Reinforcement Learning
via an Optimization Lens

Lihong Li
August 7, 2019

it Google Al

Google Brain

Simons Institute Workshop on Emerging Challenges in Deep Learning

Reinforcement learning: Learning to make decisions

e Video & board games

e Inventory management

) Action
e Robotics and control [:
e Medical treatment f Q: a
e Web recommendation "’/ <:|
e Conversational systems
State,

e Education systems Reward

Online vs. Offline (Batch) RL: A Basic View

Data e]
Collection E:> Training |:> Testing

. VF/Policy Policy
Exploration . f
. Learning Evaluation
online RL
e-greedy TD (QL, Sarsa, ...) Model/simulator-based
uce PG (REINFORCE, ...) Importance sampling (IS, WIS, DR), ...
Thompson Sampling OPT (GTD2, PCL, SBEED, ...) Moment matching

This talk: batch value function learning

e Separate and focus on individual technical challenges
e Many common use cases in practice

e Will be used as a component in online RL (w/ exploration)

Background

How things may go wrong

A primal-dual formulation

A new kernel loss

Conclusions

Markov Decision Process (MDP)

M = <S7 A’ P’ R"‘}/>
Set of states S

Set of actions A

Transition probabilities P(s'[s, a)

Immediate expected reward R(s, a)

Discount factor v € (0,1) 1

(from Wikipedia)

Goal: find 7* : S — A to maximize

(0.]
Vse$S: E Z’tht | so =5,ar ~ m(St), Se41 ~ P('|5taat)]
t=0

MDP Example: Deterministic Shortest Path

Problem
Find a source—goal path with minimum cost.

e state: node

‘cost” e action: edge

e reward: negative
cost

e transition: landing

“goal state” state of directed

edge

CostToGoal(i) = jeNerigLrgor(i) { cost(i — j) + CostToGoaI(j)}

“Principle of Dynamic Programming” (Bellman, 1957)

More General Case: Bellman Equation

Deterministic Shortest Path

CostToGoal(i) = min {cost(i — j) + CostToGoal(j)}
Jj€Neighbor(i)

v

MDP M = (S, A, P, R, ~)

V*(s) = max { R(s,3) + 1Egp(js o [V*(s')] |

acA
-
I~

e “Bellman equation”
(discrete-time Hamilton-Jacobi-Bellman equation)

e In this talk, RL = solving for V*

Bellman Operator

Bellman equation succinctly re-expressed as
vV =TV*
where

TV(s) i= max{R(s.) + 1Esp(s, V()] }

Well-known facts of Bellman operator 7T

e 7 is monotonic: Vi <X V5 implies TV; <X TV,
e 7T is y-contraction: [TV —T Va|l, <v|Vi — Vol
e Hence, V, TV, T2V, T3V,.-. — V* (“fixed point”)

e Mathematical foundation of value iteration, TD()),
Q-learning, etc. in the exact (= finite-MDP) case

Background

How things may go wrong

A primal-dual formulation

A new kernel loss

Conclusions

When Bellman Meets Gauss: Approximate DP

In practice, V* is often approximated

e Eg: least-squares fit on linear models or neural networks, ...
k:0,1,2,... : Vk+1 <—(|_|VOT)Vk

e Composing 7 and Iy, often loses contraction

e Many known divergent examples
Baird (93), Boyan & Moore (95), Tsitsiklis & Van Roy (96), ...

e Limited positive theory or algorithms
Gordon (96), Tsitsiklis & Van Roy (97), Lagoudakis & Parr (03),
Sutton et al. (08, 09), Maei et al. (10), ...

Divergence Example of Tsitsiklis & Van Roy (96)

Starting with w(®) = 0,
least-squares value iteration diverges when v > 5/6,
although V* may be exactly represented (with w* = 0).

Does It Matter in Practice?

Many empirical successes of (double, dueling) DQN, A3C, ...
in video games, AlphaGo, robotics, dialogue management, ...
but often with surprises:

b 6,000 : pr—r—
P ot

B 5,00 s ~

8 4,000 “{/“\ ‘\//“ ‘f/?‘ (“ [
g 3,000 4?‘ \Aw Mw ‘\/MMW&«‘ \M\MMJ
4 2,000 o

g o

£ 1.000 .

0 20 40 60 80 100 120 140 160 180 200
Training epochs % 5000 0000 5000 20000 25000 aom0

Mnin et al (2015) Gordon (1996)

8 20 | munuuuuuung

= flwl]

w2

@ 1000

[«b}

% 10 .

> lI o 250 500 750 1000
0 50 100 150 200

Baird (1993); Tsitsiklis & Van Roy (1996)
van Hasselt et al. (2016)

A Long-standing Open Problem

Ensuring convergent approximate dynamic programming

A major, decades-old open problem:

Functional Approximations and Dynamic
Programming

By Richard Bellman and Stuart Dreyfus

Math. Tables & Other Aids Comp. (1959)

Essentially “deadly triad” (Sutton)
Unclear if solved by emphatic TD (Sutton et al., 2016)
Not solved by removing delusional bias (Lu et al., 2018)

Background

How things may go wrong

A primal-dual formulation

A new kernel loss

Conclusions

Linear Programming Reformulation

Solving V = TV is equivalent to
i 4
min (c, V)
st. V>TV,

with some ¢ > 0.

Schweitzer & Seidman (85), De Farias & Van Roy (06), Wang & co.
(15-), Dai+ (17), Lakshminarayanan+ (18), ...

See Mengdi Wang's talk yesterday.

This talk focuses on a different approach.

Why Solving for Fixed Point Directly is Hard?

A natural objective function for solving V =T V:

min ||V —TV|?
% ————
“Bellman error/residual”

= m\}n Es [(V(s) — maax(R(s, a) + 1Eg/s.a[V(s)])?

e Difficulty #1: breaks smoothness and continuity

e Difficulty #2: typical SGD gives biased gradient, known as
“double sample” issue (Baird 95):

2

(' 00 o 7E5’|s,a[vw(5/)]) 7&]Es’|s,a [(ot ’YVW(S/))z}

what we need what empirical square loss approxiamtes

Addressing : Nesterov Smoothing

V(s) = max(R(s,a) +1Eyjs,a[V(s)])

|

V(s) = 75??523:7?(315) (R(s,2) + 7Eg5alV(S)]) +AH(m(:s))

entropic regularization

=TaV(s)

The smoothed Bellman operator 7, may be derived differently
Rawlik+ (12), Fox+ (16), Neu+ (17), Nachum+ (17), Asadi & Littman
(17), Haarnoja+ (18), ...

Properties of T,

TaV(s) = max) n(als) (R(s,) + 1Eqs o[V(s)]) +AH(7(]s))
w(:|s)

a

Still a y-contraction

Existence and uniqueness of fixed point V{
Controlled bias: ||[Vy — V*|| = O(\/(1—7))
Temporal consistency (as in PCL of Nachum+ (17))

Vs,a: Vi(s) = R(s, a) + 1Eg5a[VI(s)] — Alog m3(als)

Addressing : Legendre-Fenchel Transformation

min E, [(V(s) — max(R(s, 3) + 1Eyjsa[V(5)])?

ﬂ (by Nesterov smoothing)
2

@in Esa | | R(s,a) +7Eg s a[V(s)] — Alogm(als) — V(s)

~
denoted xs,

ﬂ (L-F transform: x2, = max(2xs,y — y2))
yeR

- 2
TI;I e Es.a [(20(s,)Xs,a — v(s, 3)°)]

The last step also applies the interchangeability principle
(Rockafellar & Wets 88; Shapiro & Dentcheva 14; Dai+ 17)

Reformulation of Bellman Equation

We have now turned a fixed point into a saddle point:

minmax [Eg , [21/(5, a) - RrxV(s,a) — v(s, 3)2}

V. v

where R \V(s,a) := R(s,a) +yV(s') — Xogm(a|s) — V(s)

Well-defined objective without requiring double samples

May be optimized by gradient methods (SGD/BackProp, ...)

e Inner max achieved when v = R,V

Easily extended to other convex loss functions

SBEED: Smoothed Bellman Error EmbeDding [Dai et al., 18]

n\)in max [Es,[2v(s,a) - RxaV(s,a) —v(s, 3)2}
)Tr v

where R, \V(s,a) := R(s,a) +vV(s') — Aogm(als) — V(s)

Algorithmic ideas

e Parameterize (V,m;v) by (wy, wy; wy)
e Stochastic first-order updates on parameters
e Two-time-scale updates for primal and dual variables; or

e Exact maximization if concave in w,,

e Our implementation uses stochastic mirror descent

SBEED Analysis

Error decomposition:

HVV’)’—V*

+ [V = W[+ IV = V7

approximation smoothing

< |- v

optimization statistical

+H\7;;—V;;

Optimization error: run N iterations to find an empirically

near-optimal solution

Statistical error: use a sample of size T to approximate
underlying (unknown) MDP

e Approximation error: use of parametric families to represent
(V,m,v)

Smoothing error: from Nesterov smoothing

SBEED: Optimization

Define ¢(V,7):=max, L(V,m,v), and assume

e V/ is Lipschitz-continuous
e the stochastic gradient has finite variance

e stepsizes are properly set

\2]—>0

Theorem. SBEED solution satisfies E[||V{(Vy, 73)

e Decay rate ~ O(N~1/2) after N iterations
e Building on results of Ghadimi & Lan (13)
e See paper for variants of convergence results

e Still hard to quantify optimization error

SBEED: Statistical Analysis

Assumptions

e MDP regularity: ||R||, < Cg, |log73(als)| < Cr.

oo
e Data collection is exponentially S-mixing with a unique
stationary distribution over &

Theorem.
estat(T) = O(T 12

Further Remarks on Related Work

e Bellman residual minimization for (fixed) policy evaluation
(Antos+08, Farahmand-08)

e Specializes to certain gradient TD algorithms with linear
approximation (Sutton, Maei & co.; Liu+15; Macua+15)

e Can be analyzed using well-established techniques (Antos+08,
Farahmand+-08, Liu+15)

e Can benefit from advanced optimization techniques such as
SVRG/SAGA (Du+17)

Background

How things may go wrong

A primal-dual formulation

A new kernel loss

Conclusions

Primal-dual Problems are Hard to Solve

Consider simplified case |A| =1 (can be extended to |A| > 1)
(m and A play no role now)

Restricting dual v to Reproducing Kernel Hilbert Space (RKHS):

min max s [20(s) - RV(s) — v(s)’]

V. veH

i Es|2 - RV
min Veﬂmsmkgl s|: v(s) (S)}

min 2 Bs [K(s,3)-RV(s) - RV(3)]

A New Loss for Solving Bellman Equation

m\jn LK(V) = ES,E [K(Svg) ’ RV(S) ’ RV(E)]

e Well-defined objective without requiring double samples

e May be optimized by gradient methods w/ mini-batches
(SGD/BackProp, ...)

e May be extended to the controlled case |A| > 1

[Feng et al. 2019] https://arxiv.org/abs/1905.10506

Eigenfunction Interpretation

By Mercer's theorem
K(s,5) = Nei(s)ei(3)

Proposition
2

Lx(V) = Z N (Es[RV(s) - &i(s)])

Thus, Lx(V) is A\j-weighted ¢»-norm in space spanned by {e;}.
Difference choices of K lead to different ({\;}, {ei}).
Example: RBF kernel favors smooth eigenfunctions.

Extension to |A| > 1

Option 1
LK(V7 7T) -]Es,§,a~7r(5),5~§[K([Sv a]7 [§7 5])'RW,)\ V(S7 a)',R’ﬂ',/\ V(§7 5)]
Option 2

Use previous Lk (V') for (fixed) policy evaluation within other
algorithms (e.g., API, actor-critic, ...)

PuddleWorld with Neural Networks

PuddleWorld: classic divergence example (Boyan & Moore 95)

10° , 238
e 172 |

108 Pl ! 21
Ve 170 |
Il H

10 / 168 | 14
i

1.66. ‘/: 07

102
h
1.64“’1
10% 500 1000 1500 2000 O 500 1000 1500 2000 9.3
Epochs Epochs
(a) MSE (b) Bellman Error
N 2
MSE: H v v
~ 12
Bellman error: HRV

2
L2 loss: squared TD error that suffers double-sample bias

1.5
L2/K-Loss
(c) L2/K-Loss vs MSE

.

3

ety o

* o
e des X
.

1.7

1.9

1.73
1.7
1.69
1.67

1.65

1633

== GTD2 (nonlinear)
DO

- FVI
RG
SBEED

— K-loss

o

%
.

15 17 19
L2/K-Loss

(d) L2/K-Loss vs Bellman Error

Similar results in other classic problems: CartPole, MountainCar.

Results on Mujoco

Use our loss for learning V™ for fixed policy 7, inside Trust-PCL
(Nachum+ 18)

350 10000

2000
a 1000 —
E 300 8000 '\/_J
g 250 1500 4 oo Y
& oo 6000
) 600
g 150 4000 1000 pmeac — Koss
2 100 NSRS 400 TD(0)
< 2000 V — VI

50 500 200 RG

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.0 0.3 0.6 0.9 12 15 0.0 0.1 0.2 0.4 05
million steps million steps million steps million steps.
(a) Swimmer (b) InvertedDoublePendulum (c) Ant (d) InvertedPendulum

Figure 4: Results of various variants of Trust PCL on Mujoco Benchmark.

Background

How things may go wrong

A primal-dual formulation

A new kernel loss

Conclusions

Conclusions

e Modern RL requires going beyond tabular/linear cases

e Convergence conditions for DP-based approaches often brittle
e Promising and fruitful direction: DP — OPT
e different formulations as optimization problems
e new algorithms with provable convergence and stronger
guarantees
e more transparent behavior (using established stats/ML
techniques)
e potentially make RL easier to use in practice

An Upcoming Workshop

Optimization Foundation for Reinforcement Learning

Workshop at NeurlPS, Dec 13-14th. 2019, Vancouver, Canada

Background

Dynamic programming (DP) based algorithms, which apply various forms of the Bellman operator,
dominate the literature on model-free reinforcement learning (RL). While DP is powerful, the value
function estimate can oscillate or even diverge when function approximation is introduced with off-
policy data, except in special cases [1-8]. This problem has been well-known for decades (referred to
as the deadly triad in the literature), and has remained a critical open fundamental problem in RL.

More recently, the community witnessed a fast-growing trend that frames RL problems as well-posed
optimization problems, in which a proper objective function is proposed whose minimization results
in the optimal value function [9-28]. Such an optimization-based approach provides a promising
perspective that brings mature mathematical tools to bear on integrating linear/nonlinear function
approximation with off-policy data, while avoiding DP's inherent instability. Moreover, the
optimization perspective is naturally extensible to incorporating constraints, sparsity regularization,
distributed multi-agent scenarios, and other new settings.

In addition to being able to apply powerful optimization techniques to a variety of RL problems, the
special recursive structure and restricted exploration sampling in RL also naturally raises the question
of whether tailored algorithms can be developed to improve sample efficiency, convergence rates,
and asymptotic performance, under the guidance of the established optimization techniques.

The goal of this workshop s to catalyze the collaboration between reinforcement learning and
optimization communities, pushing the boundaries from both sides. It will provide a forum for
establishing a mutually accessible introduction to current research on this integration, and allow
exploration of recent advances in optimization for potential application in reinforcement learning. It
will also be a window to identify and discuss existing challenges and forward-looking problems of
interest in reinforcement learning to the optimization community,

https://optrl2019.github.io

THANK YOU !

APPENDIX

Online SBEED Learning with Experience Replay

Algorithm 1 Online SBEED learning with experience replay

1: Initialize w = (wy, wx, w,) and m, randomly, set €.
2: forepisodei =1,...,7 do
3: forsizek=1,...,K do

4: Add new transition (s, a, r, ') into D by executing
behavior policy .
end for
. foriterationj =1,..., N do
7: Update w) by solving

min B oynp [(0(s.0.5) = p(s.))%]

8: Decay the stepsize (; in rate O(1/j).
9: Compute the stochastic gradients w.r.t. wy and
Wy a8 Vo £(V, 7) and V,_€(V, T).
10: Update the parameters of primal function by solv-
ing the prox-mappings, i.e.,
update Vi wi, = P,i-1(C ﬁ ((V, 7))
update 7wl = ij%‘_l(c Vo £V,)

11: end for
12 Update behavior policy m, = 7
13: end for

I\

e Use Mujoco on OpenAl as benchmark
e Compare to state-of-the-art baselines:
e Dual-AC (Dai et al. 18)

e TRPO (Schulman et al. 15)
e DDPG (Lillicrap et al. 15)

(from http://www.mujoco.org)

Role of Smoothing Parameter \

A=0.001
—— A=0.004
T 200 A
g —— A=0.01
g —— A=0.04
o 150 A=0.1
e]
o
o
& 100 A
(O]
[@)]
©
g 50 A
I
0 4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Timesteps le6

Role of Bootstrapping Distance k

—— k=1000
k=200
T 200
g —— k=100
g — k=20
5 150 { — k=10
'8 k=1
)
S 100 A
(0]
[@)]
©
S 50
<
0 p

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Timesteps le6

Role of Dual Embedding 7

n=0.001

o 2004 n=0.01
© — n=0.1
2 — n=1.0
o 150
(0]
pe)
3
= 100 H
L
0]
(@)}
© 50 A1
(O]
>
=

0 4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Timesteps le6

Comparison against Baselines

_200 8000
° © 7000
3 400 Z 6000
&
$ -600 £ 5000
2 2
5_ 5 4000
o —800 » 3000
g g
H @ 2000
$ -1000 —— Dual-AC g
ks — TRPO < 1000
-1200 — ooRG o
05 1.0 15 2.0 25 3.0 35 05 1.0 15 2.0 25 3.0 35
Timesteps les Timesteps les
(a) Pendulum (b) InvertedDoublePendulum
1500 3000
o — e
o ° ual- © 2500
§ 1000 2 200 2
& & & 2000
2 s00 § 150 <
2 2 2 1500
& & &
8 o g1 %1000
e e g
g g g
2 z 5 Z 500
-500
o 0
025 050 075 100 125 150 175 0.2 04 0.6 08 1.0 12 0.25 050 0.75 1.00 125 150 1.75 2.0
Timesteps 1e6 Timesteps 1e6 Timesteps 1e6

(c) HalfCheetah (d) Swimmer (e) Hopper

	Appendix
	Appendix

