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Policy gradient methods in RL
• Widely used in practice

• Directly optimize quantity of interest
• Easily handle continuous and discrete states and actions
• Apply to any differential policy parametrization

• Coarse-grained understanding in theory
• Converge to a stationary point under sufficient smoothness

Can we sharpen our understanding of when and how well 
do policy gradient methods work?



Questions of interest

• When do policy gradient methods find a globally optimal policy with 
tabular parameterizations?

• What is the effect of function approximation on these guarantees?

• How does using finitely many samples effect convergence?



Main challenges

• The underlying maximization problem is typically non-concave

• Poor exploration leads to bad stationary points

• Role of function approximation tricky to quantify
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MDP Preliminaries

• Discounted Markov Decision Process (𝑆, 𝐴, 𝑟, 𝑃, 𝛾)

• Policy 𝜋 ∶ 𝑆 → Δ(𝐴)

• State distribution of a policy 𝜋

𝑑𝑠0
𝜋 𝑠 = 1 − 𝛾 

𝑡=0

∞

𝛾𝑡 P𝑟𝜋 𝑠𝑡 = 𝑠 𝑠0)

• Value functions of a policy 𝜋

𝑉𝜋 𝑠0 = 𝐸𝑠,𝑎∼𝑑𝑠0
𝜋 [𝑟 𝑠, 𝑎 ] and 𝑄𝜋 𝑠, 𝑎 = 𝐸 𝑟 𝑠, 𝑎 + 𝛾𝑉𝜋 𝑠′ 𝑠, 𝑎]



Policy parameterizations

• Policy class Π = {𝜋𝜃: 𝜃 ∈ Θ}. 

• Policy optimization: 𝐦𝐚𝐱
𝝅∈𝚷

𝑽𝝅 𝝆 = 𝑬𝒔∼𝝆[𝑽
𝝅 𝒔 ]

• Example: Softmax parameterization

Θ = 𝑅𝑆𝐴 and 𝜋𝜃 𝑎 𝑠 ∝ exp(𝜃𝑠,𝑎)

• In general, Π need not contain the best unconstrained policy

One parameter per 
state action, always 

contains optimal 
policy



Policy gradient algorithm
• Given a distribution 𝜇 over states 

• Can be different from 𝜌 for better exploration

• First-order updates on value of policy

𝜃𝑡+1 = 𝜃𝑡 + 𝜂∇V t (𝜇)

• Policy gradient theorem [Williams ‘92, Sutton et al., ‘99]

∇𝜃𝑉
𝜋𝜃 𝜇 = 𝐸

𝑠,𝑎∼𝑑𝜇
𝜋𝜃 [∇𝜃 log 𝜋𝜃 𝑎 𝑠 𝑄𝜋𝜃(𝑠, 𝑎)]

• Can be estimated using trajectories from 𝜋𝜃

𝑉𝜋 with 𝜋 = 𝜋𝜃𝑡



Policy gradient example: Softmax parameterization

• Advantage function of 𝜋

𝐴𝜋 𝑠, 𝑎 = 𝑄𝜋 𝑠, 𝑎 − 𝐸𝑎∼𝜋 ⋅ 𝑠 [𝑄
𝜋 𝑠, 𝑎 ]

• Policy gradients (PG) for softmax:

𝜕𝑉𝜋𝜃 𝜇

𝜕𝜃𝑠,𝑎
=

1

1 − 𝛾
𝑑𝜇
𝜋𝜃 𝑠 𝜋𝜃 𝑎 𝑠 𝐴𝜋𝜃(𝑠, 𝑎)

Favor actions with 
a large advantage

Stationary if better 
actions are not 

explored
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Convergence of policy gradients for softmax

Theorem

Suppose the initial distribution 𝜇 satisfies 𝜇 𝑠 > 0 for all 

𝑠 ∈ 𝑆. Using 𝜂 ≤
1−𝛾 2

5
, we have for all states 𝑠:

𝑉 𝑡 𝑠 → 𝑉⋆(𝑠) as 𝑡 → ∞

Converges as all states, actions have non-zero probability under softmax

Can be slow as optimal policy is deterministic, 𝜃 grow to ∞



Entropy regularization 

• Vanilla policy gradient slow to converge when probabilities are small

• Entropy regularization:

max
𝜃∈𝑅𝑆𝐴

𝐿𝜆 𝜃 ≔ 𝑉𝜋𝜃 𝜇 −
𝜆

𝑆


𝑠

KL Unif, 𝜋𝜃 ⋅ 𝑠



Entropy regularized PG

• Vanilla policy gradient slow to converge when probabilities are small

• Entropy regularization:

max
𝜃∈𝑅𝑆𝐴

𝐿𝜆 𝜃 ≔ 𝑉𝜋𝜃 𝜇 +
𝜆

𝑆𝐴


𝑠,𝑎

log 𝜋𝜃 𝑎 𝑠

• Different from more commonly used entropy of 𝜋

• Entropy regularized PG updates
𝜃𝑡+1 = 𝜃𝑡 + 𝜂∇𝜃𝐿𝜆(𝜃𝑡)



Convergence of Entropy regularized PG

Distribution mismatch ratio:

𝑀 𝜋, 𝜌; 𝜇 = max
𝑠∈S

𝑑𝜌
𝜋(𝑠)

𝜇(𝑠)

Theorem

For appropriate choices of 𝜆, 𝜂 and for any state distribution 𝜌 we have

min
𝑡<𝑇

𝑉⋆ 𝜌 − 𝑉 𝑡 𝜌 = 𝑂
𝑆𝐴

1 − 𝛾 3

𝑀(𝜋⋆, 𝜌; 𝜇)

𝑇



Convergence of Entropy regularized PG

• poly 𝑆, 𝐴,
1

1−𝛾
,
1

𝜖
convergence when distribution mismatch is small

• Counterexamples without dependence on 𝑀(𝜋⋆, 𝜌; 𝜇)

• Exploration matters in PG even with exact gradients

Theorem

For appropriate choices of 𝜆, 𝜂 and for any state distribution 𝜌 we have

min
𝑡<𝑇

𝑉⋆ 𝜌 − 𝑉 𝑡 𝜌 = 𝑂
𝑆𝐴

1 − 𝛾 3

𝑀(𝜋⋆, 𝜌; 𝜇)

𝑇



Can we do better?

• Policy gradients (PG) for softmax:

𝜕𝑉𝜋𝜃 𝜇

𝜕𝜃𝑠,𝑎
=

1

1 − 𝛾
𝑑𝜇
𝜋𝜃 𝑠 𝜋𝜃 𝑎 𝑠 𝐴𝜋𝜃(𝑠, 𝑎)

• Distribution mismatch arises as PG depends on probability of visiting 𝑠
under 𝜋

Algorithm Iteration complexity

PG for softmax Asymptotic

Entropy-regularized PG for softmax
𝑂

𝑆2𝐴2

1 − 𝛾 6𝜖2
𝑀 𝜋⋆, 𝜌; 𝜇 2



A natural solution

• Let us consider the Natural Policy Gradient algorithm [Kakade, 2001]
• Uses Fisher information based preconditioner

• Simple form for softmax parameterization:

𝜃𝑡+1 = 𝜃𝑡 +
𝜂

1 − 𝛾
𝐴(𝑡) and 𝜋𝑡+1 𝑎 𝑠 ∝ 𝜋𝑡 𝑎 𝑠 exp(𝜂𝐴 𝑡 )

• Updates do not depend on 𝑑𝜋𝜃(𝑠)

• Like multiplicative weights, but in a non-concave maximization setting



Convergence of Natural Policy Gradients

• Dimension free convergence, no dependence on 𝑆, 𝐴

• No dependence on distribution mismatch coefficient

• Similar results for approximate policy iteration in Even-Dar et al., 
[2009] and [Geist et al. [2019]

Theorem

Using 𝜇 = 𝜌 and 𝜃0 = 0, setting 𝜂 = 1 − 𝛾 2 log 𝐴 , for all 𝑡 we have

𝑉⋆ 𝜌 − 𝑉 𝑡 𝜌 ≤
2

1 − 𝛾 2 𝑡



Proof ideas

• Performance difference lemma:

𝑉𝜋 𝑠0 − 𝑉𝜋
′
𝑠0 =

1

1 − 𝛾
𝐸 𝑠∼𝑑𝑠0

𝜋 𝑠 𝐸𝑎∼𝜋 ⋅ 𝑠 𝐴𝜋
′
𝑠, 𝑎

• Linearize regret using above lemma instead of concavity

• Yields 
1

𝑡
rate almost immediately by multiplicative weights analysis

• Lower bound per-step improvement for fast rate



Recap so far
Algorithm Iteration complexity

PG for softmax Asymptotic

Entropy-regularized PG for softmax
𝑂

𝑆2𝐴2

1 − 𝛾 6𝜖2
𝑀 𝜋⋆, 𝜌; 𝜇 2

NPG for softmax
𝑂

1

1 − 𝛾 2𝑇

We now study NPG with restricted policy parameterizations 
which need not contain the optimal policy
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Restricted parameterizations

• Policy class Π = {𝜋𝜃: 𝜃 ∈ Θ}

• Want a policy 𝜋 ∈ Π to minimize 

max
𝜃∈Θ

𝑉𝜋𝜃 𝜌 − 𝑉𝜋(𝜌)

• Example (linear softmax):
𝜋𝜃 𝑎 𝑠 ∝ exp 𝜃𝑇𝜙𝑠,𝑎 𝜙𝑠,𝑎 ∈ 𝑅𝑑 for 𝑑 ≪ 𝑆𝐴



A closer look at Natural Policy Gradient

• NPG performs the update:

𝐹 𝜃 = 𝐸𝑠,𝑎∼𝜋𝜃 𝑔𝜃 𝑠, 𝑎 𝑔𝜃 𝑠, 𝑎 𝑇 where 𝑔𝜃(𝑠, 𝑎) = ∇𝜃 log 𝜋𝜃 𝑎 𝑠

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝐹 𝜃𝑡
†∇𝜃𝑉

(𝑡)

• Ordinary least squares solution under the loss:

𝐿 𝑤; 𝜃 = 𝐸𝑠,𝑎∼𝜋𝜃 𝐴𝜋𝜃 𝑠, 𝑎 − 𝑤 ⋅ 𝑔𝜃(𝑠, 𝑎)
2

• Example for linear softmax:

𝐿 𝑤; 𝜃 = 𝐸𝑠,𝑎∼𝜋𝜃 𝐴𝜋𝜃 𝑠, 𝑎 − 𝑤 ⋅ 𝜙𝑠,𝑎
2

Compatible function 
approximation loss [Sutton 

et al., 99]



A natural update rule

• Pick any 𝑤𝑡 ∈ argmin𝑤 𝐿 𝑤; 𝜃𝑡

• Update 𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝑤𝑡

• Similar to Natural Actor Critic [Peters and Schaal, 2008]



Assumptions on policies

Policy Smoothness: ∇𝜃log 𝜋𝜃 𝑎 𝑠 is 𝛽 Lipschitz continuous for all 𝑠, 𝑎

Bounded updates: 𝑤𝑡 ≤ 𝑊 for all iterations 𝑡

Bounded approximation error: 𝐿 𝑤𝑡; 𝜃𝑡 ≤ 𝜖apx for all iterations 𝑡

Minimum action probabilities: 𝜇 𝑎 𝑠 ≥ 𝑝min for all 𝑠, 𝑎



Convergence of NPG for smooth policies

• Let 𝜃⋆ = argmax
𝜃∈Θ

𝑉𝜋𝜃 𝜌 . Set  𝜂 = 2 log 𝐴 /𝛽𝑊2𝑇

Theorem

min
𝑡<𝑇

𝑉𝜋𝜃⋆ 𝜇 − 𝑉 𝑡 𝜇

≤
𝑊 2𝛽 log 𝐴

1 − 𝛾

1

𝑇
+

𝑀 𝜋𝜃⋆ , 𝜌; 𝜇

1 − 𝛾 3𝑝min
𝜖apx



Convergence of NPG for smooth policies

• Slower rate than the tabular case

Theorem

Regret 𝜇, 𝑇 ≤
𝑊 2𝛽 log𝐴

1 − 𝛾

1

𝑇
+

𝑀 𝜋𝜃⋆ , 𝜌; 𝜇

1 − 𝛾 3𝑝min
𝜖apx



Convergence of NPG for smooth policies

• Slower rate than the tabular case

• Distribution mismatch coefficient strikes back

Theorem

Regret 𝜇, 𝑇 ≤
𝑊 2𝛽 log𝐴

1 − 𝛾

1

𝑇
+

𝑀 𝜋𝜃⋆ , 𝜌; 𝜇

1 − 𝛾 3𝑝min
𝜖apx



Convergence of NPG for smooth policies

• Slower rate than the tabular case

• Distribution mismatch coefficient strikes back

• Effect of function approximation captured using min compatible 
function approximation loss

Theorem

Regret 𝜇, 𝑇 ≤
𝑊 2𝛽 log𝐴

1 − 𝛾

1

𝑇
+

𝑀 𝜋𝜃⋆ , 𝜌; 𝜇

1 − 𝛾 3𝑝min
𝜖apx



Extension to finite samples

• Approximately minimize 𝐿(𝑤; 𝜃𝑡) using samples

• Easy to obtain unbiased gradients

• Regret in loss minimization adds to 𝜖apx

• We show convergence guarantees using averaged SGD



Summary and other results

• Finite-time convergence analysis of policy gradient methods

• Distribution mismatch coefficient captures role of exploration
• Assumption on algorithm, but not MDP dynamics

• Also analyze some projected policy gradient methods in the paper
• E.g.: 𝜋𝜃 𝑎 𝑠 = 𝜃𝑠,𝑎 as long as parameters lie in the simplex

• Characterize relevant notions of policy class expressivity



Looking ahead

• Empirical validation of theoretical prescriptions
• KL vs. reverse KL, Actor-critic vs. Natural actor critic,… 

• How do variance reduction techniques help?

• Sharper problem-dependent quantities instead of distribution 
mismatch coefficient

• Design of good exploratory distributions 𝜇



http://arxiv.org/abs/1908.00261

http://arxiv.org/abs/1908.00261


Theorem

Let 𝛽𝜆 =
8𝛾

1−𝛾 3 +
2𝜆

𝑆
. Starting from any 𝜃0, using 𝜆 =

𝜖 1−𝛾

2𝑀(𝜋⋆,𝜌;𝜇)
and 

𝜂 =
1

𝛽𝜆
, for any state distribution 𝜌 we have

min
𝑡<𝑇

𝑉⋆ 𝜌 − 𝑉 𝑡 𝜌 ≤ 𝜖 whenever 𝑇 ≥
320 𝑆2𝐴2

1 − 𝛾 6𝜖2
𝑀 𝜋⋆, 𝜌; 𝜇 2


