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Fun with Crypto SDPs



Weak
Coin-Flipping 

aa

Cheating definitions

(Weak) Coin-Flipping

P ⇤
A,0 := maxPr[Alice can force outcome 0]

P ⇤
A,1 := maxPr[Alice can force outcome 1]

P ⇤
B,0 := maxPr[Bob can force outcome 0]

P ⇤
B,1 := maxPr[Bob can force outcome 1]

We have good 
weak coin-flipping protocols 
(Mochon 2007, Iordanis’ talk)



Strong
Coin-Flipping 

aa

Cheating definitions

(Strong) Coin-Flipping

P ⇤
A,0 := maxPr[Alice can force outcome 0]

P ⇤
A,1 := maxPr[Alice can force outcome 1]

P ⇤
B,0 := maxPr[Bob can force outcome 0]

P ⇤
B,1 := maxPr[Bob can force outcome 1]

Quantum: max{P ⇤
A,0, P

⇤
A,1, P

⇤
B,0, P

⇤
B,1} < 1 is possible

[Aharonov, Ta-Shma, Vazirani, Yao 2000]

Quantum: max{P ⇤
A,0, P

⇤
A,1, P

⇤
B,0, P

⇤
B,1} = 1/2 is impossible

[Lo, Chau 1997]

Classical: max{P ⇤
A,0, P

⇤
A,1, P

⇤
B,0, P

⇤
B,1} < 1 is impossible

Optimal strong 
coin-flipping protocols?



aa

(Strong) Coin-Flipping

Strong
Coin-Flipping 

%\max \{ P^*_{A,0}, P^*_{A,1}, P^*_{B,0}, P^*_{B,1} \} = 3/4 \\
%\text{[Ambainis 2001]} \\  
%\max \{ P^*_{A,0}, P^*_{A,1}, P^*_{B,0}, P^*_{B,1} \} \geq 1/\sqrt{2} \\
%\text{for every protocol [Kitaev 2002]} \\
\max \{ P^*_{A,0}, P^*_{A,1}, P^*_{B,0}, P^*_{B,1} \} \leq 1/\sqrt{2} + \epsilon \\
\text{is possible for any } \epsilon \\
\text{[Chailloux and Kerenidis 2009]} \\  

Optimal Bounds

max{P ⇤
A,0, P

⇤
A,1, P

⇤
B,0, P

⇤
B,1}  1/

p
2 + ✏

is possible for any ✏ > 0

[Chailloux and Kerenidis 2009]

P ⇤
A,0P

⇤
B,0 � 1/2 for every protocol [Kitaev 2002]

Based on weak coin-flipping!

How can we find better coin-flipping protocols?

How do we prove coin-flipping protocol security?

[Gutoski, Watrous 2007]
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(Strong) Coin-Flipping

Strong
Coin-Flipping 

%\max \{ P^*_{A,0}, P^*_{A,1}, P^*_{B,0}, P^*_{B,1} \} = 3/4 \\
%\text{[Ambainis 2001]} \\  
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%\text{for every protocol [Kitaev 2002]} \\
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⇤
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⇤
B,0, P

⇤
B,1}  1/

p
2 + ✏

is possible for any ✏ > 0
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Based on weak coin-flipping!

How can we find better coin-flipping protocols?

How do we prove coin-flipping protocol security?

P ⇤
A,0P

⇤
B,0 � 1/2 for every protocol [Kitaev 2002]

[Gutoski, Watrous 2007]



aa

(Strong) Coin-Flipping

Strong
Coin-Flipping 

%\max \{ P^*_{A,0}, P^*_{A,1}, P^*_{B,0}, P^*_{B,1} \} = 3/4 \\
%\text{[Ambainis 2001]} \\  
%\max \{ P^*_{A,0}, P^*_{A,1}, P^*_{B,0}, P^*_{B,1} \} \geq 1/\sqrt{2} \\
%\text{for every protocol [Kitaev 2002]} \\
\max \{ P^*_{A,0}, P^*_{A,1}, P^*_{B,0}, P^*_{B,1} \} \leq 1/\sqrt{2} + \epsilon \\
\text{is possible for any } \epsilon \\
\text{[Chailloux and Kerenidis 2009]} \\  

Optimal Bounds

max{P ⇤
A,0, P

⇤
A,1, P

⇤
B,0, P

⇤
B,1}  1/

p
2 + ✏

is possible for any ✏ > 0

[Chailloux and Kerenidis 2009]

Based on weak coin-flipping!

How can we find good and simple coin-flipping protocols?

How do we prove coin-flipping protocol security?

P ⇤
A,0P

⇤
B,0 � 1/2 for every protocol [Kitaev 2002]

[Gutoski, Watrous 2007]



Bad Coin-Flipping 
Protocol

Bob chooses b
uniformly at random

Alice chooses a 
uniformly at random

Alice sends a to Bob

Bob sends b to Alice

Alice outputs 
a ⊕ b 

Bob outputs 
a ⊕ b 



Bad Coin-Flipping 
Protocol

Bob chooses b
uniformly at random

Alice chooses a 
uniformly at random

Alice sends a to Bob

Bob sends b to Alice

Alice outputs 
a ⊕ b 

Bob outputs 
a ⊕ b 

Before sending b, 
Bob can change it and 
Alice wouldn’t know 

better

P ⇤
B,0 = P ⇤

B,1 = 1



Bad Coin-Flipping 
Protocol

Bob chooses b
uniformly at random
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Alice sends a to Bob

Bob sends b to Alice

Alice outputs 
a ⊕ b 

Bob outputs 
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Before sending b, 
Bob can change it and 
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better

Alice cannot cheat at all

P ⇤
B,0 = P ⇤

B,1 = 1

P ⇤
A,0 = P ⇤

A,1 = 1/2



Bad Coin-Flipping 
Protocol

Bob chooses b
uniformly at random

Alice chooses a 
uniformly at random

Alice sends a to Bob

Bob sends b to Alice

Alice outputs 
a ⊕ b 

Bob outputs 
a ⊕ b 

Before sending b, 
Bob can change it and 
Alice wouldn’t know 

better

Alice cannot cheat at all

P ⇤
B,0 = P ⇤

B,1 = 1

P ⇤
A,0 = P ⇤

A,1 = 1/2

BAD



Quantum Coin-Flipping 
Protocol Construction

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi

For Alice For Bob Extra x for cheat detection

Thus, she creates the state below:

Alice creates a in superposition
Controlled on a, she creates

for some probability vector  ↵a

| 
a

i :=
X

x

p
↵

a,x

|x, xi



Quantum Coin-Flipping 
Protocol Construction

For Bob For Alice Extra y for cheat detection

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

Bob creates b in superposition
Controlled on b, he creates 

for some probability vector �b

Thus, he creates the state below:

|�bi :=
X

y

p
�b,y|y, yi



Alice creates the quantum state

Alice sends a,x to Bob

Bob sends b,y to Alice

Alice sends xi (from second x register) to Bob

Bob sends yi (from second y register) to AliceFor i = 1 to n

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

Alice measures to determine:
(1) The value of a ⊕ b

(2) If Bob cheated

Bob measures to determine:
(1) The value of a ⊕ b

(2) If Alice cheated



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x3x2x1a y3y2y1ba x b y



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1ba x b yx3x2



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1 ba x b yx3x2



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1 ba x b yx3 x2



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
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a

1p
2
|a, ai

X

x

p
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a,x

|x, xi
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|�i :=
X

b

1p
2
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X

y

p
�b,y |y, yi

x1a y3y2y1 ba x b yx3 x2



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1 ba x b y x3x2



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1 ba x b y x3x2



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1 b a xb y x3x2



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1b a xby x3x2



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1b a xby x3x2

|�bi :=
X

y

p
�b,y |y, yi

Outcome?

Alice “measures” to learn a and b. 
Depending on b, she measures y, 
y1, y2, y3 to see if it’s in the state  



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1b a xby x3x2

Bob cheated?

Alice “measures” to learn a and b. 
Depending on b, she measures y, 
y1, y2, y3 to see if it’s in the state  

|�bi :=
X

y

p
�b,y |y, yi



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1b a xby x3x2

Outcome?

Bob “measures” to learn a and b. 
Depending on a, he measures x, 
x1, x2, x3 to see if it’s in the state  

| 
a

i :=
X

x

p
↵

a,x

|x, xi



Alice creates the quantum state

Quantum Coin-Flipping 
Protocol

| i :=
X

a

1p
2
|a, ai

X

x

p
↵

a,x

|x, xi
Bob creates the quantum state

|�i :=
X

b

1p
2
|b, bi

X

y

p
�b,y |y, yi

x1a y3y2y1b a xby x3x2

Alice cheated?

Bob “measures” to learn a and b. 
Depending on a, he measures x, 
x1, x2, x3 to see if it’s in the state  

| 
a

i :=
X

x

p
↵

a,x

|x, xi



Calculating the cheating 
probabilities as SDPs

Variables are Bob’s 
quantum states 

throughout the protocol

Probability Bob 
outputs “0”

Alice cannot alter
all of Bob’s state

P ⇤
A,0 = sup h�F ,⇧B,0i

s.t. TrX1(�1) = |�ih�|
TrX2(�2) = TrY1(�1)

...
TrXn(�n) = TrYn�1(�n�1)
TrX,A(�F ) = TrYn(�n)

�i ⌫ 0



P ⇤
A,0 = sup h�F ,⇧B,0i

s.t. TrX1(�1) = |�ih�|
TrX2(�2) = TrY1(�1)

...
TrXn(�n) = TrYn�1(�n�1)
TrX,A(�F ) = TrYn(�n)

�i ⌫ 0



P ⇤
A,0 = sup h�F ,⇧B,0i

s.t. TrX1(�1) = |�ih�|
TrX2(�2) = TrY1(�1)

...
TrXn(�n) = TrYn�1(�n�1)
TrX,A(�F ) = TrYn(�n)

�i ⌫ 0

= sup 1
2

P
a

P
y �a,yF (s(a,y),↵a)

s.t. TrX1(s1) = 1
TrX2(s2) = s1 ⌦ eY1

...
TrXn(sn) = sn�1 ⌦ eYn�1

TrA(s) = sn ⌦ eYn

s, si � 0



P ⇤
A,0 = sup h�F ,⇧B,0i

s.t. TrX1(�1) = |�ih�|
TrX2(�2) = TrY1(�1)

...
TrXn(�n) = TrYn�1(�n�1)
TrX,A(�F ) = TrYn(�n)

�i ⌫ 0

= sup 1
2

P
a

P
y �a,yF (s(a,y),↵a)

s.t. TrX1(s1) = 1
TrX2(s2) = s1 ⌦ eY1

...
TrXn(sn) = sn�1 ⌦ eYn�1

TrA(s) = sn ⌦ eYn

s, si � 0

Polytope!
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P ⇤
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P ⇤
A,0 = sup h�F ,⇧B,0i

s.t. TrX1(�1) = |�ih�|
TrX2(�2) = TrY1(�1)

...
TrXn(�n) = TrYn�1(�n�1)
TrX,A(�F ) = TrYn(�n)

�i ⌫ 0

= sup 1
2

P
a

P
y �a,yF (s(a,y),↵a)

s.t. TrX1(s1) = 1
TrX2(s2) = s1 ⌦ eY1

...
TrXn(sn) = sn�1 ⌦ eYn�1

TrA(s) = sn ⌦ eYn

s, si � 0

Similar SDPs and reductions for the other cheating probabilities

Polytope!

Not a 
polytope!



We have SDP formulations 
(and their simplifications)



Point Games!



Point Game Idea

• Start with two points [1,0] and [0,1], each 
with probability 1/2.  The idea is to merge 
the points/probabilities into a single point

• Points are eigenvalues of dual variables. The 
idea is to strip away the “messy basis 
information”

• Notation:  “q [x,y]” is point [x,y] with 
probability q



Basic Point Game Moves

Point Raising:

Point Merging:

q[x, y] ! q[x0
, y] (x0 � x)

nX

i=1

qi[xi, y] !
 

nX

i=1

qi

!Pn
i=1 qixiPn
i=1 qi

, y

�

%q [x,y] \to q [x', y] \quad (x' \geq x)
\sum_{i=1}^n q_i [x_i, y] \to \left( \sum_{i=1}^n q_i \right) \left[ \frac{\sum_{i=1}^n q_i x_i }{\sum_{i=1}^n q_i}, y \right]
%\sum_{i=1}^n q_i [x, y] \to \left( \sum_{i=1}^n q_i \right) \left[ x,y \right]
%\left( \sum_{i=1}^n q_i \right) \left[ \frac{\sum_{i=1}^n q_i}{\left(\sum_{i=1}^n \frac{q_i}{x_i}\right)}, y \right] \to \sum_{i=1}^n q_i 
\left[ x_i, y \right]
%\left( \sum_{i=1}^n q_i \right) \left[ x, y \right] \to \sum_{i=1}^n q_i \left[ x, y \right]



Easy Point Game

1

1

1/2



Easy Point Game

1

1
Raised 1 point

1/2



Easy Point Game

1

1

Merged two points

1/2



Easy Point Game

Final point

1

1

1/2



Another Easy Point Game

1

1

1/2



Another Easy Point Game

1

1

1/2

Raised this point



Another Easy Point Game

1

1

1/2

Merged 
two points

Final point



Another Easy Point Game

1

1

1/2

Final point



Basic Point Game Moves

Point Raising:

Point Merging:

Point Splitting:
 

nX

i=1

q

i

!2

4
P

n

i=1 qi⇣P
n

i=1
qi

xi

⌘
, y

3

5!
nX

i=1

q

i

[x
i

, y]

q[x, y] ! q[x0
, y] (x0 � x)

nX

i=1

qi[xi, y] !
 

nX

i=1

qi

!Pn
i=1 qixiPn
i=1 qi

, y

�

%q [x,y] \to q [x', y] \quad (x' \geq x)
\sum_{i=1}^n q_i [x_i, y] \to \left( \sum_{i=1}^n q_i \right) \left[ \frac{\sum_{i=1}^n q_i x_i }{\sum_{i=1}^n q_i}, y \right]
%\sum_{i=1}^n q_i [x, y] \to \left( \sum_{i=1}^n q_i \right) \left[ x,y \right]
%\left( \sum_{i=1}^n q_i \right) \left[ \frac{\sum_{i=1}^n q_i}{\left(\sum_{i=1}^n \frac{q_i}{x_i}\right)}, y \right] \to \sum_{i=1}^n q_i 
\left[ x_i, y \right]
%\left( \sum_{i=1}^n q_i \right) \left[ x, y \right] \to \sum_{i=1}^n q_i \left[ x, y \right]



P ⇤
B,1 := min

P
x1
(w1)x1

s.t. (w1)x1 �
P

x2
(w2)x1,y1,x2

(w2)x1,y1,x2 �
P

x3
(w3)x1,y1,x2,y2,x3

...
(w

n

)
x1,y1,...,xn �

P
a

1
2↵a,x

v
a,y

Diag(v
a

) ⌫
p
�
ā

p
�
ā

T

Bob’s Dual



P ⇤
B,1 := min

P
x1
(w1)x1

s.t. (w1)x1 �
P

x2
(w2)x1,y1,x2

(w2)x1,y1,x2 �
P

x3
(w3)x1,y1,x2,y2,x3

...
(w

n

)
x1,y1,...,xn �

P
a

1
2↵a,x

v
a,y

Diag(v
a

) ⌫
p
�
ā

p
�
ā

T

()
X

y

�ā,y

va,y
 1

Bob’s Dual



P ⇤
B,1 := min

P
x1
(w1)x1

s.t. (w1)x1 �
P

x2
(w2)x1,y1,x2

(w2)x1,y1,x2 �
P

x3
(w3)x1,y1,x2,y2,x3

...
(w

n

)
x1,y1,...,xn �

P
a

1
2↵a,x

v
a,y

Diag(v
a

) ⌫
p
�
ā

p
�
ā

T

Point Raises

Point Merges

Point Splits

()
X

y

�ā,y

va,y
 1

Bob’s DualUpper 
bound on 
cheating



Alice’s Dual

P ⇤
A,0 := min z1

s.t. z1 �
P

y1
(z2)x1,y1

(z2)x1,y1 �
P

y2
(z3)x1,y1,x2,y2

...
(z

n

)
x1,y1,...,xn�1,yn � (z

n+1)x,y
Diag(z(y)

n+1) ⌫ 1
2�a,y

p
↵
a

p
↵
a

T



Point Raises

Point Merges

Point Splits

P ⇤
A,0 := min z1

s.t. z1 �
P

y1
(z2)x1,y1

(z2)x1,y1 �
P

y2
(z3)x1,y1,x2,y2

...
(z

n

)
x1,y1,...,xn�1,yn � (z

n+1)x,y
Diag(z(y)

n+1) ⌫ 1
2�a,y

p
↵
a

p
↵
a

T

()
X

y

�
a,y

↵
a,x

2(z
n+1)x,y

 1

Alice’s DualUpper bounds 
Alice cheating



Duals

P ⇤
A,0 := min z1

s.t. z1 �
P

y1
(z2)x1,y1

(z2)x1,y1 �
P

y2
(z3)x1,y1,x2,y2

...
(z

n

)
x1,y1,...,xn�1,yn � (z

n+1)x,y
Diag(z(y)

n+1) ⌫ 1
2�a,y

p
↵
a

p
↵
a

T

P ⇤
B,1 := min

P
x1
(w1)x1

s.t. (w1)x1 �
P

x2
(w2)x1,y1,x2

(w2)x1,y1,x2 �
P

x3
(w3)x1,y1,x2,y2,x3

...
(w

n

)
x1,y1,...,xn �

P
a

1
2↵a,x

v
a,y

Diag(v
a

) ⌫
p
�
ā

p
�
ā

T



Quantum Point Game (1 of 3)BCCF point game
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Figure : After the point splits in a BCCF point game
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BCCF point game
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Figure : After the first two merges in a BCCF point game
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Quantum Point Game (2 of 3)



BCCF point game
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Figure : Last few moves leading to final point [⇣
B

, ⇣
A

]
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Quantum Point Game (3 of 3)



BCCF point game
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Figure : Last few moves leading to final point [⇣
B

, ⇣
A

]
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Quantum Point Game (3 of 3)

Final point [⇣B,1, ⇣A,0]

⇣
B,1 =

X

x1

(w1)x1 so P ⇤
B,1  ⇣

B,1 ⇣A,0 = z1 so P ⇤
A,0  ⇣A,0



BCCF point game
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Figure : Last few moves leading to final point [⇣
B

, ⇣
A

]
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Point Game Usefulness

Final point [⇣B,1, ⇣A,0]

⇣
B,1 =

X

x1

(w1)x1 so P ⇤
B,1  ⇣

B,1 ⇣A,0 = z1 so P ⇤
A,0  ⇣A,0



BCCF point game
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Figure : Last few moves leading to final point [⇣
B

, ⇣
A

]
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Final point [⇣B,1, ⇣A,0]

Weak Duality: P ⇤
B,1  ⇣B,1

P ⇤
A,0  ⇣A,0

Strong Duality: P ⇤
B,1 = ⇣B,1

P ⇤
A,0 = ⇣A,0

is possible

Point Game Usefulness



BCCF point game

!

!

"

"

"

"

1

1 !

!

" "

1

1

Figure : Last few moves leading to final point [⇣
B

, ⇣
A

]
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Final point [⇣B,1, ⇣A,0]

Weak Duality: P ⇤
B,1  ⇣B,1

P ⇤
A,0  ⇣A,0

Strong Duality: P ⇤
B,1 = ⇣B,1

P ⇤
A,0 = ⇣A,0

is possible

Point Game Usefulness

Bounds weak 

coin-flip
ping only!



BCCF point game
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Figure : Last few moves leading to final point [⇣
B
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Final point [⇣B,1, ⇣A,0]

Weak Duality: P ⇤
B,1  ⇣B,1

P ⇤
A,0  ⇣A,0

Strong Duality: P ⇤
B,1 = ⇣B,1

P ⇤
A,0 = ⇣A,0

is possible

Point Game Usefulness

Can be paired to bound the

other two cheating probabilities

as well



BCCF point game
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Figure : Last few moves leading to final point [⇣
B

, ⇣
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Final point [⇣B,1, ⇣A,0]

Weak Duality: P ⇤
B,1  ⇣B,1

P ⇤
A,0  ⇣A,0

Strong Duality: P ⇤
B,1 = ⇣B,1

P ⇤
A,0 = ⇣A,0

is possible

Point Game Usefulness

Can be paired to bound the

other two cheating probabilities

as well

Bounds strong 

coin-flip
ping now!



Classical Point Games!



Classical Point Game
(Favouring Cheating Alice)

Classical point game favouring cheating Alice

!

!

1

1

[

1
2 + 1

2∆(Tr A2×···×An
(α0),Tr A2×···×An

(α1)),1
]
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Final point



Classical point game favouring cheating Bob

!

!

1

1

[

1, 1
2 + 1

2∆(β0,β1)
]
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Classical Point Game
(Favouring Cheating Bob)

Final point



Quantum security from 
studying classical protocols...

• We have a classical equivalence as well

• Classical point games have large final points

• Classical coin-flipping protocols are insecure

• At most one party can cheat perfectly (holds in 
the classical and quantum case)

• Quantum protocols (of this form) cannot saturate 
Kitaev’s lower bound



Open questions

• Can we find optimal protocols within this family? 
(We conjecture 3/4 is optimal from numerical tests)

• Can time-independent point games (TIPGs) be used 
to simplify things?

• Can we find point games for strong coin-flipping?

• What are the optimal solutions to the SDPs? 



Open questions

• Can we find optimal protocols within this family? 
(We conjecture 3/4 is optimal from numerical tests)

• Can time-independent point games (TIPGs) be used 
to simplify things?

• Can we find point games for strong coin-flipping?

• What are the optimal solutions to the SDPs? 

Thank you!


