## Generalized Resilience and Robust Statistics

#### Jacob Steinhardt with Banghua Zhu and Jiantao Jiao





UC Berkeley

#### August 8, 2019

Would like to design robust estimators:



3 ×

Would like to design robust estimators:



Process error

∃ >

Would like to design robust estimators:



- Process error
- Measurement error

Would like to design robust estimators:



- Process error
- Measurement error
- Outliers

Simple example: mean estimation.

• Estimate mean of distribution in  $\mathbb{R}^d$  with  $\varepsilon$  fraction of outliers.

• • = • •

Simple example: mean estimation.

• Estimate mean of distribution in  $\mathbb{R}^d$  with  $\varepsilon$  fraction of outliers.



Suppose clean data is Gaussian:

 $x_i \sim \mathcal{N}(\mu, I)$ 

Gaussian mean  $\mu$  variance 1 each coord.



$$||x_i - \mu||_2 \approx \sqrt{1^2 + \dots + 1^2} = \sqrt{d}$$

- - ∃ →

Suppose clean data is Gaussian:

 $x_i \sim \mathcal{N}(\mu, I)$ 

Gaussian mean  $\mu$  variance 1 each coord.



$$||x_i - \mu||_2 \approx \sqrt{1^2 + \dots + 1^2} = \sqrt{d}$$

- + ∃ →

### Context and Overview

Recent work designs outlier-robust estimators in many settings:

- mean estimation [DKKLMS16/17, LRV16, CSV17, SCV18, ...]
- regression [KK18, PSBR18, DKKLSS18]
- classification [KLS09, ABL14, DKS17], etc.

Will generalize and extend the insights:

- general treatment of population limit in presence of outliers
- new finite-sample analysis based on generalized KS distance
- robustness to Wasserstein corruptions based on "friendly perturbations"





イロト イポト イヨト イヨト

true distribution corrupted distribution
$$\begin{array}{c}
\rho^* & \stackrel{D(\rho^*, \rho) \leq \varepsilon}{\longrightarrow} \tilde{\rho} \\ & \downarrow \\ & \text{samples} \\ X_1, \dots, X_n \\ & \downarrow \\ & \text{estimated parameters} \\ \hat{\theta}(X_1, \dots, X_n) \longrightarrow L(\rho^*, \hat{\theta})\end{array}$$

Example  $D = W_c$ : cost c(x, y) to move x to y, average cost  $\leq \varepsilon$ .

- $c(x,y) = \mathbb{I}[x \neq y]$ : *TV* distance (outliers)
- $c(x,y) = ||x y||_2$ : earthmover distance (measurement error)
- $c(x,y) = ||x y||_0$ : corrupted entries

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



Example  $D = W_c$ : cost c(x, y) to move x to y, average cost  $\leq \varepsilon$ .

- $c(x,y) = \mathbb{I}[x \neq y]$ : *TV* distance (outliers)
- $c(x,y) = ||x y||_2$ : earthmover distance (measurement error)
- $c(x,y) = ||x y||_0$ : corrupted entries

・ 同 ト ・ ヨ ト ・ ヨ



Example  $D = W_c$ : cost c(x, y) to move x to y, average cost  $\leq \varepsilon$ .

- $c(x,y) = \mathbb{I}[x \neq y]$ : *TV* distance (outliers)
- c(x,y) = ||x − y||<sub>2</sub>: earthmover distance (measurement error)
- $c(x,y) = ||x y||_0$ : corrupted entries

・ 同 ト ・ ヨ ト ・ ヨ

### Warm-up: TV, mean estimation

Warm-up problem: D = TV,  $L(p, \theta) = ||\mu(p) - \theta||$ , where  $\mu(p) = \mathbb{E}_{x \sim p}[x]$ .

• Mean estimation with outliers.

• □ > • □ > • □ > •

### Warm-up: TV, mean estimation

Warm-up problem: D = TV,  $L(p, \theta) = ||\mu(p) - \theta||$ , where  $\mu(p) = \mathbb{E}_{x \sim p}[x]$ .

Mean estimation with outliers.

Key lemma: projection estimator. First observed by Donoho and Liu (1988).

#### Lemma

Suppose  $p^* \in \mathcal{G}$ , and define  $\hat{\theta}(p) = \mu(q)$ , where  $q = \operatorname{argmin}_{q \in \mathcal{G}} TV(p,q)$ . Then  $L(p^*, \hat{\theta}(\tilde{p}))$  is upper-bounded by  $\operatorname{modu}(\mathcal{G}, 2\varepsilon)$ , where

$$\mathrm{modu}(\mathcal{G}, \varepsilon) := \sup_{
ho, 
ho' \in \mathcal{G}, TV(
ho, 
ho') \leq \varepsilon} \|\mu(
ho) - \mu(
ho')\|.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Warm-up: TV, mean estimation

Warm-up problem: D = TV,  $L(p, \theta) = ||\mu(p) - \theta||$ , where  $\mu(p) = \mathbb{E}_{x \sim p}[x]$ .

• Mean estimation with outliers.

Key lemma: projection estimator. First observed by Donoho and Liu (1988).

#### Lemma

Suppose  $p^* \in \mathcal{G}$ , and define  $\hat{\theta}(p) = \mu(q)$ , where  $q = \operatorname{argmin}_{q \in \mathcal{G}} TV(p,q)$ . Then  $L(p^*, \hat{\theta}(\tilde{p}))$  is upper-bounded by  $\operatorname{modu}(\mathcal{G}, 2\varepsilon)$ , where

$$\operatorname{modu}(\mathcal{G}, \varepsilon) := \sup_{\rho, \rho' \in \mathcal{G}, TV(\rho, \rho') \leq \varepsilon} \|\mu(\rho) - \mu(\rho')\|.$$

Proof:  $TV(p^*, q) \leq 2\varepsilon$ , and  $p^*, q$  both lie in  $\mathcal{G}$ .

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

$$\operatorname{modu}(\mathcal{G}, \varepsilon) := \sup_{p, p' \in \mathcal{G}, TV(p, p') \leq \varepsilon} \|\mu(p) - \mu(p')\|.$$

< • • • **•** 

▶ ★ 臣 ▶ ★

$$\mathrm{modu}(\mathcal{G},\varepsilon) := \sup_{\rho, p' \in \mathcal{G}, TV(\rho, p') \leq \varepsilon} \|\mu(\rho) - \mu(p')\|.$$

Example: Gaussians.  $\mathcal{G} = \{ \mathcal{N}(\mu, I) \mid \mu \in \mathbb{R}^d \}.$ 

- $\mathsf{TV}(\mathcal{N}(\mu, l), \mathcal{N}(\mu', l)) \approx \|\mu \mu'\|_2.$
- Hence  $\operatorname{modu}(G, \varepsilon) \approx \varepsilon$ .

• • = • •

$$\mathrm{modu}(\mathcal{G},\varepsilon) := \sup_{\substack{\rho, p' \in \mathcal{G}, \mathsf{TV}(\rho, p') \leq \varepsilon}} \|\mu(\rho) - \mu(p')\|.$$

Example: Gaussians.  $\mathcal{G} = \{\mathcal{N}(\mu, l) \mid \mu \in \mathbb{R}^d\}.$ 

- TV $(\mathcal{N}(\mu, l), \mathcal{N}(\mu', l)) \approx \|\mu \mu'\|_2$ .
- Hence  $modu(G, \varepsilon) \approx \varepsilon$ .

Generalization:  $\mathcal{G} =$  sub-Gaussians (parameter  $\sigma$ ).

- Can show that  $modu(G, \varepsilon) = \mathcal{O}(\sigma \varepsilon \sqrt{\log(1/\varepsilon)})$ .
- Key lemma: thin tails  $\implies \varepsilon$ -perturbation can't change mean much.

$$\mathrm{modu}(\mathcal{G},\varepsilon) := \sup_{\substack{\rho, p' \in \mathcal{G}, \mathsf{TV}(\rho, p') \leq \varepsilon}} \|\mu(\rho) - \mu(p')\|.$$

Example: Gaussians.  $\mathcal{G} = \{\mathcal{N}(\mu, l) \mid \mu \in \mathbb{R}^d\}.$ 

- $\mathsf{TV}(\mathcal{N}(\mu, l), \mathcal{N}(\mu', l)) \approx \|\mu \mu'\|_2.$
- Hence  $modu(G, \varepsilon) \approx \varepsilon$ .

Generalization:  $\mathcal{G} =$  sub-Gaussians (parameter  $\sigma$ ).

- Can show that  $modu(G, \varepsilon) = \mathcal{O}(\sigma \varepsilon \sqrt{\log(1/\varepsilon)})$ .
- Key lemma: thin tails  $\implies \varepsilon$ -perturbation can't change mean much.

General property: resilience.

#### **Definition (Resilience)**

A distribution p is  $(p, \varepsilon)$ -resilient if  $\|\mu(p) - \mu(r)\| \le p$  whenever  $r \le \frac{p}{1-\varepsilon}$ .

(The condition  $r \leq \frac{p}{1-\varepsilon}$  means that *r* is an  $\varepsilon$ -deletion of *p*.)

イロト イポト イヨト イヨ

#### **Definition (Resilience)**

A distribution p is  $(p, \varepsilon)$ -resilient if  $\|\mu(p) - \mu(r)\| \le p$  whenever  $r \le \frac{p}{1-\varepsilon}$ .

(The condition  $r \leq \frac{p}{1-\epsilon}$  means that *r* is an  $\epsilon$ -deletion of *p*.)

Lemma (Resilience  $\implies$  bounded modulus)

 $\textit{Let } \mathcal{G}(\rho, \epsilon) = \{ \rho \mid \textit{p is } (\rho, \epsilon) \textit{-resilient} \}. \textit{ Then } \textit{modu}(\mathcal{G}(\rho, \epsilon), \epsilon) \leq 2\rho.$ 

イロト イヨト イヨト イヨト

#### **Definition (Resilience)**

A distribution p is  $(p, \varepsilon)$ -resilient if  $\|\mu(p) - \mu(r)\| \le p$  whenever  $r \le \frac{p}{1-\varepsilon}$ .

(The condition  $r \leq \frac{p}{1-\epsilon}$  means that *r* is an  $\epsilon$ -deletion of *p*.)

#### Lemma (Resilience $\implies$ bounded modulus)

 $\textit{Let } \mathcal{G}(\rho, \epsilon) = \{ \rho \mid \textit{p is } (\rho, \epsilon) \textit{-resilient} \}. \textit{ Then } \mathrm{modu}(\mathcal{G}(\rho, \epsilon), \epsilon) \leq 2\rho.$ 



Proof: Let  $\rho, \rho' \in \mathcal{G}(\rho, \varepsilon)$ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日

#### **Definition (Resilience)**

A distribution p is  $(p, \varepsilon)$ -resilient if  $\|\mu(p) - \mu(r)\| \le p$  whenever  $r \le \frac{p}{1-\varepsilon}$ .

(The condition  $r \leq \frac{p}{1-\epsilon}$  means that *r* is an  $\epsilon$ -deletion of *p*.)

#### Lemma (Resilience $\implies$ bounded modulus)

 $\textit{Let } \mathcal{G}(\rho, \epsilon) = \{ \rho \mid \textit{p is } (\rho, \epsilon) \textit{-resilient} \}. \textit{ Then } \mathrm{modu}(\mathcal{G}(\rho, \epsilon), \epsilon) \leq 2\rho.$ 



Proof: Let  $p, p' \in \mathcal{G}(\rho, \varepsilon)$ . Define midpoint  $r = \frac{\min(p,p')}{1 - \operatorname{TV}(p,p')}$ . Then  $r \leq \frac{p}{1-\varepsilon}, \frac{p'}{1-\varepsilon}$ .

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト … ヨ

#### **Definition (Resilience)**

A distribution p is  $(p, \varepsilon)$ -resilient if  $\|\mu(p) - \mu(r)\| \le p$  whenever  $r \le \frac{p}{1-\varepsilon}$ .

(The condition  $r \leq \frac{p}{1-\varepsilon}$  means that *r* is an  $\varepsilon$ -deletion of *p*.)

#### Lemma (Resilience $\implies$ bounded modulus)

 $\textit{Let } \mathcal{G}(\rho, \epsilon) = \{ \rho \mid \textit{p is } (\rho, \epsilon) \textit{-resilient} \}. \textit{ Then } \mathrm{modu}(\mathcal{G}(\rho, \epsilon), \epsilon) \leq 2\rho.$ 



Proof: Let  $p, p' \in \mathcal{G}(\rho, \varepsilon)$ . Define midpoint  $r = \frac{\min(p,p')}{1-\operatorname{TV}(p,p')}$ . Then  $r \leq \frac{p}{1-\varepsilon}, \frac{p'}{1-\varepsilon}$ . Thus  $\|\mu(p) - \mu(p')\| \leq \|\mu(p) - \mu(r)\| + \|\mu(p') - \mu(r)\| \leq 2\rho$ .  $\Box$ 

#### **Definition (Resilience)**

A distribution p is  $(p, \varepsilon)$ -resilient if  $\|\mu(p) - \mu(r)\| \le p$  whenever  $r \le \frac{p}{1-\varepsilon}$ .

(The condition  $r \leq \frac{p}{1-\varepsilon}$  means that *r* is an  $\varepsilon$ -deletion of *p*.)

#### Lemma (Resilience $\implies$ bounded modulus)

Let  $\mathcal{G}(\rho, \varepsilon) = \{ \rho \mid \rho \text{ is } (\rho, \varepsilon) \text{-resilient} \}$ . Then  $\operatorname{modu}(\mathcal{G}(\rho, \varepsilon), \varepsilon) \leq 2\rho$ .



Modulus lemma yields optimal bound in most known cases!

• Sub-Gaussian: 
$$ho = \mathcal{O}(arepsilon \sqrt{\log(1/arepsilon)})$$

• Bounded *k*th moments:  $\rho = \mathcal{O}(\varepsilon^{1-1/k})$ 

Proof: Let  $p, p' \in \mathcal{G}(\rho, \varepsilon)$ . Define midpoint  $r = \frac{\min(p,p')}{1-\operatorname{TV}(p,p')}$ . Then  $r \leq \frac{p}{1-\varepsilon}, \frac{p'}{1-\varepsilon}$ . Thus  $\|\mu(p) - \mu(p')\| \leq \|\mu(p) - \mu(r)\| + \|\mu(p') - \mu(r)\| \leq 2\rho$ .  $\Box$ 

#### Finite-sample estimation

Resilience characterizes error when  $n = \infty$ , what about finite samples?

Projection algorithm: take  $\operatorname{argmin}_{q \in \mathcal{G}} \mathsf{TV}(\tilde{p}, q)$ .

• Problem: if  $\tilde{p}$  is discrete and q is continuous,  $TV(\tilde{p}, q) = 1!$ 

#### Finite-sample estimation

Resilience characterizes error when  $n = \infty$ , what about finite samples?

Projection algorithm: take  $\operatorname{argmin}_{q \in \mathcal{G}} \mathsf{TV}(\tilde{p}, q)$ .

• Problem: if  $\tilde{p}$  is discrete and q is continuous,  $TV(\tilde{p}, q) = 1!$ 

Solution: relax the distance!

$$\widetilde{\mathsf{TV}}_{\mathcal{H}}(\rho,q) = \sup_{t\in\mathbb{R},h\in\mathcal{H}} |p(h(X)\geq t) - q(h(X)\geq t)|.$$

### Finite-sample estimation

Resilience characterizes error when  $n = \infty$ , what about finite samples?

Projection algorithm: take  $\operatorname{argmin}_{q \in \mathcal{G}} \mathsf{TV}(\tilde{p}, q)$ .

• Problem: if  $\tilde{p}$  is discrete and q is continuous,  $TV(\tilde{p}, q) = 1!$ 

Solution: relax the distance!

$$\widetilde{\mathsf{TV}}_{\mathcal{H}}(p,q) = \sup_{t\in\mathbb{R},h\in\mathcal{H}} |p(h(X)\geq t) - q(h(X)\geq t)|.$$

Lemmas:

- Modulus is still bounded if we replace TV with  $\widetilde{\mathsf{TV}}_{\mathcal{H}}$ , where  $\mathcal{H} = \{ x \mapsto \langle v, x \rangle \mid v \in \mathbb{R}^d \}.$
- $\widetilde{\mathsf{TV}}_{\mathcal{H}}(p,\hat{p}_n) = \mathcal{O}(\sqrt{\mathrm{vc}(\mathcal{H})/n})$  [Devroye and Lugosi]

Upshot: projection still works, but use  $TV_{\mathcal{H}}$  instead of TV.

### General TV case

Focused so far on mean estimation. Now generalize to arbitrary loss.

• Stick with D = TV, but replace  $\|\mu(p) - \theta\|$  with arbitrary  $L(p, \theta)$ .

• • = • •

#### General TV case

Focused so far on mean estimation. Now generalize to arbitrary loss.

• Stick with D = TV, but replace  $||\mu(p) - \theta||$  with arbitrary  $L(p, \theta)$ .

Modulus still gives bound:

#### Lemma

Suppose  $p^* \in \mathcal{G}$ , and define  $\hat{\theta}(p) = \theta^*(q)$ , where  $q = \operatorname{argmin}_{q \in \mathcal{G}} TV(p,q)$ . Then  $L(p^*, \hat{\theta}(\tilde{p}))$  is upper-bounded by  $\operatorname{modu}(\mathcal{G}, 2\varepsilon)$ , where

$$\operatorname{modu}(\mathcal{G}, \varepsilon) := \sup_{\rho, \rho' \in \mathcal{G}, TV(\rho, \rho') \leq \varepsilon} L(\rho, \theta^*(\rho')).$$

Can we generalize resilience to this setting?

・ 同 ト ・ ヨ ト ・ ヨ

#### **Resilience:** Arbitrary loss

Recall before: *p* is resilient if  $\|\mu(p) - \mu(r)\|$  small whenever  $r \leq \frac{p}{1-\epsilon}$ .

◆□▶ ◆□▶ ◆□▶ ◆□

#### **Resilience:** Arbitrary loss

Recall before: *p* is resilient if  $\|\mu(p) - \mu(r)\|$  small whenever  $r \leq \frac{p}{1-\epsilon}$ .

Now two conditions:  $\mathcal{G}_{\downarrow}$ ,  $\mathcal{G}_{\uparrow}$ .

 $\mathcal{G}_{\downarrow}(\rho_1, \varepsilon) = \{ p \mid L(r, \theta^*(p)) \le \rho_1 \text{ whenever } r \le \frac{p}{1-\varepsilon} \}, \\ \mathcal{G}_{\uparrow}(\rho_1, \rho_2, \varepsilon) = \{ p \mid L(p, \theta) \le \rho_2 \text{ whenever } L(r, \theta) \le \rho_1 \text{ and } r \le \frac{p}{1-\varepsilon} \}.$ 

A (1) > A (2) > A

#### Resilience: Arbitrary loss

Recall before: p is resilient if  $\|\mu(p) - \mu(r)\|$  small whenever  $r \leq \frac{p}{1-r}$ .

Now two conditions:  $\mathcal{G}_{\downarrow}, \mathcal{G}_{\uparrow}$ .

$$\mathcal{G}_{\downarrow}(
ho_1, arepsilon) = \{ 
ho \mid L(r, heta^*(
ho)) \leq 
ho_1 ext{ whenever } r \leq rac{
ho}{1-arepsilon} \},$$

 $\mathcal{G}_{\uparrow}(\rho_1,\rho_2,\varepsilon) = \{ p \mid L(p,\theta) \le \rho_2 \text{ whenever } L(r,\theta) \le \rho_1 \text{ and } r \le \frac{p}{1-\varepsilon} \}.$ 

#### Lemma (Resilience $\implies$ small modulus)

Let  $\mathcal{G} = \mathcal{G}_{\downarrow}(\rho_1, \varepsilon) \cap \mathcal{G}_{\uparrow}(\rho_1, \rho_2, \varepsilon)$ . Then  $\operatorname{modu}(\mathcal{G}, \varepsilon) \leq \rho_2$ .

Proof:

p

$$p \xrightarrow{D(p,p') \leq \varepsilon} p'$$

$$r \leq \frac{p}{1-\varepsilon} \qquad r \leq \frac{p'}{1-\varepsilon}$$

$$r = \frac{\min(p,p')}{1-\tau}$$

$$\mathcal{C}' \in \mathcal{G}_{\downarrow} \Rightarrow \mathcal{B}(r, \theta^*(p')) \leq \rho_1 \overset{p \in \mathcal{G}_{\uparrow}}{\Longrightarrow} \mathcal{L}(p, \theta^*(p')) \leq \rho_1$$

(過) ( ほ) ( ほ) ( ほ)

Linear regression:  $L(\rho, \theta) = \mathbb{E}_{(x,y) \sim \rho}[(y - \theta^{\top} x)^2] - \mathbb{E}_{(x,y) \sim \rho}[(y - (\theta^*)^{\top} x)^2].$ 

Proposition (Sufficient conditions for linear regression)

Let  $Z = Y - (\theta^*)^\top X$  be the regression error under the true parameters  $\theta^*$ . Suppose that

$$\mathbb{E}[Z^{2k}] \leq 1 \text{ and } \mathbb{E}[(v^{\top}X)^{2k}] \leq \tau^{2k} \mathbb{E}[(v^{\top}X)^2]^k \ \forall v \in \mathbb{R}^d.$$

Then  $p^*$  is resilient with  $\rho_2 = \mathcal{O}(\tau^2 \varepsilon^{2-2/k})$ .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Linear regression:  $L(\rho, \theta) = \mathbb{E}_{(x,y) \sim \rho}[(y - \theta^{\top}x)^2] - \mathbb{E}_{(x,y) \sim \rho}[(y - (\theta^*)^{\top}x)^2].$ 

Proposition (Sufficient conditions for linear regression)

Let  $Z = Y - (\theta^*)^\top X$  be the regression error under the true parameters  $\theta^*$ . Suppose that

$$\mathbb{E}[Z^{2k}] \leq 1 \text{ and } \mathbb{E}[(v^{\top}X)^{2k}] \leq \tau^{2k} \mathbb{E}[(v^{\top}X)^{2}]^{k} \forall v \in \mathbb{R}^{d}.$$

Then  $p^*$  is resilient with  $\rho_2 = \mathcal{O}(\tau^2 \varepsilon^{2-2/k})$ .

Comparisons:

- Delete points to minimize regression error (Klivans-Kothari-Mekha 2018): suboptimal error  $\varepsilon^{1-1/k}$
- Diakonikolas-Kong-Stewart (2019) delete points to enforce moment condition: requires isotropy + 4th moments similar to Gaussian

イロト 不得 トイラト イラト 一日

### Example: Covariance estimation

Given distribution with mean  $\mu_p$  and covariance  $\Sigma_p$ . Goal: output  $\mu$ ,  $\Sigma$  such that

$$\|I - \Sigma_p^{-1/2} \Sigma \Sigma_p^{-1/2}\|_2$$
 and  $\|\Sigma_p^{-1/2}(\mu_p - \mu)\|_2$ 

are both small.

▶ ★ 臣 ▶ ★

### Example: Covariance estimation

Given distribution with mean  $\mu_p$  and covariance  $\Sigma_p$ . Goal: output  $\mu$ ,  $\Sigma$  such that

$$\|I - \Sigma_p^{-1/2} \Sigma \Sigma_p^{-1/2}\|_2$$
 and  $\|\Sigma_p^{-1/2}(\mu_p - \mu)\|_2$ 

are both small.

Proposition (Sufficient condition for covariance estimation)

Suppose that  $\mathbb{E}[(v^{\top}\Sigma_{\rho}^{-1/2}(X-\mu_{\rho}))^{2k}] \leq \sigma^{2k} \|v\|_{2}^{2k} \forall v \in \mathbb{R}^{d}$ . Then we can output  $\Sigma$ ,  $\mu$  such that

$$\|I - \Sigma_p^{-1/2} \Sigma \Sigma_p^{-1/2}\|_2 \le \mathcal{O}(\sigma \varepsilon^{1-1/k})$$
 and (1)

$$\|\Sigma_{\rho}^{-1/2}(\mu_{\rho}-\mu)\|_{2} \leq \mathcal{O}(\sigma\varepsilon^{1-1/2k}).$$
 (2)

・ 同 ト ・ ヨ ト ・ ヨ

### Extension to other perturbations $(W_c)$

Recap: modulus determines robustness, resilience is sufficient condition for robustness in TV case.

### Extension to other perturbations $(W_c)$

Recap: modulus determines robustness, resilience is sufficient condition for robustness in TV case.

Next extend results from TV to other  $W_c$  (transportation) distances.

- Recall  $W_c(p,q)$  is cost to "move" p to q if moving  $x \to y$  costs c(x,y).
- Formally:  $W_c(p,q) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(x,y)] \mid \pi(x) = p(x), \pi(y) = q(y) \}.$

### Extension to other perturbations $(W_c)$

Recap: modulus determines robustness, resilience is sufficient condition for robustness in TV case.

Next extend results from TV to other  $W_c$  (transportation) distances.

- Recall  $W_c(p,q)$  is cost to "move" p to q if moving  $x \to y$  costs c(x,y).
- Formally:  $W_c(p,q) = \min_{\pi} \{ \mathbb{E}_{\pi}[c(x,y)] \mid \pi(x) = p(x), \pi(y) = q(y) \}.$

Key **midpoint** property of resilience: if  $TV(p,q) \le \varepsilon$ , there exists midpoint *r* such that  $r \le \frac{p}{1-\varepsilon}$  and  $r \le \frac{q}{1-\varepsilon}$ .

• How to generalize to W<sub>c</sub>?

・ 同 ト ・ ヨ ト ・ ヨ

# Friendly perturbations

Consider one-dimensional case:



Image: A mathematical states and a mathem

## Friendly perturbations

Consider one-dimensional case:



Delete  $\varepsilon$ -mass:  $\mu_p \rightarrow \mu_r$ .

• • = • •



Delete  $\varepsilon$ -mass:  $\mu_{\rho} \rightarrow \mu_{r}$ .

• Alternative: move  $\varepsilon$ -mass towards  $\mu_r$ .

▶ ▲ 臣 ▶ ▲



Delete  $\varepsilon$ -mass:  $\mu_{\rho} \rightarrow \mu_{r}$ .

• Alternative: move  $\varepsilon$ -mass towards  $\mu_r$ .

Doesn't reference deletion, defined for any  $W_c!$ 

# Friendly perturbation: formal definition

#### Definition (Friendly perturbation)

For a distribution *p* over *X*, fix a function  $f : X \to \mathbb{R}$ . A distribution *r* is an  $\varepsilon$ -friendly perturbation of *p* if there is a coupling  $\pi$  between *p* and *r* such that:

- The cost  $\mathbb{E}_{\pi}[c(x, y)]$  is at most  $\varepsilon$ .
- All points move towards the mean of *r*: *f*(*y*) is between *f*(*x*) and 𝔼<sub>*r*</sub>[*f*(*x*)] almost surely.



# Friendly perturbation: formal definition

#### Definition (Friendly perturbation)

For a distribution *p* over *X*, fix a function  $f : X \to \mathbb{R}$ . A distribution *r* is an  $\varepsilon$ -friendly perturbation of *p* if there is a coupling  $\pi$  between *p* and *r* such that:

- The cost  $\mathbb{E}_{\pi}[c(x, y)]$  is at most  $\varepsilon$ .
- All points move towards the mean of *r*: *f*(*y*) is between *f*(*x*) and 𝔼<sub>*r*</sub>[*f*(*x*)] almost surely.



# Friendly perturbation: formal definition

#### Definition (Friendly perturbation)

For a distribution *p* over *X*, fix a function  $f : X \to \mathbb{R}$ . A distribution *r* is an  $\varepsilon$ -friendly perturbation of *p* if there is a coupling  $\pi$  between *p* and *r* such that:

- The cost  $\mathbb{E}_{\pi}[c(x, y)]$  is at most  $\varepsilon$ .
- All points move towards the mean of *r*: *f*(*y*) is between *f*(*x*) and 𝔼<sub>*r*</sub>[*f*(*x*)] almost surely.



Lemma: if X has "nice topology", any p and p' with  $W_c(p,p') \le \varepsilon$  have an  $\varepsilon$ -friendly midpoint.

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics

# Resilience for $W_c$

#### Definition (Resilience for fixed *f*)

For any distribution p, we say that p is  $(p, \varepsilon, f)$ -resilient if every  $\varepsilon$ -friendly perturbation r of p has  $|\mathbb{E}_r[f] - \mathbb{E}_p[f]| \le \rho$ .

A (1) > A (2) > A

# Resilience for $W_c$

#### Definition (Resilience for fixed *f*)

For any distribution p, we say that p is  $(p, \varepsilon, f)$ -resilient if every  $\varepsilon$ -friendly perturbation r of p has  $|\mathbb{E}_r[f] - \mathbb{E}_p[f]| \le p$ .

How to extend from one-dimensional *f* to arbitrary loss  $L(\rho, \theta)$ ?

# Resilience for $W_c$

#### Definition (Resilience for fixed *f*)

For any distribution p, we say that p is  $(p, \varepsilon, f)$ -resilient if every  $\varepsilon$ -friendly perturbation r of p has  $|\mathbb{E}_r[f] - \mathbb{E}_p[f]| \le \rho$ .

How to extend from one-dimensional *f* to arbitrary loss  $L(\rho, \theta)$ ?

Answer: if  $L(p, \theta)$  is convex in p, use Fenchel-Moreau theorem:

$$L(\rho, \theta) = \sup_{f \in \mathcal{F}_{\theta}} \mathbb{E}_{\rho}[f] - L^{*}(f, \theta)$$

Then apply to each *f* in Fenchel-Moreau representation.

Under roughly similar assumptions to TV case, get  $\varepsilon^{1-1/k}$  error assuming bounded 2(k+1) moments.

Under roughly similar assumptions to TV case, get  $\varepsilon^{1-1/k}$  error assuming bounded 2(k+1) moments.

- Error  $\varepsilon^{1-1/k}$  likely suboptimal (should be  $\varepsilon^{2-2/k}$ ).
- k + 1 vs k in moment condition is typical behavior for  $W_1$  vs TV

Under roughly similar assumptions to TV case, get  $\varepsilon^{1-1/k}$  error assuming bounded 2(k+1) moments.

- Error  $\varepsilon^{1-1/k}$  likely suboptimal (should be  $\varepsilon^{2-2/k}$ ).
- k + 1 vs k in moment condition is typical behavior for  $W_1$  vs TV

Finite-sample analysis:

- Can construct  $\widetilde{W}_{\mathcal{H}}$  analogous to  $\widetilde{TV}_{\mathcal{H}}$ .
- However, construction more complex and doesn't always work.
- Can at least show  $\widetilde{W}_{\mathcal{H}}(p,\hat{p}_n) = \mathcal{O}((d/n)^{1/2} + (1/n)^{1/3})$  when p has bounded 3rd moments.

< 同 ト < 三 ト < 三



- Resilience criterion bounds population limit for TV perturbations.
- $TV_{\mathcal{H}}$  gives finite-sample analysis for projection algorithm.
- Friendly perturbations allow us to generalize resilience to W<sub>c</sub>-perturbations.
- Many open questions for W<sub>c</sub> case!
  - Better finite-sample analysis.
  - Efficient algorithms.
  - Beyond W<sub>c</sub>?