
Reinforcement Learning
via an Optimization Lens

Lihong Li

August 7, 2019

Google Brain

Simons Institute Workshop on Emerging Challenges in Deep Learning

Reinforcement learning: Learning to make decisions

• Video & board games

• Inventory management

• Robotics and control

• Medical treatment

• Web recommendation

• Conversational systems

• Education systems

• ...

Online vs. Offline (Batch) RL: A Basic View

This talk: batch value function learning

• Separate and focus on individual technical challenges

• Many common use cases in practice

• Will be used as a component in online RL (w/ exploration)

Outline

• Background

• How things may go wrong

• A primal-dual formulation

• A new kernel loss

• Conclusions

Markov Decision Process (MDP)

M = 〈S,A,P,R, γ〉
• Set of states S
• Set of actions A
• Transition probabilities P(s ′|s, a)

• Immediate expected reward R(s, a)

• Discount factor γ ∈ (0, 1)

Goal: find π∗ : S → A to maximize

∀s ∈ S : E

[∞∑
t=0

γtrt | s0 = s, at ∼ π(st), st+1 ∼ P(·|st , at)

]
(from Wikipedia)

MDP Example: Deterministic Shortest Path

Problem

Find a source→goal path with minimum cost.

• state: node

• action: edge

• reward: negative

cost

• transition: landing

state of directed

edge

CostToGoal(i) = min
j∈Neighbor(i)

{
cost(i → j) + CostToGoal(j)

}
“Principle of Dynamic Programming” (Bellman, 1957)

More General Case: Bellman Equation

Deterministic Shortest Path

CostToGoal(i) = min
j∈Neighbor(i)

{cost(i → j) + CostToGoal(j)}

MDP M = 〈S,A,P,R, γ〉

V ∗(s) = max
a∈A

{
R(s, a) + γEs′∼P(·|s,a)[V ∗(s ′)]

}
• “Bellman equation”

(discrete-time Hamilton-Jacobi-Bellman equation)

• In this talk, RL ≈ solving for V ∗

Bellman Operator

Bellman equation succinctly re-expressed as

V ∗ = T V ∗

where

T V ∗(s) := max
a∈A

{
R(s, a) + γEs′∼P(·|s,a)[V ∗(s ′)]

}

Well-known facts of Bellman operator T :

• T is monotonic: V1 � V2 implies T V1 � T V2

• T is γ-contraction: ‖T V1 − T V2‖∞ ≤ γ ‖V1 − V2‖∞
• Hence, V , T V , T 2V , T 3V , · · · → V ∗ (“fixed point”)

• Mathematical foundation of value iteration, TD(λ),

Q-learning, etc. in the exact (≈ finite-MDP) case

Outline

• Background

• How things may go wrong

• A primal-dual formulation

• A new kernel loss

• Conclusions

When Bellman Meets Gauss: Approximate DP

In practice, V ∗ is often approximated

• Eg: least-squares fit on linear models or neural networks, ...

k = 0, 1, 2, . . . : Vk+1 ← (ΠV◦T)Vk

• Composing T and ΠV often loses contraction

• Many known divergent examples

Baird (93), Boyan & Moore (95), Tsitsiklis & Van Roy (96), ...

• Limited positive theory or algorithms

Gordon (96), Tsitsiklis & Van Roy (97), Lagoudakis & Parr (03),

Sutton et al. (08, 09), Maei et al. (10), ...

Divergence Example of Tsitsiklis & Van Roy (96)

Starting with w (0) 6= 0,

least-squares value iteration diverges when γ > 5/6,

although V ∗ may be exactly represented (with w∗ = 0).

Does It Matter in Practice?

Many empirical successes of (double, dueling) DQN, A3C, ...

in video games, AlphaGo, robotics, dialogue management, ...

but often with surprises:

A Long-standing Open Problem

Ensuring convergent approximate dynamic programming

A major, decades-old open problem:

Math. Tables & Other Aids Comp. (1959)

Essentially “deadly triad” (Sutton)

Unclear if solved by emphatic TD (Sutton et al., 2016)

Not solved by removing delusional bias (Lu et al., 2018)

Outline

• Background

• How things may go wrong

• A primal-dual formulation

• A new kernel loss

• Conclusions

Linear Programming Reformulation

Solving V = T V is equivalent to

min
V

〈c ,V 〉

s.t. V ≥ T V ,

with some c > 0.

Schweitzer & Seidman (85), De Farias & Van Roy (06), Wang & co.

(15–), Dai+ (17), Lakshminarayanan+ (18), ...

See Mengdi Wang’s talk yesterday.

This talk focuses on a different approach.

Why Solving for Fixed Point Directly is Hard?

A natural objective function for solving V = T V :

min
V

‖V − T V ‖2︸ ︷︷ ︸
“Bellman error/residual”

= min
V

Es

[
(V (s)−max

a
(R(s, a) + γEs′|s,a[V(s′)])2

]

• Difficulty #1: breaks smoothness and continuity

• Difficulty #2: typical SGD gives biased gradient, known as

“double sample” issue (Baird 95):(
· · ·+ γEs′|s,a[Vw (s ′)]

)2︸ ︷︷ ︸
what we need

6= Es′|s,a
[
(· · ·+ γVw (s ′))2

]︸ ︷︷ ︸
what empirical square loss approxiamtes

Addressing Difficulty #1: Nesterov Smoothing

V (s) = max
a

(
R(s, a) + γEs′|s,a[V (s ′)]

)
ww�

V (s) = max
π(·|s)

∑
a

π(a|s)
(
R(s, a) + γEs′|s,a[V (s ′)]

)
+λH(π(·|s))︸ ︷︷ ︸

entropic regularization︸ ︷︷ ︸
:=TλV (s)

The smoothed Bellman operator Tλ may be derived differently

Rawlik+ (12), Fox+ (16), Neu+ (17), Nachum+ (17), Asadi & Littman

(17), Haarnoja+ (18), ...

Properties of Tλ

TλV (s) := max
π(·|s)

∑
a

π(a|s)
(
R(s, a) + γEs′|s,a[V (s ′)]

)
+λH(π(·|s))

• Still a γ-contraction

• Existence and uniqueness of fixed point V ∗λ

• Controlled bias: ‖V ∗λ − V ∗‖∞ = O(λ/(1− γ))

• Temporal consistency (as in PCL of Nachum+ (17))

∀s, a : V ∗λ (s) = R(s, a) + γEs′|s,a[V ∗λ (s ′)]− λ log π∗λ(a|s)

Addressing Difficulty #2: Legendre-Fenchel Transformation

min
V

Es

[
(V (s)−max

a
(R(s, a) + γEs′|s,a[V(s′)])2

]
ww� (by Nesterov smoothing)

min
V ,π

Es,a

R(s, a) + γEs′|s,a[V(s′)]− λ log π(a|s)− V (s)︸ ︷︷ ︸

denoted xsa

2

ww� (L-F transform: x2
sa = max

y∈R
(2xsay − y2))

min
V ,π

max
ν∈RS×A

Es,a

[
(2ν(s, a)xs,a − ν(s, a)2)

]
The last step also applies the interchangeability principle

(Rockafellar & Wets 88; Shapiro & Dentcheva 14; Dai+ 17)

Reformulation of Bellman Equation

We have now turned a fixed point into a saddle point:

min
V ,π

max
ν

Es,a

[
2ν(s, a) · Rπ,λV (s, a)− ν(s, a)2

]
where Rπ,λV (s, a) := R(s, a) + γV (s ′)− λ log π(a|s)− V (s)

• Well-defined objective without requiring double samples

• May be optimized by gradient methods (SGD/BackProp, ...)

• Inner max achieved when ν = Rπ,λV
• Easily extended to other convex loss functions

SBEED: Smoothed Bellman Error EmbeDding [Dai et al., 18]

min
V ,π

max
ν

Es,a

[
2ν(s, a) · Rπ,λV (s, a)− ν(s, a)2

]
where Rπ,λV (s, a) := R(s, a) + γV (s ′)− λ log π(a|s)− V (s)

Algorithmic ideas

• Parameterize (V , π; ν) by (wV ,wπ;wν)

• Stochastic first-order updates on parameters

• Two-time-scale updates for primal and dual variables; or

• Exact maximization if concave in wν

• Our implementation uses stochastic mirror descent

SBEED Analysis

Error decomposition:∥∥∥V̂N
w − V ∗

∥∥∥
≤

∥∥∥V̂N
w − V̂ ∗w

∥∥∥︸ ︷︷ ︸
optimization

+
∥∥∥V̂ ∗w − V ∗w

∥∥∥︸ ︷︷ ︸
statistical

+ ‖V ∗w − V ∗λ‖︸ ︷︷ ︸
approximation

+ ‖V ∗λ − V ∗‖︸ ︷︷ ︸
smoothing

• Optimization error: run N iterations to find an empirically

near-optimal solution

• Statistical error: use a sample of size T to approximate

underlying (unknown) MDP

• Approximation error: use of parametric families to represent

(V , π, ν)

• Smoothing error: from Nesterov smoothing

SBEED: Optimization

Define ¯̀(V , π):= maxν L(V , π, ν), and assume

• ∇¯̀ is Lipschitz-continuous

• the stochastic gradient has finite variance

• stepsizes are properly set

Theorem. SBEED solution satisfies E[
∥∥∇¯̀(Vŵ , πŵ)

∥∥2
]→ 0

• Decay rate ∼ O(N−1/2) after N iterations

• Building on results of Ghadimi & Lan (13)

• See paper for variants of convergence results

• Still hard to quantify optimization error

SBEED: Statistical Analysis

Assumptions

• MDP regularity: ‖R‖∞ ≤ CR , ‖log π∗λ(a|s)‖∞ ≤ Cπ.

• Data collection is exponentially β-mixing with a unique

stationary distribution over S

Theorem.

εstat(T) = O(T−1/2)

Further Remarks on Related Work

• Bellman residual minimization for (fixed) policy evaluation

(Antos+08, Farahmand+08)

• Specializes to certain gradient TD algorithms with linear

approximation (Sutton, Maei & co.; Liu+15; Macua+15)

• Can be analyzed using well-established techniques (Antos+08,

Farahmand+08, Liu+15)

• Can benefit from advanced optimization techniques such as

SVRG/SAGA (Du+17)

Outline

• Background

• How things may go wrong

• A primal-dual formulation

• A new kernel loss

• Conclusions

Primal-dual Problems are Hard to Solve

Consider simplified case |A| = 1 (can be extended to |A| > 1)

(π and λ play no role now)

Restricting dual ν to Reproducing Kernel Hilbert Space (RKHS):

min
V

max
ν∈Hk

Es

[
2ν(s) · RV (s)− ν(s)2

]
ww�

min
V

max
ν∈Hk :‖ν‖Hk

≤1
Es

[
2ν(s) · RV (s)

]
ww�

min
V

2 · Es,s̄ [K (s, s̄) · RV (s) · RV (s̄)]

A New Loss for Solving Bellman Equation

min
V

LK (V) := Es,s̄ [K (s, s̄) · RV (s) · RV (s̄)]

• Well-defined objective without requiring double samples

• May be optimized by gradient methods w/ mini-batches

(SGD/BackProp, ...)

• May be extended to the controlled case |A| > 1

[Feng et al. 2019] https://arxiv.org/abs/1905.10506

Eigenfunction Interpretation

By Mercer’s theorem

K (s, s̄) =
∑
i

λiei (s)ei (s̄)

Proposition

LK (V) =
∑
i

λi
(
Es [RV (s) · ei (s)]

)2

Thus, LK (V) is λi -weighted `2-norm in space spanned by {ei}.
Difference choices of K lead to different ({λi}, {ei}).

Example: RBF kernel favors smooth eigenfunctions.

Extension to |A| > 1

Option 1

LK (V , π) = Es,s̄,a∼π(s),ā∼s̄ [K ([s, a], [s̄, ā])·Rπ,λV (s, a)·Rπ,λV (s̄, ā)]

Option 2

Use previous LK (V) for (fixed) policy evaluation within other

algorithms (e.g., API, actor-critic, ...)

PuddleWorld with Neural Networks

PuddleWorld: classic divergence example (Boyan & Moore 95)

MSE:
∥∥∥V̂ − V ∗

∥∥∥2

2

Bellman error:
∥∥∥RV̂∥∥∥2

2
L2 loss: squared TD error that suffers double-sample bias

Similar results in other classic problems: CartPole, MountainCar.

Results on Mujoco

Use our loss for learning V π for fixed policy π, inside Trust-PCL

(Nachum+ 18)

Outline

• Background

• How things may go wrong

• A primal-dual formulation

• A new kernel loss

• Conclusions

Conclusions

• Modern RL requires going beyond tabular/linear cases

• Convergence conditions for DP-based approaches often brittle

• Promising and fruitful direction: DP −→ OPT

• different formulations as optimization problems

• new algorithms with provable convergence and stronger

guarantees

• more transparent behavior (using established stats/ML

techniques)

• potentially make RL easier to use in practice

An Upcoming Workshop

https://optrl2019.github.io

THANK YOU !

APPENDIX

Online SBEED Learning with Experience Replay

Experiments

• Use Mujoco on OpenAI as benchmark

• Compare to state-of-the-art baselines:

• Dual-AC (Dai et al. 18)

• TRPO (Schulman et al. 15)

• DDPG (Lillicrap et al. 15)

(from http://www.mujoco.org)

Role of Smoothing Parameter λ

Role of Bootstrapping Distance k

Role of Dual Embedding η

Comparison against Baselines

	Appendix
	Appendix

