with a probability of 99%, this translates to a median
annealing 32µs on a single core of the CPU, 4µs on eight
cores, and 0.8µs on the GPU, which should be compared
to 15µs pure annealing time on the D-Wave device for
the same problems.

For the performance comparisons simulated annealing
was performed with a “linear” schedule, shown in fig-
ure 3a, where the inverse temperature � = 1/k

B

T is in-
creased linearly, thus cooling the system. An optimized
schedule, using the average specific heat to guide the an-
nealing schedule [5] changes the total required annealing
time by a few percent and we thus focused on the linear
schedule. For quantitative correlation analyses we also
performed classical annealing with an annealing sched-
ule motivated by the D-Wave device. Here we increased
� in the simulation in the same way as the Ising cou-
plings and longitudinal magnetic fields are increased in
the device (see figure 3b).

spin flips per ns relative speed

Intel Xeon E5-2670, 1 core 5 1

Intel Xeon E5-2670, 8 cores 40 8

Nvidia Tesla K20X GPU 210 42

TABLE I: Performance of the classical annealer on our refer-
ence CPU and GPU.

FIG. 2: Correlation between simulated quantum an-
nealers. Axes corresponds to success probabilities and pix-
els are colour-coded according to the number of instances.
A) correlations between continuous- and discrete time Monte
Carlo simulations. The scatter observed here is a measure for
the dependence of success probabilities on details of the simu-
lated quantum annealing implementation, for instances with
N = 108 spins performing 10,000 sweeps. B) Correlations
between two independent sets of 1000 simulations with dif-
ferent initial starting points. Schedule II and 10,000 sweeps
are used, see figure 3. Both simulations were performed at
T = 0.1.

B. Simulated quantum annealing

“Simulated quantum annealing” (SQA) is a classi-
cal annealing algorithm based on quantum Monte Carlo
(QMC) simulations following the same annealing sched-
ule as a quantum annealer, but using Monte Carlo dy-
namics instead of the unitary (or dissipative) evolution of
the system in a quantum annealer (QA). While the term
QA has often been used generically for both cases [6–8],
some publications have used various terms to distinguish
between these two types evolution dynamics: “Path-
Integral Monte Carlo-QA” versus “Real Time-QA” in
Refs. [7, 9], “Quantum Monte Carlo Annealing” ver-
sus “QA with real time adiabatic evolution” in Ref. [8],
and “Simulated Quantum Annealing” versus “Quantum
Annealing” in Ref. [10]. We use the latter convention.

SQA performs a path-integral QMC simulation of a
transverse field quantum Ising model. The path-integral
formulation maps the quantum spin system to a clas-
sical spin system by adding an extra spatial dimension

FIG. 3: Annealing schedules used for Monte Carlo
codes A) schedule I, the linear schedule. B) schedule II, the
schedule of the D-Wave device.
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III. CLASSICAL ALGORITHMS

A. Simulated annealing

Simulated annealing is a Monte Carlo optimization al-
gorithm that uses local updates in an Ising model to
mimic the performance of a classical, thermal, annealer.
It is thus the appropriate model for a device in which
quantum e↵ects are limited to triggering thermal fluctu-
ations of the otherwise classical spins. We expect that a
simulated annealer would describe the D-Wave device if
decoherence were strong enough to turn it into a classical
device.

Simulated annealing (SA) has been performed by us-
ing the Metropolis algorithm to sequentially update one
spin after the other. One pass through all spins is called
one sweep, and the number of sweeps is our measure of
the annealing time for SA. Our highly optimised simu-
lated annealing code, based on a variant of the algorithm
in Ref. [3, 4], uses multi-spin coding to simultaneously
perform 64 simulations in parallel on a single CPU core:
each bit of a 64-bit integer represents the state of a spin
in one of the 64 simulations and all 64 spins are updated
at once. A similar code for GPUs uses 32-bit integers and
additionally performs many independent annealing runs
and updates many spins in parallel in multiple threads.

The performance of our codes on the classical reference
hardware is shown in Table I. We use high-end chips at
the time of writing, an 8-core Intel Xeon E5-2670 “Sandy
Bridge” CPU and an Nvidia Tesla K20X “Kepler” GPU.
To find a ground state of our hardest 108-spin instances
with a probability of 99%, this translates to a median
annealing 32µs on a single core of the CPU, 4µs on eight
cores, and 0.8µs on the GPU, which should be compared
to 15µs pure annealing time on the D-Wave device for
the same problems.

For the performance comparisons simulated annealing
was performed with a “linear” schedule, shown in fig-
ure 3a, where the inverse temperature � = 1/k

B

T is in-
creased linearly, thus cooling the system. An optimized
schedule, using the average specific heat to guide the an-
nealing schedule [5] changes the total required annealing
time by a few percent and we thus focused on the linear
schedule. For quantitative correlation analyses we also
performed classical annealing with an annealing sched-
ule motivated by the D-Wave device. Here we increased
� in the simulation in the same way as the Ising cou-
plings and longitudinal magnetic fields are increased in
the device (see figure 3b).

spin flips per ns relative speed

Intel Xeon E5-2670, 1 core 5 1

Intel Xeon E5-2670, 8 cores 40 8

Nvidia Tesla K20X GPU 210 42

TABLE I: Performance of the classical annealer on our refer-
ence CPU and GPU.

FIG. 2: Correlation between simulated quantum an-
nealers. Axes corresponds to success probabilities and pix-
els are colour-coded according to the number of instances.
A) correlations between continuous- and discrete time Monte
Carlo simulations. The scatter observed here is a measure for
the dependence of success probabilities on details of the simu-
lated quantum annealing implementation, for instances with
N = 108 spins performing 10,000 sweeps. B) Correlations
between two independent sets of 1000 simulations with dif-
ferent initial starting points. Schedule II and 10,000 sweeps
are used, see figure 3. Both simulations were performed at
T = 0.1.

B. Simulated quantum annealing

“Simulated quantum annealing” (SQA) is a classi-
cal annealing algorithm based on quantum Monte Carlo
(QMC) simulations following the same annealing sched-
ule as a quantum annealer, but using Monte Carlo dy-
namics instead of the unitary (or dissipative) evolution of
the system in a quantum annealer (QA). While the term
QA has often been used generically for both cases [6–8],
some publications have used various terms to distinguish
between these two types evolution dynamics: “Path-
Integral Monte Carlo-QA” versus “Real Time-QA” in
Refs. [7, 9], “Quantum Monte Carlo Annealing” ver-
sus “QA with real time adiabatic evolution” in Ref. [8],
and “Simulated Quantum Annealing” versus “Quantum
Annealing” in Ref. [10]. We use the latter convention.

SQA performs a path-integral QMC simulation of a
transverse field quantum Ising model. The path-integral
formulation maps the quantum spin system to a clas-
sical spin system by adding an extra spatial dimension

FIG. 3: Annealing schedules used for Monte Carlo
codes A) schedule I, the linear schedule. B) schedule II, the
schedule of the D-Wave device.
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A. Simulated annealing

Simulated annealing is a Monte Carlo optimization al-
gorithm that uses local updates in an Ising model to
mimic the performance of a classical, thermal, annealer.
It is thus the appropriate model for a device in which
quantum e↵ects are limited to triggering thermal fluctu-
ations of the otherwise classical spins. We expect that a
simulated annealer would describe the D-Wave device if
decoherence were strong enough to turn it into a classical
device.

Simulated annealing (SA) has been performed by us-
ing the Metropolis algorithm to sequentially update one
spin after the other. One pass through all spins is called
one sweep, and the number of sweeps is our measure of
the annealing time for SA. Our highly optimised simu-
lated annealing code, based on a variant of the algorithm
in Ref. [3, 4], uses multi-spin coding to simultaneously
perform 64 simulations in parallel on a single CPU core:
each bit of a 64-bit integer represents the state of a spin
in one of the 64 simulations and all 64 spins are updated
at once. A similar code for GPUs uses 32-bit integers and
additionally performs many independent annealing runs
and updates many spins in parallel in multiple threads.

The performance of our codes on the classical reference
hardware is shown in Table I. We use high-end chips at
the time of writing, an 8-core Intel Xeon E5-2670 “Sandy
Bridge” CPU and an Nvidia Tesla K20X “Kepler” GPU.
To find a ground state of our hardest 108-spin instances
with a probability of 99%, this translates to a median
annealing 32µs on a single core of the CPU, 4µs on eight
cores, and 0.8µs on the GPU, which should be compared
to 15µs pure annealing time on the D-Wave device for
the same problems.

For the performance comparisons simulated annealing
was performed with a “linear” schedule, shown in fig-
ure 3a, where the inverse temperature � = 1/k
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T is in-
creased linearly, thus cooling the system. An optimized
schedule, using the average specific heat to guide the an-
nealing schedule [5] changes the total required annealing
time by a few percent and we thus focused on the linear
schedule. For quantitative correlation analyses we also
performed classical annealing with an annealing sched-
ule motivated by the D-Wave device. Here we increased
� in the simulation in the same way as the Ising cou-
plings and longitudinal magnetic fields are increased in
the device (see figure 3b).

spin flips per ns relative speed
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Intel Xeon E5-2670, 8 cores 40 8
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TABLE I: Performance of the classical annealer on our refer-
ence CPU and GPU.

FIG. 2: Correlation between simulated quantum an-
nealers. Axes corresponds to success probabilities and pix-
els are colour-coded according to the number of instances.
A) correlations between continuous- and discrete time Monte
Carlo simulations. The scatter observed here is a measure for
the dependence of success probabilities on details of the simu-
lated quantum annealing implementation, for instances with
N = 108 spins performing 10,000 sweeps. B) Correlations
between two independent sets of 1000 simulations with dif-
ferent initial starting points. Schedule II and 10,000 sweeps
are used, see figure 3. Both simulations were performed at
T = 0.1.

B. Simulated quantum annealing

“Simulated quantum annealing” (SQA) is a classi-
cal annealing algorithm based on quantum Monte Carlo
(QMC) simulations following the same annealing sched-
ule as a quantum annealer, but using Monte Carlo dy-
namics instead of the unitary (or dissipative) evolution of
the system in a quantum annealer (QA). While the term
QA has often been used generically for both cases [6–8],
some publications have used various terms to distinguish
between these two types evolution dynamics: “Path-
Integral Monte Carlo-QA” versus “Real Time-QA” in
Refs. [7, 9], “Quantum Monte Carlo Annealing” ver-
sus “QA with real time adiabatic evolution” in Ref. [8],
and “Simulated Quantum Annealing” versus “Quantum
Annealing” in Ref. [10]. We use the latter convention.

SQA performs a path-integral QMC simulation of a
transverse field quantum Ising model. The path-integral
formulation maps the quantum spin system to a clas-
sical spin system by adding an extra spatial dimension

FIG. 3: Annealing schedules used for Monte Carlo
codes A) schedule I, the linear schedule. B) schedule II, the
schedule of the D-Wave device.
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ations of the otherwise classical spins. We expect that a
simulated annealer would describe the D-Wave device if
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Simulated annealing (SA) has been performed by us-
ing the Metropolis algorithm to sequentially update one
spin after the other. One pass through all spins is called
one sweep, and the number of sweeps is our measure of
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lated annealing code, based on a variant of the algorithm
in Ref. [3, 4], uses multi-spin coding to simultaneously
perform 64 simulations in parallel on a single CPU core:
each bit of a 64-bit integer represents the state of a spin
in one of the 64 simulations and all 64 spins are updated
at once. A similar code for GPUs uses 32-bit integers and
additionally performs many independent annealing runs
and updates many spins in parallel in multiple threads.

The performance of our codes on the classical reference
hardware is shown in Table I. We use high-end chips at
the time of writing, an 8-core Intel Xeon E5-2670 “Sandy
Bridge” CPU and an Nvidia Tesla K20X “Kepler” GPU.
To find a ground state of our hardest 108-spin instances
with a probability of 99%, this translates to a median
annealing 32µs on a single core of the CPU, 4µs on eight
cores, and 0.8µs on the GPU, which should be compared
to 15µs pure annealing time on the D-Wave device for
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For the performance comparisons simulated annealing
was performed with a “linear” schedule, shown in fig-
ure 3a, where the inverse temperature � = 1/k
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T is in-
creased linearly, thus cooling the system. An optimized
schedule, using the average specific heat to guide the an-
nealing schedule [5] changes the total required annealing
time by a few percent and we thus focused on the linear
schedule. For quantitative correlation analyses we also
performed classical annealing with an annealing sched-
ule motivated by the D-Wave device. Here we increased
� in the simulation in the same way as the Ising cou-
plings and longitudinal magnetic fields are increased in
the device (see figure 3b).
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ence CPU and GPU.

FIG. 2: Correlation between simulated quantum an-
nealers. Axes corresponds to success probabilities and pix-
els are colour-coded according to the number of instances.
A) correlations between continuous- and discrete time Monte
Carlo simulations. The scatter observed here is a measure for
the dependence of success probabilities on details of the simu-
lated quantum annealing implementation, for instances with
N = 108 spins performing 10,000 sweeps. B) Correlations
between two independent sets of 1000 simulations with dif-
ferent initial starting points. Schedule II and 10,000 sweeps
are used, see figure 3. Both simulations were performed at
T = 0.1.

B. Simulated quantum annealing

“Simulated quantum annealing” (SQA) is a classi-
cal annealing algorithm based on quantum Monte Carlo
(QMC) simulations following the same annealing sched-
ule as a quantum annealer, but using Monte Carlo dy-
namics instead of the unitary (or dissipative) evolution of
the system in a quantum annealer (QA). While the term
QA has often been used generically for both cases [6–8],
some publications have used various terms to distinguish
between these two types evolution dynamics: “Path-
Integral Monte Carlo-QA” versus “Real Time-QA” in
Refs. [7, 9], “Quantum Monte Carlo Annealing” ver-
sus “QA with real time adiabatic evolution” in Ref. [8],
and “Simulated Quantum Annealing” versus “Quantum
Annealing” in Ref. [10]. We use the latter convention.

SQA performs a path-integral QMC simulation of a
transverse field quantum Ising model. The path-integral
formulation maps the quantum spin system to a clas-
sical spin system by adding an extra spatial dimension

FIG. 3: Annealing schedules used for Monte Carlo
codes A) schedule I, the linear schedule. B) schedule II, the
schedule of the D-Wave device.
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How$is$it$possible$that$exploring$such$a$small$search$space,$this$
model$is$sSll$capable$of$solving$a$1082bit$problem$so$well?$

&There&are&2108&possible&solu5ons,&but&we&are&finding&the&right&
&solu5on&by&just&looking&at&a&dozen&of&them!&
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The$effecSve$problem$size$is$closer$to$m=16$than$n=108?$

Rønnow$et$al.$2014:$as$problem$size$grows,$running$Sme$scales$
exponenSally$with$no$apparent$improvement$over$classical$algorithms.$
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•  Vinci&et&al.&(2014)&recently&uploaded&a&preprint&(arXiv:1403.4228)&
in&which&they&propose&an&experiment&that&dis5nguishes&between&
our&model&and&the&DTWave&machine.&

•  The&experiment&involves&local&zTfields.&

•  The&discrepancy&between&the&experiment&and&our&model&seems&
to&stem&from&firstTorder&vs.&secondTorder&terms&in&H.&

•  Preliminary&inves5ga5ons&suggest&that&calibra5on&of&the&local&zT
fields&hi&plays&an&important&role.&

•  When&we&add&some&noise&to&this&calibra5on,&our&model&seems&to&
show&similar&behavior&to&the&machine.&

•  However,&it&is&not&clear&whether&this&is&an&appropriate&ques5on&
for&our&“0thTorder”&model.&
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•  Vinci&et&al.&(2014)&recently&uploaded&a&preprint&(arXiv:1403.4228)&in&which&

they&claim&to&have&refuted&our&model&using&a&different&type&of&experiment.&
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Hamiltonian,

H
I

= �
X

i2V
hi�

z
i �

X

(i,j)2E

Jij�
z
i �z

j , (2)

and the time-dependent functions A(t) and B(t) control the
annealing schedule. Typically A(tf ) = B(0) = 0, where tf is
the total annealing time, and A(t) [B(t)] decreases (increases)
monotonically. The local fields {hi} and couplings {Jij} are
fixed. The qubits occupy the vertices V of a graph G = {V, E}
with edge set E .

A spin configuration is one of the 2N elements of a set of
±1 eigenvalues of all the Pauli matrices {�z

i }N
i=1

, which we
denote without risk of confusion by ~�z = (�z

1

, . . . , �z
N ). The

goal is to find the minimal energy spin configuration of H
I

,
i.e., argmin~�zH

I

. In SA, this problem is solved by starting
with a random initial spin configuration, flipping spins at ran-
dom at each time step while always accepting a new spin con-
figuration if it lowers the energy and accepting it probabilisti-
cally otherwise (using, e.g., the Metropolis rule), and gradu-
ally lowering the temperature to reduce the escape probability
[15]. In QA, spin flips and the thermal escape rule are replaced
by introducing the non-commuting field HX [16, 17, 22, 23],
which allows quantum tunneling out of local minima. The es-
cape probability is reduced by turning off this non-commuting
field adiabatically, i.e., the time-scale of the variation of the
A(t) and B(t) functions must be slow compared to the in-
verse of the minimal energy gap of H(t). In a physical device
implementation of QA there is always a finite temperature ef-
fect, and hence one should consider both tunneling and ther-
mal hopping [24–27].

Such physical QA devices, operating at ⇠ 20 mK using su-
perconducting flux technology, have been built by D-Wave [2–
4]. The qubits occupy the vertices of the “Chimera” graph
shown in Fig. 16 of Appendix A. Excluding the coupling to
the thermal bath, the Hamiltonian driving the device is well-
described by Eq. (1), with the functions A(t) and B(t) de-
picted in Fig. 1.

B. The quantum signature Hamiltonian

Ref. [6] introduced an 8-qubit “quantum signature Hamilto-
nian,” schematically depicted in Fig. 2, designed to distinguish
between SA and QA. Specifically, subject to this Hamiltonian,
SA and QA make distinct predictions concerning the ground
state population distribution. Let us first briefly review the
arguments leading to these distinct predictions.

The 8 spin problem comprises 4 spins connected in a ring,
which we refer to as core spins, and 4 additional spins con-
nected to each core spin, which we refer to as outer spins.
One special property of this Hamiltonian is that it has a 17-
fold degenerate ground state. Of these, 16 states form a closed
subspace of spin configurations connected via single flips of
the outer spins, hence we refer to them as the clustered (C)
ground states, or just the “cluster-states”, or “cluster”. There
is one additional state, which we call the isolated (I) ground
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FIG. 1. DW2 annealing schedules A(t) and B(t) along with the
operating temperature of T = 17mK (black dashed horizontal
line). The large A(0)/(k

B

T ) value ensures that the initial state
is the ground state of the transverse field Hamiltonian. The large
B(t

f

)/(k
B

T ) value ensures that thermal excitations are suppressed
and the final state reached is stable. Also shown are the attenuated
↵B(t) curves for (a) the value of ↵ at which the intersection between
A(t) and ↵B(t) coincides with the operating temperature (blue dot-
dashed curve), and (b) the largest ↵ such that ↵B(t) remains below
the temperature line for the entire evolution (blue dotted curve).
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FIG. 2. The 8-spin Ising Hamiltonian. The inner “core” spins (green
circles) have local fields h

i

= +1 [using the convention in Eq. (2)]
while the outer spins (red circles) have h

i

= �1. All couplings are
ferromagnetic: J

ij

= 1 (black lines).

state, connected to the cluster-states via 4 core spin flips:

C : {|0000 0000i , |0001 0000i , . . . , |1111 0000i} , (3a)
I : {|1111|{z}

outer

1111|{z}
core

i} , (3b)

where |0i and |1i are, respectively, the +1 and �1 eigenstates
of �z . This structure of the ground state manifold is easily
verified by inspection of the Hamiltonian of Fig. 2.

The clustered ground states arise from the frustration of the
outer spins, due to the competing effects of the ferromagnetic
coupling and local fields. This frustration arises only when the
core spins have eigenvalue +1, which is why there is only a
single additional (isolated) ground state where all spins have

They&report&that&our&model&does&

not&reproduce&the&machine’s&

behavior&when&the&final&

Hamiltonian&is&very&weak&

compared&to&the&XTfield.&

&

But…$

As&the&final&Hamiltonian&is&turned&down,&the&effect&of&noise&becomes&

more&and&more&significant,&which&means&we&are&more&into&the&classical&

regime.&So&in&a&sense,&our&model&is&behaving&too$quantumly…?&



•  Vinci&et&al.&(2014)&recently&uploaded&a&preprint&(arXiv:1403.4228)&in&which&

they&claim&to&have&refuted&our&model&using&a&different&type&of&experiment.&

•  Nonetheless,&our&preliminary&inves5ga5ons&seem&to&suggest&that&under&a&
reasonable&assump5on&on&calibra5on&errors,&our&model&does%reproduce%
the&machine’s&behavior.&

•  Yet…$

A$Sny$wee$bit$about$recent$developments…$

is&it&really&fair&to&ask&such&ques5ons&to&our&model?$

1& T1&

T1&

T1&

A$“0th2order”$model$ (In&the&sense&that&we&made&no&atempt&to&model&
anything&beyond&the&computa5onal&concept.)&

Cannot&expect&this&simple&model&to&

explain&everything.&

If&one&wants&to&explain&everything,&

should&model&the&inside&of&the&box.&

4

2. Five DACs per Qubit

The potential energy of an ideal compound Josephson
junction rf-SQUID qubit is [19]

U = ��oIc
2⇡

cos

✓
2⇡�q

�o

◆
cos

✓
⇡�CJJ

�o

◆

+
(�q � �x

q )
2

2 Lq
+

(�CJJ � �x
CJJ)

2

2 Lcjj
(2)

where Ic is the sum of Josephson critical currents in the
compound junction, Lq and Lcjj are the inductance in the
qubit and compound-junction loop, respectively. Like-
wise �q, �x

q , and �CJJ, �x
CJJ are the internal and applied

flux for the qubit and CJJ loop respectively.
Eq. 2 is only applicable when the two junctions making

up the compound-junction are identical. Junction criti-
cal current Ics of identically drawn Josephson junctions
in superconductor fabrication processes are reported to
have a normal distribution with a standard deviation of
anywhere from 1% to 5% [20, 21]. Thus, we expect real
compound-junctions to be naturally imbalanced. This
causes di�culties in running the annealing algorithm Alg.
2 [15]. To overcome the junction imbalance problem we
use a more complex structure which we call a compound-
compound-Josephson junction (CCJJ) which is described
in detail in [15]. This provides two additional degrees of
control freedom per qubit, which can be used to cor-
rect for reasonable junction imbalance (⇠ 5% Ic di↵er-
ence). We access these structures via the blue CCJJ mi-
nor DACs in Fig. 4.
As inter-qubit coupling strength is adjusted, the sus-

ceptibility of the coupler, and the extent to which it in-
ductively loads the qubit, will change [14]. This causes
the qubit inductance Lq in Eq. 2 to be dependent upon
the choice of {Kij}. To overcome the resulting problem-
dependent inter-qubit imbalance, we add an additional
compound-junction, comprising much larger junctions,
in series with the qubit inductance. We call this struc-
ture an L-tuner [15]. The Josephson inductance of this
compound-junction is modified with application of a flux
bias applied through an on-chip flux DAC, shown in green
in Fig. 4.
As discussed in [22], care must be taken during an-

nealing to ensure that the final Hamiltonian HF , the one
encoding the problem we wish to solve, is that which was
intended. Using a compound-junction to modify the rel-
ative weights of HI and HF causes ~h and K̂ to change
during annealing, both in an absolute sense, and relative
to each other. This arises because although energy scales
~h and K̂ are both functions of the persistent currents in
the qubits (Ip), they have di↵erent functional dependen-
cies. Qubit Ip changes during annealing, distorting HF .
To keep the relative scale constant, the value of the

applied flux used to implement ~h must change during
annealing, but �q(t) will be di↵erent for each qubit, de-

pending on the intended value of ~h for that problem. This

Flux-bias
DAC

   -comp.
DAC

CCJJ minor
DAC

CCJJ minor
DAC

   -tuner
DAC

Coupler
DAC

FIG. 4. Single qubit schematic. The five main parts of this
qubit design: the qubit main loop (black) with flux-bias DAC
providing the flux-bias �q, the CCJJ (blue) with cjj-bias �cjj

in the major lobe and two DACs biasing the minor lobes, the
L-Tuner (green) with DAC, and Ip-compensator (pink) with
DAC. Also shown is a coupler (red) with coupler DAC. The
two global time dependent control lines (Icjj and IIp) used
for running the annealing algorithm are also shown.

is accomplished by giving each qubit another tunable cou-
pler, coupled to both the qubit and a shared external
analog flux bias line. We call this an Ip-compensator.
Each such coupler is used as a variable gain element, pro-
grammed with its own DAC (the pink DAC in Fig. 4),
and used to scale a global controlled signal to the locally
required hj .
Finally, each qubit has a DAC that can apply a small

dc flux bias to its main loop (the black DAC in Fig. 4).

C. Precision and Range Requirements

Requirements on precision and range of flux from the
DACs ultimately depend on the precision to which the
elements of ~h and K̂ are to be specified. The system de-
scribed here was designed to be able to attain four e↵ec-
tive bits of precision on parameters hj and Kij ; in other
words, the elements hj and Kij can be specified with a
relative precision of about 5%. This does not mean that
the DACs need only four bits of precision. The DAC
requirements are derived from those on Hamiltonian pa-
rameters ~h and K̂, based on which aspect of a qubit or
coupler is being controlled. In our case, requiring four
bits of precision in ~h and K̂ typically translates into a
requirement of about eight bits of precision in each of
the DACs.
The primary design parameters for each DAC is its dy-

namic range: how much flux is it necessary for the DAC
to provide, and how fine a control of that flux is needed.
All of the DACs were designed to cover their respective
ranges in subdivisions of either 300 or 400 steps. How-
ever, they di↵er in the total amount of flux coupled at

Key&ques5on&should&be,&“Can&one&demonstrate&some&computa-onally%
meaningful&quantum&phenomenon&that&our&model&does&not&describe?”&



Is$D2Wave$“quantum”?$

“quantumness”&

It$is$only$a$beginning$.$.$.$


