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Oppenheim’s Trickling Down Theorem

Lecture by: Yotam Dikstein

This talk continues Irit Dinur’s talk about High Dimensional Expanders. In the following hour we will prove
the “Trickling Down Theorem” by [Oppl8].This theorem demonstrates the power of “Garland’s Method”, where we
calculate a global invariant of the simplicial complex with its links. This method allows us to deduce global behaivior

out of local behaivior.

1 Spectral Expansion Trickles Down

Theorem 1.1 (Oppenheim). Let X be a d-dimensional simplicial complex for d > 2. Suppose that its one-dimensional
skeleton (i.e. the graph (X (0), X(1))) is connected. Furthermore, assume that Vv € X(0), X, is a A-one-sided spectral

expander. Then the underlying graph of X is a p-one sided spectral expander for yu = ﬁ

Why the “Trickling Down Theorem”?

Suppose X is a d = 3-dimensional simplicial complex. Assume that the links of the edges (X(1)) are good spectral
expanders. Then we can apply the theorem on the links of the vertices, to get that every link of a vertex is a good
spectral expander. Then we apply it again to get that the underlying graph of the whole simplicial complex is a good
spectral expander. The expansion “trickles down” from the edges to the whole complex.

We formalize this in the following corollary:

Corollary 1.2. Let X be a d-dimensional simplicial complex such that the 1-skeleton of every link (including the
entire simplicial complex) is connected. Assume that Vv € X(d — 2) X, is a one-sided \-expander. Then X is a

w-expander where p = m-

Remark 1.3. For negative eigenvalues we have an analogous bound:

Theorem 1.4 (Trickling Down for Negative Eigenvalues). Let X be as above. Assume that for all v € X(0), the
smallest eigenvalue of A, is > n. Then the smallest eigenvalue of the one dimensional skeleton is lower bounded

bounded by .. 1

This might seem less interesting, but this has meaning even when n = —1, since when n < 0 then 13—7] >n. Le.

the negative eigenvalues become smaller when you look at lower level faces.

2 Applications

A priori to show that X is a high dimensional expander, one needs to check all the links. This theorem shows that
good spectral expansion in the top level links of the simplicial complex, already implies good (under weak assumptions
of connectivity). This is a local to global phenomenon.

Oppenheim’s trickling down theorem power is that by analyzing the expansion of the links of co-dimension 2, and
showing that the remaining links are connected (which is usually much easier), we get a bound on the link expansion

of all the links that goes to 0 as the original expansion goes to 0 (as long as the dimension is fixed).

1. The analysis of Kaufman-Oppenheim Algebraic construction of High Dimensional Expanders.

1For this part, we do not require the underlying graph being connected.
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2. An immediate construction of two-sided spectral expanders from one-sided spectral expanders: just take a d-
dimensional one-sided link expander, and take a lower-level skeleton (i.e. take Y = Ufz_l X(j) for k < d). This

was already discovered by Dinur-Kaufmann, but this gives a one-line proof.

3 Proof of the Theorem

why is this theorem true?

When we have a disconnected underlying graph, then no-matter how well connected are the links, they cannot
“feel” the disconnectedness of the graph. However, if a graph has a sparse cut, then at least one link will see that the
graph has a sparse cut.

Surprisingly, though, the actual proof doesn’t go through this line of reasoning. Instead, we use an algebraic point

of view. We study the spectrum of the adjacency operator using the spectra of the links.

3.1 Some Preliminaries

The proof of this theorem only uses some basic facts from linear algebra and probability.

First we recall the adjacency operator of a graph:

Definition 3.1 (adjacency operator). The adjacency operator of the graph is an operator who takes as input f : V — R
and returns Af : V. — R given by

The probability of choosing u is taken by the probability to choose the edge {v,u} given that we chose an edge containing

V.

The trivial eigenvector is the all ones vector since A1 = 1. We say a graph is a A-one sided spectral expander if
all non-trivial eigenvalues of A are < X. Note that this is a different (but equivalent) definition than the definition by
the laplacian.

Recall the inner product that we defined previously. For real-valued functions on the vertices f: V — R.

(f:9) = E [f(v)g(v)].

The adjacency operator has a special relation with this inner product:

(f;Ag) = E_[f(u)g(v)].

uwveE

Here are some more basic facts on the adjacency operator, all of which are elementary:
1. the constant all ones vector 1 is always an eigenvector of A and it’s eigenvalue is 1.
2. The graph is connected if and only if all other eigenvalues are strictly less than 1.

3. A is self-adjoint, so if we decompose any function f = al + f+ where the two parts are perpendicular, then
(Af, f) = (a1, 1) + (Af*, f7); a= E [f(u)].
4. When G is a A-one sided spectral expander, then we can say that for any f L 1

(fLAf) <A S)-
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3.2 The Proof

We prove that part about the positive eigenvalues, the negative eigenvalue part is similar.

Proof of Theorem 1.1. First we give some notation: Let A be the adjacency operator associated with the 1-skeleton
(X(0),X(1)). Let A, be the adjacency operator associated with X,.

We begin with the following important claim

Claim 3.2 (Localization). Let f,gX(0) — R be any real valued functions, and for v € X(0) denote by f,, g, their

restrictions to X,. Then

(f,9) :Ue;};(o)[<f”’g”>x”]’ (3.1)
and
(45,00 = B [(Audussid ) (32)

This is what is called “Garland’s Method”: calculating global forms via local links.

Proof. For (3.1):
(fi9) = E [flu)g(u)].

uEX(0)
How do we choose a vertex u € X (0)? We choose an edge uv € X (1) and take one of its vertices. We use the law
of conditional expectation on the other, non-chosen vertex. In other words, we can choose this uw by first choosing
v € X(0), then choosing uv conditioned on v, and then take w. This is the same probability of choosing v and then u
in the link of v.
For (3.2) we do the same:
(froy= E _[flu)g(w)],

uweX (1)
and we choose uw by choosing v € X (0) and then the triangle vuw (which is the same as choosing uw in the link of

V. O

Suppose f: X(0) — R is an eigenfunction with eigenvalue ~, and assume f 1 1. Also assume (f, f) = 1. We have
by 3.2:

Y= <Afaf> = (0)[<Avava>]a (33)

E
veX
Where f, be the restriction of f to X,(0).

By assumption X, is a one-sided A-spectral expander and so the second largest eigenvalue of A, satisfies < .

Thus for any function g : X, (0) — R satisfying g 1 1 we have by the spectral decomposition of A that

(Ag,g) < Xgl*.

We assumed that f L 1, so if it were true that f, L 1,, then

(fo, Avfo) < A(fo, fo)

and then we would get that v < A.
Unfortunately, the fact that f L 1 globally, doesn’t necessarily mean that f, 1 1,. It may be that on some vertices

fv has a large and positive weight, and on some, it has large negative weights.

Thus we define f, = a, 1, + f- a decomposition to the constant part, and the part perpendicular to it. And

<fv7Ava> = <a’u]1’uaav]lv> +< j,AUfUL>.
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As for the perpendicular part, we know that

(FE ALY < XN(FE R

Hence we can write
(1= X) (al,ad) + A {fo, fo) -

The expectation of the right part just amounts to A (f, f) = A. In total, after taking expectation we get:

<(1-=A E [a2]+ A\
v <( )UEX(O)[%H

What is a,,? Recall that « is just the projection of f to 1, i.e.

a=(fo,l)= E [f(u)].

u€X,(0)

This should look familiar - u € X,,(0) iff w ~ v. This means that o, = Af(v). And we get that

E 0= E [Af0)]= (4], Af) =7

We get that
<(A-XN E [a?]+ X
TSU-N) E o]
With some more manipulations
(1 =7) <A1 =7).

As v < 1 since the underlying graph is connected, we can divide by (1 — v) and get

A
S T\
The theorem follows.
4 Summary
There are two important parts of this proof:
1. The Garland method: That
(Af9) = E [ Akl

2. The fact that the average part f0 was infact Af(v) (A kills the perpendicular part).

In simplicial complexes, there are other random walks we can decompose to local parts. In the next talk we will talk

other random walks that are subject to such a decomposition.
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