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Secure Computation

no trust!
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* Alice and Bob need to perform a joint operation
— ldentification, Private Information Retrieval, Secure function evaluation

* Goal: protocols with limited cheating possibilities

e Basic cryptographic primitives
— Bit Commitment, Oblivious Transfer

— Coin Flipping [Blum81]
* Alice and Bob need to flip a random coin.
* No dishonest party should be able to bias the coin



Strong vs Weak Coin Flipping
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Strong CF Weak CF
cE, {0,1} 0: Alice wins / 1: Bob wins
P* = P = = — =
" C}?Aazécce{max{ rlc = 0], Pr[c = 1]}} P} C}{.rllélaﬁcce{Pr[c 0]}
P} = C%r.l%%b{max{Pr[c = 0], Prlc = 1]}} P} = c%.l%)gb{Pr[c = 1]}

P* = max{P}, Pp} P* = max{Pj, Pg}



Security Conditions

e Computational Security

— cheating players are computationally bounded
(hardness of factoring, Discrete Logarithm)
— We can achieve any P* ~ 1/2

* Information Theoretic Security

— Cheating players have unlimited power
— We can achieve nothing, i.e. P* =1

* How about quantum protocols?



Quantum Coin Flipping

Perfect coin flipping is impossible, i.e. P* > 1/2

Better than classical protocols exist

(classically always P* = 1)

For Quantum Strong Coin Flipping
— P*<91% [Aharonov, Ta-Shma, Vazirani, Yao STOC '00]

1
— P> % [Kitaev 03] P*< =+, ¥e>0 [Chailloux, K. 09]

For Quantum Weak Coin Flipping
— Formalism through point games [Kitaev]
— P*= % +¢, Ve >0 [Mochon '07]



Why care about coin flipping

Weak coin flipping is one of the few possible crypto primitives
— There is life beyond QKD

Beautiful techniques for lower bounds and constructions

Weak Coin Flipping: Master Primitive
— Optimal weak coin implies optimal strong coin [Chailloux, K. ’09]
— Optimal weak coin implies optimal bit commitment [Chailloux, K. "11]

Quantum mechanics from an information point of view
— Why gquantum mechanics allows for these imperfect cryptographic primitives?



Status of weak coin flipping result

* Mochon's paper appeared in 2007
— Proof of existence, but no simple protocol description
— Very long (80p) and technical
— Not peer reviewed

e |nitial Goals (back in 2010):
— Verify the proof
— Simplify the proof
— Understand the proof
— Find a simple protocol



Status of weak coin flipping result

* Mochon's paper appeared in 2007
— Proof of existence, but no simple protocol description
— Very long (80p) and technical
— Not peer reviewed.

* Results (four years later):

— Verify the proof YES

— Simplify the proof A lot (40p)
— Understand the proof A bit

— Find a simple protocol Not at all!

* It's only the beginning!



Equivalence of protocols and point games
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Equivalence of protocols and point games
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Roadmap

1. Equivalence of protocols and point games

Some tools
— Protocols and cheating strategies
— Semi-definite programs and SDP duality
— Topology of infinite dimensional convex cones
— operator monotone functions
— duality of convex cones
—  catalyst points

Beautiful techniques, not yet well understood, waiting to be used! [Kitaev, Mochon]

2. Point game with final point [1/2+¢,1/2+€] [Mochon]



Proof outline

1. Equivalence of different models

Dual feasible

points Point game Th. 4 Point game Th. 5 Time
with EBM  ¢———  with valid «——— independent
o " -
Protocol transitions transitions point game
Figure=2+The succession of models we will consider. An arrow from model A to model B means that

proving the existence of an e biased protocol in A implies the existence of an ¢ + &’ biased
protocol in B (for all &/ > 0).

2. Existence of a Time independent point game with final point [1/2+€,1/2+¢]



Protocol
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Cheating Probabilities as SDPs

Theorem 1 (Primal) A M B
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Cheating Probabilities as SDPs

Theorem 1 (Primal) A M B
P} = max Tr((H(j) R Im)pamn) over all panri satisfying W = Wao @ o) ® [Wso)

o Tra(pano) = Trams(|vYo)tol) = |Ya0Xaol; r) | Z: O W

o fori odd, Trap(parsi) = Trm(EiUspansi U E;); e - Uss

o fori even, Tra(panri) = Tram(pani—1)- Z ”EB,_’_? _______ : .....
P = max Te((u © 15 Ypurs) over all pous satisfying 5

o Tei(parso) = Teanm(|do)tol) = [VaoNvsol; N Ve

o fori even, Trm(pmni) = Tem(EiUipmpioi U E); - oo | - |

o fori odd, Tryp(pmBi) = Trm(pmB,i-1)- {1} {15’}

Problem: : it's a maximization so we need to go over all protocols




The dual SDPs

Theorem 1 (Primal)
P}, = max Tr((HS) ® Inm)panin) over all panr,; satisfying

o Traq(pano) = Tras([vo)Xtol) = [a0Xva0

o fori odd, Trap(panss) = Tram(EiUsparsi—1Ul Ei);

)

o fori even, Traq(parss) = Traq(panii1).

Theorem 2 (Dual)
P =minTr(Zao|a0Xvaol|) over all Za; under the constraints:

@ Vi, ZA,i i 0,’
@ fori odd, Zai—1 ®Im = Ul ;Eai(Za; ®Ipm)EaUn;

® fori even, Za;—1 = ZA;

@ Zp, =14,
® Zaolvao) = BlYao) i-e |1vap) is an eigenvector of Z4 ¢ with eigenvalue 8 > 0,



Dual Feasible Points as security witness

Dual feasible point: {Z,,}.{Z;,} that are a solution to the dual SDP

Given a dual feasible point, we can bound the cheating probabilities!
P; S<1zUo ‘ZA,O ®1,, ®IB‘UJ0>

Py <(y |1, ®1,, ®Z, |y,

Problem: To write the dual, we need to know the protocol (unitaries and projections)!

Theorem 2 (Dual)
PhL=minTr(Zao|vao)Xao|) over all Za,; under the constraints:

@ V’i, ZA,z' t O,’
@ fori odd, Zai1 ®Inm = Ul ;Eai(Za; @ Ipm)EaUni;

® fori even, Za;—1 = Zay;

@® Zp, =14,
® Zapolao) = Blvap) ie. |Pap) is an eigenvector of Z4 o with eigenvalue 8 > 0,




Roadmap

1. Equivalence of different models

Dual feasible
. . . Ti
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Figure 3: The succession o e will consider. An arrow from model A to model B means that
proving the existence of an e biased protocol in A implies the existence of an € + &’ biased
protocol in B (for all ¢’ > 0).

2. Existence of a Time independent point game



EBM games

a) b) c) d)a e)
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Figure 2: A “simple” point game for the [SR02] protocol with bias 1/4/2 —1/2. The game starts with the
uniform distribution over two points. The first transition, between a) and b), is a horizontal
transition as the point on the x-axis is split into two points. The second transition, between b)
and c) is a vertical transition as one point is raised vertically. The last two transitions are two

merges, respectively horizontally and vertically. We omitted the weights of the points in the
distributions to simplify the drawings.

Definition: A sequence of n distributions {p, = p, —=...— p,} on points in 2d st.
— Initial condition: p, =1/2[1,0] +1/2[0,1]
— Final condition: p, =[f,a] ( P’ s/)),P* <a )

1. What do the points and the weights represent?
2. What are the legal transitions between distributions?



EBM games: points and weights

Points and weights: from the dual feasible point and the honest states

(Z\3AZs Y Pys(y|Z,,®1, ®L,lw,) =B Py <(w, |1, @1, ®Z,|p,) =

The magic quantity (y,|Z,, ®I,, ®Z,.|y,)
— we need to combine both "cheating" together
— Note <wo‘ZA,O &1, ®ZB,O‘11U0> =P, P,
— Same as in Kitaev's Strong Coin Flipping lower bound!

i

Points: [z4;,25;]1, where z4;,25; are eigenvalues of the PSD Z,;.Z;,; resp.
Weights: the projection of the honest state onto the corresponding eigenspace

(p, M @1, @Iy, )
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Figure 2: A “simple” point game for the [SR02] protocol with bias 1/4/2 —1/2. The game starts with the
uniform distribution over two points. The first transition, between a) and b), is a horizontal
transition as the point on the x-axis is split into two points. The second transition, between b)
and c) is a vertical transition as one point is raised vertically. The last two transitions are two

merges, respectively horizontally and vertically. We omitted the weights of the points in the
distributions to simplify the drawings.

1. What do the points and the weights represent?

2.  What are the legal transitions between distributions?
— At every round, either Alice or Bob apply a unitary.
For i even, ZAH = ZAJ hence, points move horizontally or vertically but not both ways.
— The Zs fulfill some SDP constraints Z, .\ ®1,, ~U, 'E,,(Z,,®1,)E,U,,



EBM games
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Figure 2: A “simple” point game for the [SR02] protocol with bias 1/4/2 —1/2. The game starts with the
uniform distribution over two points. The first transition, between a) and b), is a horizontal
transition as the point on the x-axis is split into two points. The second transition, between b)
and c) is a vertical transition as one point is raised vertically. The last two transitions are two
merges, respectively horizontally and vertically. We omitted the weights of the points in the
distributions to simplify the drawings.

Definition: A sequence of n distributions {p, — p, —...— p,} on pointsin 2d st.
— Initial condition: p = 1/2[1,0]+1/2[0,1]
— Final condition: p, =[B,a] (P, <B8.P, <a)
— for all i: either points move horizontally or vertically
— Let{p, — p,, }where points move only horizontally. Then for each height h, we have that

pi = )] P = 2 WM [y)ly.]
forsorr);e X=ExH[x] ,Y=Eyf;[y], W) and 0<X<Y

Equivalence:X,Y are roughly Z, Z, ,, states are the honest states, U's change eigenbases of X and Y

Problem: Hard to find or verify EBM transitions!




Proof outline

1. Equivalence of different models

Dual feasible
. . . Ti
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Figure 3: The succession of models we will consider. Amamew=ifom model A to model B means that
proving the existence of an e biased protocol in A implies the existence of an € + &’ biased
protocol in B (for all ¢’ > 0).

2. Existence of a Time independent point game



EBM, operator monotone, valid functions

EBM functions (equivalent to EBM transitions)
{po—=p, —..—~p,rto {h.,..,h,} where h=h"-h"and h- —=h* is EBM

Our space: The set of functions A, :[ 0,90] — R with finite support, which is an
infinite dimensional normed vector space (Kronecker basis and I, norm)

K = set of EBM functions
— convex cone. Fantastic!
— not closed. Hmmm!
— infinite dimensional. S@#%!

e

Simple but powerful idea: Express K by its bidual i.




Duals, duals of duals, ...

K = set of EBM functions

e convex cone, not closed, infinite dimensional

K™ = (dual of K) = set of operator monotone functions
« Afunction f:[0,%0) =R isoperator monotoneif X <Y = f(X)<f(Y)
* [Bhatia]: An operator monotone function can be written as

vy; A
1) = t+ | ——dw(A),f tisfyi ——dw(A
f@)=c¢,+¢ +'£)»+t w(A), for a measure w satisfying ‘{}\.+1 w(A) < oo

K™= (dual of K") = set of valid functions
« A function h is valid if for any operator monotone function f, Ef(x)h(x) >0
* A function his valid if: x

i)zh(x)=0 ii)Exh(x)zO iii)V)»>O,2 L h(x)=0

A+Xx

1. But K™ is equal to K up to closures, so valid functions "are" EBM functions

2. Valid functions have an easy characterisation!



Definition: A function hiis valid if Y h(x)=0 Y xh(x)=0 VA>0,

Examples
Raise

Merge

Split

Examples of valid functions

1

0,1] @

Ax
A+X

h(x)=0




Examples of valid transitions

Ax
Definition: A function hisvalidif » h(x)=0 h(x)=0 VA>O0, h(x)=0
unction his valid i 2 (x) gx (x)= > 2A+x (x)=
Examples t
* Raise
* Merge
1
5[07 1] .
e Split
w, +w)[x] =w [x ]1+w,[x,],
W1+W2 W1 W2
= +
X X, X,
€ D >
2u—1 1 1—u U
5—u, 0] 3[1,0] =*|%,0]



Examples of valid transitions

Definition: A function h is valid if 2h(x)=0 gxh(x)zo VA>0,2A+xh(x)zO

Examples 1

* Raise

wlx] —=wlx'], x'zx

* Merge 12__uu[%7 ]
30,1 @ ®

e Split

w, +w)[x] =w [x ]1+w,[x,],

wo+w, w, w
1 22 1+ 2
X X, X,

v

2u—1 [’LL, O]

2 [1,0] S0

N =



Examples of valid transitions

Ax
Definition: A function hisvalidif » h(x)=0 h(x)=0 VA>O0, h(x)=0
unction his valid i 2 (x) gx (x)= > 2)»+x (x)=
Examples t
* Raise
wlx] =w[x'], x'=x
* Merge 1 l—ur w
Lu,1 loup_u_
wl[x1]+w2[x2]e(wl+w2)[x3],1 Zu[ ] 2u [1_u ]
. _ WX Hwax, 5[07 1] >4
T oW 4w,
e Split
w,+w)[x] =w[x ]+w,[x,],
W1+W2>W1+W2
x X X,
< >
2u—1 1 1—
%u [’LL,O] 5[170] Q—Qﬁ[ﬁao]



Examples of valid transitions

Ax
A+X

Definition: A function hiis valid if Y h(x)=0 Y xh(x)=0 VA>0, h(x)=0

y N

Examples
* Raise

!

wlx]—=w[x'], x'=x

° M —U U
erge 1 [’U,’ 1] 1 [ ]

wilx 1+w,lx,] =, +w,)[x;], .
W X, +W,X, 2 [07 1] G

w,+w,

e Split o 1[u7 L]

w,+w)[x] =w[x ]+w,[x,],

X3 =

W o+w, w, w
1 22 1+ 2
X X, X,

v

2U=1u, 0]




"Equivalence" of EBM and Valid functions

K = set of EBM functions (convex cone, not closed, infinite dimensional)
K™ = set of valid functions (A function h is valid if for any OMF, Ef(x)h(x) >0 )

* Imagine K was closed
— Then K™ = closure(K) = K, and we are done, Valid functions are EBM functions!

* Imagine K was finite dimension
— Then K™*=closure(K)
— Define the "strict dual" of K
* A function his strictly valid if for any operator monotone f, Ef(x)h(x) >0
* In finite dimension "strict dual" = Interior(K™*)=Interior(K) < K
and we are done, Strictly valid functions are EBM functions!

Problem: We are in infinite dimensions

— Kand K" have empty interiors!

Solution:
— Consider closed subsets of K, K, for L > 0. Any strictly valid function is in some K|
— Strictly valid functions can be approximated by valid functions



Proof outline
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Figure 3: The succession of models we will consider. An arrow from model A to mode gans that
proving the existence of an e biased protocol in A implies the existence of an € + &’ biased
protocol in B (for all ¢’ > 0).

2. Existence of a Time independent point game



Time independent point game

Definition (valid game): an ordered sequence of valid functions {4,,...,h }

Definition (TIPG): A Time independent point game is two valid functions h and v st.

h+v=[B,al-1/2[1,01-1/2[0,1] h= Y>h, v= Yh,

horizontal vertical

From TIPG to valid

From a TIPG with final point [ B,a] and largest point at coordinate I,

h|\l
we can construct a valid point game with final point [ £ +€.@ +€], rounds O(HSH2 )

— we use extra points as catalysts
— we move the points little by little



Proof outline

1. Equivalence of different models
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Figure 3: The succession of models we will consider. An arrow from model A to model B means that
proving the existence of an e biased protocol in A implies the existence of an € + &’ biased
protocol in B (for all ¢’ > 0).

éxistence of a Time independent point game >




TIPG with arbitrarily small bias
a) b) c)
Cw Cw ° | Cw OHI
oy

Figure 4: Schematic representation of the game. The initial points are in black, the final points are
colored in red if they are part of the horizontal ladder and in green of the vertical ladder. The
arrows represents the idea of the movements of the points. a) Each point is split into many
points (represented by a line) on their axes. b) The ladder combines the points on the axes
into 2 points. c¢) The raises create the final point of the game.

r m: grid step, I': max coordinate
1 1 o

SLLOT+-10.1] — Y split(j)(10, jo] +1 jo,01) k: width of the ladder

Jj=C

%E[a—ka),a]+%[a,a—kw] To Show

1. splitis valid

—la.al 2. ladderis a TIPG



TIPG with arbitrarily small bias
a) b) c)
. | A .

Figure 5: Schematic construction of the ladder. a) The horizontal part of the ladder. b) Superposition of
the horizontal part and the vertical part of the ladder. By symmetry, the sum of the weights
of the point in the overlap is 0. Except the final points, the weights of the points in the 4
“triangles” with no overlap will be set to 0 by truncation. c¢) All the points actually involved in

the ladder transition.

The ladder of width k

Find valid functions h,,4 and v,_4 such that
r

1 1 IV .
M + Vg =500 =ko.al +-lo0 ko] - Y split(j)([0, jo) +[ j,0])
j=C



TIPG with arbitrarily small bias

w X
ﬁi “ <

* And the magic continues...

S| o) s O Gt w )
Pad = ]2:2 T (G + Dw) 0. gel+ z%:k ((7+ i)w)(jw)lg((l — i)w) 2o, gl
i#0 l#é
k
flz,y) = kHH —iw — ) (o — tw — yHI‘w+zw—x(Fw—|—iw—y}

Lemma: If the weights follow a polynomial with certain properties, the function is valid.

Thm[Mochon]: For any k, taking @ —0,I' = % makes the above function valid for a

final point [ k+1 k"'l]
2k+1 2k +1




Resources of the protocol

Thm[Mochon]: Parameters are w —0,I' =« (grid step, maximum point)

1 1)1 1
: =k, T=2k°[=+0|—|,=+0|—
New Thm: Forany k, w [2+ (k)2+ (k)]

Hence for bias epsilon, take k = 0(1)
£

1
Number of qubits: log(number of points)=log(poly(k)) = 0(10{%;)

ey (1t
Number of rounds: 0( 22 | e (after a few more pages of calculations)

— seems to be tight, but maybe not
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proving the existence of an e biased protocol in A implies the existence of an € + &’ biased
protocol in B (for all ¢’ > 0).

2. Existence of a Time independent point game \/



1.

3.

4.

Conclusions

There exists a WCF protocol with arbitrarily small bias

— simpler, more intuitive proof, resource analysis
Can we really understand the equivalence WCF vs point games?
Can we find explicit / more efficient / implementable protocols?

Can we use the techniques for other protocols?



