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Cerebellum Figures and Facts

ALLIGATOR

FIGURE 1. Cerebellum as part of vertebrate brains.
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FIGURE 2. Cerebellum cell types in 3D.
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3D organization of the "main" circuit.

FIGURE 3.



Cer

ebellum Facts and Figures

. 200 million Mossy Fibers: input from outside

. 40 billion Granule Cells, the most numerous

. 15 million Purkinje Cells (PC): sole output

. Climbing Fibers: input from within
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-- 1/PC, shared by approx. 10 PCs

,000 synapses/PC

. 1.5 trillion synapses overall

How

1.

big is 1.5 trillion?

trillion synapses @ 1 bit/synapse
360,000 books, 400 pages each
4 miles of shelf space
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The Cerebellum Challenge

Traditional theories--logic, rule-based AT,

artificial neural nets, connectionism, parallel
distributed processing, deep learning—-leave
too much unexplained and unexplored.

For example, why the cerebellum?

It has 40 billion neurons
vs. 16 billion in the rest of the brain

. Its organization 1is simple and regular

The cerebellum must fulfill some essential function

that computational theories and models of the brain
cannot afford to ignore



What Is the Cerebellum for?
Coordination of movement, fine motor control
-- learn, generate, and monitor sequences
-- predict

Growing evidence for higher cognitive functions
such as language

-- this agrees with the theme of this talk:

Theory of computing with high-dimensional vectors
assumes a high-capacity associative memory



Development of Theory from Top Down

Top-down development prepares the mind to
recognize an answer when it presents 1itself

1. Philosophy and Psychology
. The character of concepts

2. Mathematics
. Develop a mathematical model of the
world of concepts

3. Engineering
"Build" a physical structure implied
by the model

4. Biology
Is there anything like 1t 1n the brain?
Is anything of essence missing?



Representing Concepts with High-D Vectors

Brains consist of neurons but minds work with
concepts

The world of concepts 1is
huge and
ever-expanding

Representation of concepts must allow for that



Concepts can be compared for similarity of meaning

man = woman
man % lake

Distant concepts have similar neighbors

man % lake

man = fisherman = fish = Tlake
man = plumber = water = lake
plumber # fish



Robustness of Concepts (and of percepts)

Sensory i1nput never repeats exactly

-- yet we recognize people and things
Recognition is fast and extremely tolerant of
variation and "noise"

Learning can be very fast

-- from a single exposer

-- a handful of examples

-- explicit instruction

Memories can last a Tifetime

How to model the world of concepts?

What mathematical objects would have the above
properties?
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Properties of High-Dimensional Vectors

e.g. 10,000-dimensional binary vectors

. 10K-bit vectors/"words"/points of a 10K-dim.

space

. Total number of 10K-bit vectors: 2°2°%

. Hamming distance H between 10K-bit vectors
follows the binomial distribution:
-- mean = 5,000, STD = 50
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. Most vectors are dissimilar (H ~ 5,000, h ~ 0.5)

. A tiny fraction is closer than, say, 4,500 bits
-— h = 0.45 is 10 STDs from the mean
-- hence "very similar"”

Between pairs of dissimilar vectors (h ~ 0.5)
there are many that are very similar to both:

man = fisherman = fish = lake

. These are properties of high-D vectors at large
-- binary, integer, real, complex vectors

. Called Concentration of Measure
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Concepts as High-D Vectors
Old school:
. Concepts are represented by disjoint features

Each feature is its own dimension of a high-D

vector

-- e.g., age, sex, state, zip code, can swim,
eligible to vote, speaks Chinese, married,
humber of children,

-- Grandmother cells

. The features constitute an ontology
-- 1.e., concepts and categories of a subject
area and relations among them
-- the 1ist can grow indefinitely (>> 10K)

. There 1s no universal ontology
-- any ontology will eventually box us 1n



Quasi-Orthogonality of High-D Vectors

In 10,000 dimensions there are 10,000 mutually
orthogonal vectors but billions of nearly
orthogonal vectors, i.e., dissimilar

. A randomly chosen vector 1i1s nearly orthogonal
to any of a billion chosen so far

-- the number grows exponentially with
dimensionality

Each can represent an independent feature or
concept

Randomness 1s a major asset

16



Holographic Representation (Superposition)
Overcomes the 10K Timit on the number of features
representable in 10K Bits
A single vector can represent

a feature

set of features

structured composition of features

concept
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Computing 1n Superposition, an example

Encode {x = a, y = b, z = c} 1nto a single
superposition vector, super-vector S

Retrieve the vector for x from S
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X = 10010...01
A = 00111...11
X*A = 10101...10 ->
Y = 10001...10
B = 11111...00
Y*B = 01110...10 ->
/ = 01101...01
C = 10001...01
/*C = 11100...00 ->
Sum =
Majority =

FIGURE 6a, Encoding

X and A

1010

0111

are bound with
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FIGURE 6b. Decoding: What's the value of x in S?
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Summary of the Algorithm

1. The variables and the values are represented by
random 10K-bit seed vectors X, Y, Z, A, B, C

2. Variables are bound to their vales with XOR and
the bound pairs are combined with "addition"
(1.e., thresholded sum, majority)

3. The vector for x is retrieved with XOR and
"clean-up"”
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System of Computing with Super-Vectors
Ingredients

1. Random-vector generator:
-- seed vectors

2. Three operations on vectors:
-- Multiply, Add, Permute (MAP)

3. Measure of similarity:
-- distance, cosine, Pearson correlation

These operations make 1t possible to do both
rule-based symbolic processing (GOFAI) and
statistical learning from data
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HOWEVER

there is a Timit to the amount of information
that can be stored in a single super-vector.
The 1imit 1s overcome by

4. High-capacity memory for super-vectors

-- akin to memory for numbers and pointers
in today's computers



Functions of the Memory

Store and generate sequences: predict
-- hetero-associative

Identify "noisy" vectors: clean-up
-- auto-associative

Modeled by neural-net associative memories

Hopfield net
-- 1imited capacity

Sparse Distributed Memory (SDM)
-- "unTimited" but inefficient
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FIGURE 10. The cerebellum is more efficient than SDM.



FIGURE 3/11. 3D organization of the "main" circuit.
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FIGURE 12. Side view: "Select Tines" and "bit planes.”
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Pseudo-Cerebel Tum

Building an associative memory for super-
vectors 1s a major engineering challenge

. Nature appears to have solved 1t
. We can use the cerebellum as a source of ideas

and guidance

Calls for in-depth study of cerebellar circuits
from engineering point of view (Loebner, 1989)
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Is this Neuroscience?
Are differential equations physics?
No, but they are
Mathematics to help us understand forces
of nature, i.e., physics
and so, ... Is this neuroscience?
No, but 1t 1is

Computer Science to help us understand human
and animal behavior and traits, i.e., brains
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Concluding Remarks

The nervous system and the brain are too complex
to be understood without an adequate theory that
serves as a framework in which to interpret our
observations

Neuroanatomy and physiology are too important
to be i1gnored 1n our theorizing about the brain

and the mind
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Origins
. Santiago Ramon y Cajal (ca. 1900): anatomy

. David Marr (1969) and James Albus (1972):
cerebellum as neural associative memory

. PK (1984): Sparse Distributed Memory

. Tony Plate (1994): computing 1n superposition
(HRR = Holographic Reduced Representation)

. Egon Loebner (1989): interconnect diagram

. Ross Gayler (1998): significance of permutation
(MAP = Multiply-Add-Permute)

. Paxon Frady (2017): computing with timing of
spikes (complex-vector HRR)
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The Cerebellum as Neural Associative Memory
Pentti Kanerva, UC Berkeley

Abstract

The cerebellum contains over half the neurons in the brain (the granule cells),
as well as neurons with the largest number of modifiable synapses (the
Purkinje cells). More than a century ago Santiago Ramon y Cajal mapped its
circuits and left us with the puzzle of interpreting its function and operation.
70 years later David Marr (1969) and James Albus (1972) interpreted it as a
neural associative memory. | will discuss this interpretation and its fit into a
theory of computing with high-dimensional vectors. It turns out that
computing with vectors resembles computing with numbers. Both need a
large memory, to provide ready access to a lifetime's worth of information. |
will also discuss the need to understand the cerebellum's connections to the
rest of the nervous system in light of the theory of computing with vectors.



