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Motivation

System

Statistical mechanics relates thermodynamics to the microscopic world
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Environment / Bath

Energy, particles … 

”Ergodic” system behave as 
its own bath.

Equilibration requires exchange:

What if there is no environment?

System



Quantum thermalization

System

”Ergodic” systems behave as 
their own bath.

A
!!!
!!!
!! !!!!!!!!

Quantum thermalization: subsystems at long time go to thermal equilibrium.

⇢S(t) = e�iHt⇢S(t = 0)eiHtSystem dynamics unitary:

lim
t!1

lim
N!1

⇢A(t) = ⇢eqA (T, µi, · · · )

⇢A = Tr
S\A

⇢SSubsystem dynamics thermalize:

Ought be true for all finite subsystems and all initial conditions 
consistent with conserved quantities (E, N,… <-> T, µ,…).



Eigenstate Thermalization Hypothesis

4Deutsch (1991), Srednicki (1994), Rigol, Dunjko, Olshanii (2008), Pal and Huse (2010), …

For system to equilibrate from all initial conditions, all many-body 
eigenstates need agree with equilibrium on subsystems.

H |Eii = Ei |Eii

⇢A = Tr
S\A

|Eii hEi| = ⇢eqA (T, µ, · · · )

(For all eigenstates with appropriate conserved quantities, in 
thermodynamic limit.)

It’s a hypothesis. Needs proof or numerics in given model.



Quantum thermalization

System

”Ergodic” systems behave as 
their own bath.

A
!!!
!!!
!! !!!!!!!!

Equilibration requires exchange among subsystems. What if it doesn’t happen?

Quantum statistical mechanics breaks for localized systems.

Z = Tr e��H

Nope.



Localization and Order
1) Localization protects quantum and symmetry breaking order not 
allowed at finite temperature

Huse, Nandkishore, Oganesyan, Pal, Sondhi, PRB (2013), Chandran, Khemani, CRL, Sondhi, 1310.1096

=
X

{�z}

(�1)Ndw

Frozen Ising ‘glass’ order in 1D at finite energy density

Frozen 2D ‘glass’ topological and SPT order



Localization and Entanglement
2) Localized eigenstates have entanglement entropy obeying area law

Oganesyan, Huse. Huse, Nandkishore, Oganesyan, Pal, Sondhi. Bauer, Nayak. Swingle. Serbyn, Abanin… 

System

A

!!!
!!!
!! !!!!!!!!

SA = �Tr ⇢A log ⇢A

= ↵Ld�1 + · · ·

Contrast with ergodic eigenstates (ETH):

SA = Seq
A = sLd + · · ·

⇢A = Tr
S\A

|Eii hEi|



Any examples?

8

Commuting Hamiltonians (kinda)!
!
Strongly disordered models :!
!
Single-particle Anderson localization!
!
Perturbative interactions in such models!
!
Numerical studies, mostly 1D



Single-particle Localization

P. W. Anderson, Phys. Rev. (1958)

µi 2 [�W/2,W/2]H = t
X

ij

a†iaj +
X
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H =
X

↵

e↵a
†
↵a↵

Single-particle Localization

P. W. Anderson, Phys. Rev. (1958)

µi 2 [�W/2,W/2]H = t
X

ij

a†iaj +
X

i

µini

En
er

gy

Site

Off-resonant hopping fails to hybridize sites at long-distances:

N |�(r)|2 � e�r/�

Localized



Many-body Eigenstates

P. W. Anderson, Phys. Rev. (1958)

H =
X

↵

e↵a
†
↵a↵ |�(r)|2 � e�r/�Localized

| i = a†1a
†
3|0i

Slater 
determinants 
are trivially 
localized



H =
X

↵

e↵a
†
↵a↵ +

X

↵���

V↵���a
†
↵a

†
�a�a�

Localization in Fock space

Basko, Aleiner, Altshuler, Annals of Physics (2006), Huse and Oganesyan (2007), Pal and Huse (2009) 

Start with single particle localized states and add in interactions:

2N

Can weak V cause hybridization of localized many-particle states?



Looking for a mean-field model

• Analytically tractable MBL transitions/phases?!

• Finite energy density mobility edges?!

• Localization is ultimate glass — any connection?



Quantum Random Energy Model

H = E({�z

i

})� �
X

i

�x

i

B.!Derrida!(1980,1981),!Y.!Goldschmidt!(1990),!T.!Jorg,!et!al!(2008)

P (E) =
1p
⇡N

e�
E2

N

N-body generalization of SK model

Random energy for each z-state

Classical Random Energy Model Transverse field 

Provides dynamics“The simplest spin glass”

�

�



Classical Limit: Statistical Mechanics

n(E) = 2NP (E) ⇠ eNs(E/N)

s(✏) = log 2� ✏2

✏0 = �
p

log 2

Tc =
1

2

p
log 2

T

Paramagnet

“Glass”

f = �T log 2� 1

4T

f = �
p
log 2

B.!Derrida!(1980)

✏ =
E

N

s(✏)

Microcanonical Canonical



Replica Solution of QREM

• Replica trick in imaginary time representation!

• Time and replica dependent order parameter!

• Static RS and 1RSB ansatzes give three phases…
Q↵↵0

kk0 (�) =
1

N

X

i

�↵
i (k)�

�
i (k

0)

�

k

Y.!Goldschmidt!(1990)



Quantum  
PM

Classical  
PM

Classical 
“Glass”

f = �T log 2� 1

4T

f = �T log (2 cosh�/T )

f = �
p
log 2

Canonical Phase Diagram

Y.!Goldschmidt!(1990)



Quantum  
PM

Classical  
PM

Classical 
“Glass”

f = �T log 2� 1

4T

f = �T log (2 cosh�/T )

f = �
p
log 2

Localized Ergodic

Dynamical Phase Diagram

T =
1

2�

CRL,!Pal,!Scardicchio!(Next!week?)



Perturbative Rigidity

E0(�) = E0 � �

2
NX

i=1

1

Ei � E0
+ · · ·

⇡ E0 � �

2 1p
2 log(2)

Naive perturbation theory of GS:

O(N) O(1)

• All orders give O(1) corrections to extensive energies!

• Suggests states do not rearrange thermodynamically!

• Variational first order QPT in ground state

|GS(� = 0)i

✏ =
E

N

��

�

✏0 +O

✓
�2

N

◆

| ! · · · !i

T.!Jorg!et!al!(2008)



Many-body Level Statistics
• Level statistics diagnose dynamical phase transition

• Ratio diagnostic cancels DOS fluctuations

ETH: GOE level statistics

MBL: Poisson level statistics

2N
[r] ⇡ 0.39

[r] ⇡ 0.53

E
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[r] = 0.48Contours of level statistics ratio

N = 8, 10, 12, 14



Local observables

H = E({�z

i

})� �
X

i

�x

i

• Local observables frozen in MBL phase

• In ergodic phase local observables are smooth

M(n) = hn|Sz
0 |ni = M(✏n)

�M(n)

�n
⇡ dM(✏)

d✏

�✏

�n
⇡ M 0(✏)e�Ns(✏)

�M

�n
= hn+ 1|Sz

0 |n+ 1i � hn|Sz
0 |ni = O(1)

• In QREM, z-magnetization is local



Spider diagrams

�hSz
0 i

�hSz
0 i

✏ = E/N ✏ = E/N

N=8 N=10

N=12 N=14

Histogram of delta Z-Magnetization across eigenstates



Forward Scattering

 b =
X

paths p:a!b

Y

i2p

�

Ea � Ei

• Leading perturbative wavefunction `forward scattering’

• Directed random polymer on hypercube

• Localization: amplitudes decay to system size n=N

• Amenable to numerical transfer matrix 
treatment 

• Replica treatment of polymer problem 
appears to identify transitions as well



Extensive Energies

 b =
X

paths p:a!b

Y

i2p

�

Ea � Ei

�Ea

✏ =
E

N

s(✏)

Ei

 b ⇡
✓

�

Ea

◆n X

p

0

@1 +
X

i2p

Ei

Ea
+ · · ·

1

A

• Gap typically O(N) so expand

 b ⇡ n!

✓
�

Ea

◆n � b

 b
⇠ 1p

N

• Fluctuations small in N (typical ~ mean)

• Demand typical amplitude decreasing uniformly to n = N

�c = ✏a

• Need more care at Ea = 0



Central Energies

 b =
X

paths p:a!b

Y

i2p

�

Ea � Ei

✏ =
E

N

�

s(✏)

Ea

Ei

• Gap typically     , fluctuations large

• Bound by greedy path at distance n

• Demand amplitudes small gives upper bound on delocalization

p
N

 g ⇠
✓
�Np
N

◆✓
�(N � 1)p

N

◆
· · ·

✓
� · 1p
N

◆
⇠ (�

p
N)n

�c <
1p
N

• Counting resonances more carefully gives log correction



Replicated Polymers
• Typical amplitudes given by quenched average 

 n =
X

p1···pn

Y

i

wri(p1···pn)
i

ri =
nX

a=1

1 [i 2 pa]

ln = lim
n!0

 n � 1

n

• n interacting paths on hypercube



Replicated Polymers

• 1RSB Ansatz: polymers clump in n/x groups of x paths

Z

n ⇡

0

@
X

p

Y

i2p

w

x

i

1

A
n/x

= exp [nf(x)]

f(x) =

L

x

(logL� 1 + logw

x

i

)

wx =

Z
dEp
⇡N

e�E

2
/N

✓
�

|E
a

� E|

◆
x



Finite-size form at zero energy

f(x) =

L

x

(logL� 1 + logw

x

i

)

• Replica recipe: 

wx =

Z
dEp
⇡N

e�E

2
/N

✓
�

|E
a

� E|

◆
x

f1RSB

= min
x2[0,1]

f(x)

• 1RSB holds at finite L but is swamped slowly by L! paths

• Demanding amplitude decays at size L = N

�c =

p
⇡

2

p
N log

p
2/⇡N

+ · · ·



Numerical Fit

• X marks the replica formula estimate
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N = 8, 10, 12, 14



Almost forgot...



Adiabatic Quantum Optimization

• Annealing transverse field — ground state search!

• Final finite energy density — ‘approximate’ search!

• Scaling of final energy density with time — how 
hard is approximation?



Some annealing conjectures
• Unstructured cost function — lower bounds

33

Ef (T )

N
↵ =

lnT

N
ln 2

1

2
ln 2

�
p
↵

�
p
2↵

✏0

Brick Wall

Classical Bound

Quantum Bound



f = �T log 2� 1

4T

f = �T log (2 cosh�/T )

f = �
p
log 2

Quantum !
PM

Classical !
PM

Classical!
“Glass”

Localized ErgodicSummary
The QREM provides a ‘mean-field’ 
model of MBL-ETH transition at finite 
energy density mobility edge. First 
order dynamical transition.!
!
Perturbative treatment in forward 
approximation — directed random 
polymer on hypercube. More rigorous 
bounds consistent with replica 
treatment.!
!
Localization transition inside 
‘paramagnetic’ phase of QREM.!
!
Slow approach to thermodynamic limit 
near infinite temperature.!



f = �T log 2� 1

4T

f = �T log (2 cosh�/T )

f = �
p
log 2

Quantum  
PM

Classical  
PM

Classica
l 

Localized ErgodicOpen Questions
Complete analytic solution of QREM?!
!
Do thermodynamics reflect dynamical 
transition? (Existing phase diagrams 
perhaps not exact.)!
!
No infinite temperature MBL — feature 
of long-range interactions?!
!
Short-range model with provable MBL?*!
!
Expected outcome for approximate 
quantum annealing in interesting 
models?
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Does the exponential complexity of general quantum systems persist at high temperature?

Yes


