A parallel repetition theorem for entangled two-player one-round games under product distributions

Rahul Jain¹ Attila Pereszlényi² Penghui Yao²

¹Centre for Quantum Technologies and Department of Computer Science, National University of Singapore

²Centre for Quantum Technologies, National University of Singapore

Quantum Games and Protocols Workshop, Simons Institute, Berkeley

27th February, 2014

Centre for Quantum Technologies

Outline

- The Model of Games
- Parallel Repetition Theorems

Outline

- The Model of Games
- Parallel Repetition Theorems

- Idea Behind the Proof
- Some Details

Outline

- The Model of Games
- Parallel Repetition Theorems
- Proof of the Main TheoremIdea Behind the Proof
 - Some Details

Two-Player One-Round Games

• Alice and Bob share an entangled state $|\phi\rangle$.

Two-Player One-Round Games

• Alice and Bob share an entangled state $|\phi\rangle$.

- Alice and Bob share an entangled state $|\phi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ .

- Alice and Bob share an entangled state $|\phi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ .

- Alice and Bob share an entangled state $|\phi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ .
- Alice and Bob answer $a \in \mathcal{A}$ and $b \in \mathcal{B}$ by performing measurements on $|\phi\rangle$.

- Alice and Bob share an entangled state $|\phi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ .
- Alice and Bob answer $a \in \mathcal{A}$ and $b \in \mathcal{B}$ by performing measurements on $|\phi\rangle$.

- Alice and Bob share an entangled state $|\phi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ .
- Alice and Bob answer $a \in \mathcal{A}$ and $b \in \mathcal{B}$ by performing measurements on $|\phi\rangle$.
- They win if V(x, y, a, b) = 1.

- Alice and Bob share an entangled state $|\phi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ .
- Alice and Bob answer $a \in \mathcal{A}$ and $b \in \mathcal{B}$ by performing measurements on $|\phi\rangle$.
- They win if V(x, y, a, b) = 1.
- The value of G, denoted by ω*(G), is the supremum of the achievable winning probability.

Introduction

Summary

The Model of Games

Parallel Repetition of Games

• G^k is the game where k copies of G are played in parallel.

Summary

The Model of Games

Parallel Repetition of Games

• G^k is the game where k copies of G are played in parallel.

•
$$x = (x_1, x_2, \dots, x_k) \in \mathcal{X}^{\times k},$$

 $y \in \mathcal{Y}^{\times k}, a \in \mathcal{A}^{\times k}, b \in \mathcal{B}^{\times k}$

Summary

The Model of Games

Parallel Repetition of Games

- G^k is the game where k copies of G are played in parallel.
- $\begin{aligned} \bullet \ \ & x = (x_1, x_2, \dots, x_k) \in \mathfrak{X}^{\times k}, \\ & y \in \mathcal{Y}^{\times k}, \ \ a \in \mathcal{A}^{\times k}, \ \ b \in \mathcal{B}^{\times k} \end{aligned}$
- (x, y) is distributed according to $\mu^{\otimes k}$, where $\mu^{\otimes k}$ denotes k independent copies of μ .

Summary

The Model of Games

Parallel Repetition of Games

- G^k is the game where k copies of G are played in parallel.
- $\begin{aligned} \bullet \ \ & x = (x_1, x_2, \dots, x_k) \in \mathfrak{X}^{\times k}, \\ & y \in \mathcal{Y}^{\times k}, \ \ a \in \mathcal{A}^{\times k}, \ \ b \in \mathcal{B}^{\times k} \end{aligned}$
- (x, y) is distributed according to $\mu^{\otimes k}$, where $\mu^{\otimes k}$ denotes k independent copies of μ .
- V(x, y, a, b) = 1 if the players win all the instances.

Outline

- The Model of Games
- Parallel Repetition Theorems
- Proof of the Main TheoremIdea Behind the Proof
 - Some Details

Introduction

Parallel Repetition Theorems

The Basic Question

Proof of the Main Theorem

Summary

➡ Skip this part

Introduction

Proof of the Main Theorem

Summary

Parallel Repetition Theorems

The Basic Question

How does $\omega^*(G^k)$ scale with k?

The Basic Question

How does $\omega^*(G^k)$ scale with k?

• Trivially, $\omega^*(G^k) \ge \omega^*(G)^k$.

The Basic Question

How does $\omega^*(G^k)$ scale with k?

- Trivially, $\omega^*(G^k) \ge \omega^*(G)^k$.
- The reverse direction doesn't hold but we can still hope to show that $\omega^*(G^k) \approx \omega^*(G)^k$.

The Basic Question

How does $\omega^*(G^k)$ scale with k?

- Trivially, $\omega^*(G^k) \ge \omega^*(G)^k$.
- The reverse direction doesn't hold but we can still hope to show that $\omega^*(G^k) \approx \omega^*(G)^k$.

Analogous result holds for the classical value (denoted by $\omega(G)$):

Theorem ([Raz '95] and [Holenstein '07]) $\exists \text{ constant } C \text{ s.t.}$ $\omega(G^{k}) \leq \left(1 - C(1 - \omega(G))^{3}\right)^{\frac{k}{\log(|\mathcal{A}| \cdot |\mathcal{B}|)}}$

Parallel Repetition Theorems for the Quantum Value

Parallel Repetition Theorems for the Quantum Value

Parallel repetition theorems for the quantum value were shown for some classes of games.

 Perfect parallel repetition holds for XOR games. [Cleve, Slofstra, Unger, Upadhyay '08]

Parallel Repetition Theorems for the Quantum Value

- Perfect parallel repetition holds for XOR games. [Cleve, Slofstra, Unger, Upadhyay '08]
- Parallel repetition holds for the more general class of unique games [Kempe, Regev, Toner '10]

Parallel Repetition Theorems for the Quantum Value

- Perfect parallel repetition holds for XOR games. [Cleve, Slofstra, Unger, Upadhyay '08]
- Parallel repetition holds for the more general class of unique games [Kempe, Regev, Toner '10]
- and the even more general class of projection games [Dinur, Steurer, Vidick '13].

Parallel Repetition Theorems for the Quantum Value

- Perfect parallel repetition holds for XOR games. [Cleve, Slofstra, Unger, Upadhyay '08]
- Parallel repetition holds for the more general class of unique games [Kempe, Regev, Toner '10]
- and the even more general class of projection games [Dinur, Steurer, Vidick '13].
- For general games, [Kempe and Vidick '11] showed a theorem where the rate of decay is inverse-polynomial. (Although not for G^k.)

Parallel Repetition Theorems for the Quantum Value

- Perfect parallel repetition holds for XOR games. [Cleve, Slofstra, Unger, Upadhyay '08]
- Parallel repetition holds for the more general class of unique games [Kempe, Regev, Toner '10]
- and the even more general class of projection games [Dinur, Steurer, Vidick '13].
- For general games, [Kempe and Vidick '11] showed a theorem where the rate of decay is inverse-polynomial. (Although not for G^k.)
- [Chailloux and Scarpa '13] showed it for games where the input distribution is uniform.

Theorem (Main Theorem)

For any game G, where the input distribution μ is product on $\mathfrak{X}\times \mathfrak{Y},$ it holds that

$$\omega^*(G^k) = \left(1 - (1 - \omega^*(G))^3\right)^{\Omega\left(\frac{k}{\log(|\mathcal{A}| \cdot |\mathcal{B}|)}\right)}.$$

Introduction

- The Model of Games
- Parallel Repetition Theorems

Proof of the Main Theorem
Idea Behind the Proof
Some Details

In $G^k,$ let us condition on success on a set ${\mathfrak C}\subseteq [k]$ of coordinates.

- In $G^k,$ let us condition on success on a set ${\mathcal C}\subseteq [k]$ of coordinates.
 - If the success probability is small enough then we are done.

- In $G^k,$ let us condition on success on a set ${\mathcal C}\subseteq [k]$ of coordinates.
 - If the success probability is small enough then we are done.
 - Otherwise, we show that there exists a $j \in \overline{\mathbb{C}} = [k] \setminus \mathbb{C}$ s.t. success in the j-th coordinate is bounded away from 1.

- In $G^k,$ let us condition on success on a set ${\mathcal C}\subseteq [k]$ of coordinates.
 - If the success probability is small enough then we are done.
 - Otherwise, we show that there exists a $j \in \overline{\mathbb{C}} = [k] \setminus \mathbb{C}$ s.t. success in the j-th coordinate is bounded away from 1.
 - Doing this $\Omega(k)$ times, the success probability will be exponentially small in k.

- In $G^k,$ let us condition on success on a set ${\mathcal C}\subseteq [k]$ of coordinates.
 - If the success probability is small enough then we are done.
 - Otherwise, we show that there exists a $j \in \overline{\mathbb{C}} = [k] \setminus \mathbb{C}$ s.t. success in the j-th coordinate is bounded away from 1.
 - Doing this $\Omega(k)$ times, the success probability will be exponentially small in k.
 - Let $(x',y')\in \mathfrak{X}\times \mathfrak{Y}$ be distributed according to $\mu.$

- In $G^k,$ let us condition on success on a set ${\mathcal C}\subseteq [k]$ of coordinates.
 - If the success probability is small enough then we are done.
 - Otherwise, we show that there exists a $j \in \overline{\mathbb{C}} = [k] \setminus \mathbb{C}$ s.t. success in the j-th coordinate is bounded away from 1.
 - Doing this $\Omega(k)$ times, the success probability will be exponentially small in k.
 - Let $(x',y')\in \mathfrak{X}\times \mathfrak{Y}$ be distributed according to $\mu.$
 - We show that the players can embed (x', y') into the j-th coordinate and generate the state of the whole system in G^k.

Broad Idea

- In $G^k,$ let us condition on success on a set ${\mathcal C}\subseteq [k]$ of coordinates.
 - If the success probability is small enough then we are done.
 - Otherwise, we show that there exists a $j \in \overline{\mathbb{C}} = [k] \setminus \mathbb{C}$ s.t. success in the j-th coordinate is bounded away from 1.
 - Doing this $\Omega(k)$ times, the success probability will be exponentially small in k.
 - Let $(x',y')\in \mathfrak{X}\times \mathfrak{Y}$ be distributed according to $\mu.$
 - We show that the players can embed (x', y') into the j-th coordinate and generate the state of the whole system in G^k.
 - If they could win the *j*-th instance with high probability then they would be able to win G with high probability.

Some Simplifications

Without loss of generality:

• Let the questions and answers be part of the whole (classical-)quantum state.

Some Simplifications

Without loss of generality:

- Let the questions and answers be part of the whole (classical-)quantum state.
- Upon receiving the questions, the players apply unitaries on their parts, measure registers A and B, in the standard basis, and send the outcomes to the referee.

Some Simplifications

Without loss of generality:

- Let the questions and answers be part of the whole (classical-)quantum state.
- Upon receiving the questions, the players apply unitaries on their parts, measure registers A and B, in the standard basis, and send the outcomes to the referee.

The global state, conditioned on success in $\ensuremath{\mathfrak{C}}$, after the unitaries is of the form

$$\sigma = \sum_{x \in \mathfrak{X}^{\times k}, y \in \mathfrak{Y}^{\times k}} \mu^{\otimes k} \left(x, y \right) |xy\rangle \langle xy|^{\mathsf{X}\mathsf{Y}} \otimes |\varphi_{xy}\rangle \langle \varphi_{xy}|$$

Some Simplifications

Without loss of generality:

- Let the questions and answers be part of the whole (classical-)quantum state.
- Upon receiving the questions, the players apply unitaries on their parts, measure registers A and B, in the standard basis, and send the outcomes to the referee.

The global state, conditioned on success in $\ensuremath{\mathfrak{C}}$, after the unitaries is of the form

$$\sigma = \sum_{x \in \mathfrak{X}^{\times k}, y \in \mathfrak{Y}^{\times k}} \mu^{\otimes k}(x, y) \left| xy \right\rangle \langle xy |^{\mathsf{XY}} \otimes \left| \varphi_{xy} \right\rangle \langle \varphi_{xy} |$$

where (unnormalized) $|\varphi_{xy}\rangle$ is shared between Alice and Bob.

Introduction 0000000

Idea Behind the Proof

How to generate the state in G^k ?

$$\left|\phi\right\rangle = \sum_{x\in\mathfrak{X}^{\times k},y\in\mathfrak{Y}^{\times k}}\sqrt{\mu^{\otimes k}(x,y)}\left|xxyy\right\rangle^{X\tilde{x}Y\tilde{y}}\otimes\left|\varphi_{xy}\right\rangle.$$

Introduction 0000000

Idea Behind the Proof

How to generate the state in G^k ?

$$\left|\phi\right\rangle = \sum_{x\in\mathfrak{X}^{\times k},y\in\mathfrak{Y}^{\times k}}\sqrt{\mu^{\otimes k}(x,y)}\left|xxyy\right\rangle^{X\tilde{X}Y\tilde{Y}}\otimes\left|\varphi_{xy}\right\rangle.$$

•
$$\operatorname{Tr}_{\tilde{\mathfrak{X}}\otimes\tilde{\mathfrak{Y}}}(|\phi\rangle\langle\phi|) = \sigma.$$

Introduction 0000000

Idea Behind the Proof

How to generate the state in G^k ?

Let us take a strategy for G where the players share

$$\left|\phi\right\rangle = \sum_{x\in\mathfrak{X}^{\times k}, y\in\mathfrak{Y}^{\times k}} \sqrt{\mu^{\otimes k}(x,y)} \left|xxyy\right\rangle^{X\tilde{X}Y\tilde{Y}} \otimes \left|\varphi_{xy}\right\rangle.$$

•
$$\operatorname{Tr}_{\tilde{\mathfrak{X}}\otimes\tilde{\mathfrak{Y}}}(|\phi\rangle\langle\phi|)=\sigma.$$

• Alice and Bob get questions $(x', y') \in \mathfrak{X} \times \mathfrak{Y}$.

How to generate the state in G^k ?

$$\left|\phi\right\rangle = \sum_{x\in\mathfrak{X}^{\times k}, y\in\mathfrak{Y}^{\times k}} \sqrt{\mu^{\otimes k}(x,y)} \left|xxyy\right\rangle^{X\tilde{X}Y\tilde{Y}} \otimes \left|\varphi_{xy}\right\rangle.$$

•
$$\operatorname{Tr}_{\tilde{\mathfrak{X}}\otimes\tilde{\mathfrak{Y}}}(|\phi\rangle\langle\phi|)=\sigma.$$

- Alice and Bob get questions $(x', y') \in \mathfrak{X} \times \mathfrak{Y}$.
- Suppose they measure registers X_j and Y_j.

How to generate the state in G^k ?

$$\left|\phi\right\rangle = \sum_{x\in\mathfrak{X}^{\times k}, y\in\mathfrak{Y}^{\times k}} \sqrt{\mu^{\otimes k}(x,y)} \left|xxyy\right\rangle^{X\tilde{X}Y\tilde{Y}} \otimes \left|\varphi_{xy}\right\rangle.$$

•
$$\operatorname{Tr}_{\tilde{\mathfrak{X}}\otimes\tilde{\mathfrak{Y}}}(|\phi\rangle\langle\phi|)=\sigma.$$

- Alice and Bob get questions $(x',y')\in \mathfrak{X}\times \mathfrak{Y}.$
- Suppose they measure registers X_j and Y_j.
- If the outcomes of the measurements are x' and y' then they can further measure A_j and B_j and reply to the referee.

How to generate the state in G^k ?

$$\left|\phi\right\rangle = \sum_{x\in\mathfrak{X}^{\times k}, y\in\mathfrak{Y}^{\times k}} \sqrt{\mu^{\otimes k}(x,y)} \left|xxyy\right\rangle^{X\tilde{X}Y\tilde{Y}} \otimes \left|\varphi_{xy}\right\rangle.$$

•
$$\operatorname{Tr}_{\tilde{\mathfrak{X}}\otimes\tilde{\mathfrak{Y}}}(|\phi\rangle\langle\phi|)=\sigma.$$

- Alice and Bob get questions $(x', y') \in \mathfrak{X} \times \mathfrak{Y}$.
- Suppose they measure registers X_j and Y_j.
- If the outcomes of the measurements are x' and y' then they can further measure A_i and B_j and reply to the referee.
- This way, we embedded a single instance of G into G^k, with being conditioned on success in C.

How to generate the state in G^k ?

$$\left|\phi\right\rangle = \sum_{x\in\mathfrak{X}^{\times k}, y\in\mathfrak{Y}^{\times k}} \sqrt{\mu^{\otimes k}(x,y)} \left|xxyy\right\rangle^{X\tilde{X}Y\tilde{Y}} \otimes \left|\varphi_{xy}\right\rangle.$$

•
$$\operatorname{Tr}_{\tilde{\mathfrak{X}}\otimes\tilde{\mathfrak{Y}}}(|\phi\rangle\langle\phi|)=\sigma.$$

- Alice and Bob get questions $(x', y') \in \mathfrak{X} \times \mathfrak{Y}$.
- Suppose they measure registers X_j and Y_j.
- If the outcomes of the measurements are x' and y' then they can further measure A_i and B_i and reply to the referee.
- This way, we embedded a single instance of G into G^k, with being conditioned on success in C.
 - If w*(G) is bounded away from 1 then success in the j-th instance is also bounded away from 1.

Generate the state without measurements?

The previous argument doesn't work because the probability of getting (x', y'), when measuring X_i and Y_i , can be very small.

Generate the state without measurements?

The previous argument doesn't work because the probability of getting (x', y'), when measuring X_j and Y_j , can be very small.

Question

Is there a way to generate the post-measurement state (approximately) without measurements?

Generate the state without measurements?

The previous argument doesn't work because the probability of getting (x', y'), when measuring X_j and Y_j , can be very small.

Question

Is there a way to generate the post-measurement state (approximately) without measurements?

Answer

Yes, if the input distribution μ is product.

How to do it without measurements?

Let $\left|\phi_{x_{j}'}\right\rangle$ be the resulting state after Alice measures X_{j} in $\left|\phi\right\rangle$ and gets x_{j}' . States $\left|\phi_{y_{j}'}\right\rangle$ and $\left|\phi_{x_{j}'y_{j}'}\right\rangle$ are defined similarly.

How to do it without measurements?

Let $|\phi_{x'_j}\rangle$ be the resulting state after Alice measures X_j in $|\phi\rangle$ and gets x'_j . States $|\phi_{y'_j}\rangle$ and $|\phi_{x'_jy'_j}\rangle$ are defined similarly.

• We show that $I(X_j : Bob)_{\phi} \approx 0$ and $I(Y_j : Alice)_{\phi} \approx 0$.

How to do it without measurements?

- We show that $I(X_j : Bob)_{\varphi} \approx 0$ and $I(Y_j : Alice)_{\varphi} \approx 0$.
- $I(X_j : Bob)_{\phi} \approx 0$ implies that Bob's part of $|\phi_{x_j'}\rangle$ is mostly independent of x_j' .

How to do it without measurements?

- We show that $I(X_j : Bob)_{\varphi} \approx 0$ and $I(Y_j : Alice)_{\varphi} \approx 0$.
- $I(X_j : Bob)_{\phi} \approx 0$ implies that Bob's part of $|\phi_{x_j'}\rangle$ is mostly independent of x_j' .
- By the unitary equivalence of purifications, \exists unitary $U_{x'_j}$ that Alice can apply to get $\left(U_{x'_j} \otimes \mathbb{1}_{\mathsf{Bob}}\right) |\phi\rangle \approx |\phi_{x'_j}\rangle$.

How to do it without measurements?

- We show that $I(X_j : Bob)_{\phi} \approx 0$ and $I(Y_j : Alice)_{\phi} \approx 0$.
- $I(X_j : Bob)_{\phi} \approx 0$ implies that Bob's part of $|\phi_{x'_j}\rangle$ is mostly independent of x'_j .
- By the unitary equivalence of purifications, \exists unitary $U_{x'_j}$ that Alice can apply to get $\left(U_{x'_j} \otimes \mathbb{1}_{\mathsf{Bob}}\right) |\phi\rangle \approx \left|\phi_{x'_j}\right\rangle$.
- Similarly, $\exists \mathbf{V}_{\mathbf{y}_{j}^{\prime}}$ s.t. $\left(\mathbb{1}_{\mathsf{Alice}} \otimes \mathbf{V}_{\mathbf{y}_{j}^{\prime}}\right) |\phi\rangle \approx \left|\phi_{\mathbf{y}_{j}^{\prime}}\right\rangle$.

How to do it without measurements?

- We show that $I(X_j : Bob)_{\varphi} \approx 0$ and $I(Y_j : Alice)_{\varphi} \approx 0$.
- $I(X_j : Bob)_{\phi} \approx 0$ implies that Bob's part of $|\phi_{x_j'}\rangle$ is mostly independent of x_j' .
- By the unitary equivalence of purifications, \exists unitary $U_{x'_j}$ that Alice can apply to get $\left(U_{x'_j} \otimes \mathbb{1}_{\mathsf{Bob}}\right) |\phi\rangle \approx |\phi_{x'_j}\rangle$.
- Similarly, $\exists \mathbf{V}_{y'_{j}} \text{ s.t. } \left(\mathbbm{1}_{\mathsf{Alice}} \otimes \mathbf{V}_{y'_{j}} \right) | \phi \rangle \approx \big| \phi_{y'_{j}} \rangle.$
- By [Jain, Radhakrishnan, Sen '08], if the distribution of (x'_j, y'_j) is product then

$$\left(\boldsymbol{U}_{\boldsymbol{x}_{j}^{\prime}}\otimes\boldsymbol{V}_{\boldsymbol{y}_{j}^{\prime}}\right)|\boldsymbol{\phi}\rangle\approx\left|\boldsymbol{\phi}_{\boldsymbol{x}_{j}^{\prime}\boldsymbol{y}_{j}^{\prime}}\right\rangle\!.$$

Outline

Introduction

- The Model of Games
- Parallel Repetition Theorems

Some Details

From Measurements to Unitaries (1 Sided)

Lemma

Let μ be a probability distribution on \mathfrak{X} . Let

$$|\phi\rangle \stackrel{\text{def}}{=} \sum_{x\in \mathfrak{X}} \sqrt{\mu(x)} \, |xx\rangle^{X\tilde{X}} \otimes |\psi_x\rangle$$

be shared by Alice and Bob, where X, \tilde{X} , and some part of $|\psi_{x}\rangle$ are with Alice and the rest of $|\psi_{x}\rangle$ is with Bob.

From Measurements to Unitaries (1 Sided)

Lemma

Let μ be a probability distribution on \mathfrak{X} . Let

$$|\phi\rangle \stackrel{\text{def}}{=} \sum_{x\in \mathfrak{X}} \sqrt{\mu(x)} \, |xx\rangle^{X\tilde{X}} \otimes |\psi_x\rangle$$

be shared by Alice and Bob, where X, \tilde{X} , and some part of $|\psi_x\rangle$ are with Alice and the rest of $|\psi_x\rangle$ is with Bob. Let $|\phi_x\rangle \stackrel{\text{def}}{=} |xx\rangle \otimes |\psi_x\rangle$.

From Measurements to Unitaries (1 Sided)

Lemma

Let μ be a probability distribution on \mathfrak{X} . Let

$$\left|\phi\right\rangle \stackrel{\text{def}}{=} \sum_{x\in\mathcal{X}} \sqrt{\mu(x)} \left|xx\right\rangle^{X\tilde{X}} \otimes \left|\psi_{x}\right\rangle$$

be shared by Alice and Bob, where X, \hat{X} , and some part of $|\psi_x\rangle$ are with Alice and the rest of $|\psi_x\rangle$ is with Bob. Let $|\phi_x\rangle \stackrel{\text{def}}{=} |xx\rangle \otimes |\psi_x\rangle$. If $I(X : Bob)_{\phi} \leq \varepsilon$ then there exist unitaries $\{U_x\}_{x \in \mathcal{X}}$ acting on Alice's space s.t.

$$\underset{x\leftarrow\mu}{\mathbb{E}}[\||\phi_{x}\rangle\langle\phi_{x}|-(U_{x}\otimes\mathbb{1}_{\mathsf{Bob}})\,|\phi\rangle\langle\phi|\,(U_{x}^{*}\otimes\mathbb{1}_{\mathsf{Bob}})\|_{1}]\leqslant4\sqrt{\epsilon}.$$

From Measurements to Unitaries (1 Sided)

Lemma

Let μ be a probability distribution on \mathfrak{X} . Let

$$\left|\phi\right\rangle \stackrel{\text{def}}{=} \sum_{x\in\mathcal{X}} \sqrt{\mu(x)} \left|xx\right\rangle^{X\tilde{X}} \otimes \left|\psi_{x}\right\rangle$$

be shared by Alice and Bob, where X, \hat{X} , and some part of $|\psi_x\rangle$ are with Alice and the rest of $|\psi_x\rangle$ is with Bob. Let $|\phi_x\rangle \stackrel{\text{def}}{=} |xx\rangle \otimes |\psi_x\rangle$. If $I(X : Bob)_{\phi} \leq \varepsilon$ then there exist unitaries $\{U_x\}_{x \in \mathcal{X}}$ acting on Alice's space s.t.

$$\underset{x\leftarrow\mu}{\mathbb{E}}[\||\phi_{x}\rangle\langle\phi_{x}|-(U_{x}\otimes\mathbb{1}_{\mathsf{Bob}})\,|\phi\rangle\langle\phi|\,(U_{x}^{*}\otimes\mathbb{1}_{\mathsf{Bob}})\|_{1}]\leqslant4\sqrt{\epsilon}.$$

The proof easily follows from the unitary equivalence of purifications and Uhlmann's theorem.

From Measurements to Unitaries (2 Sided)

Lemma

Let μ be a prob. dist. on $\mathfrak{X}\times \mathfrak{Y}$ with marginals μ_X and $\mu_Y.$ Let

$$|\phi\rangle \stackrel{\text{def}}{=} \sum_{x\in \mathfrak{X}, y\in \mathfrak{Y}} \sqrt{\mu(x,y)} \, |xxyy\rangle^{X\tilde{X}Y\tilde{Y}} \otimes |\psi_{x,y}\rangle$$

be shared by Alice and Bob, where X, \tilde{X} , and some part of $|\psi_{x}\rangle$ are with Alice and Y, \tilde{Y} , and the rest of $|\psi_{x}\rangle$ are with Bob.

From Measurements to Unitaries (2 Sided)

Lemma

Let μ be a prob. dist. on $\mathfrak{X} \times \mathfrak{Y}$ with marginals μ_X and μ_Y . Let

$$\left|\phi\right\rangle \stackrel{\text{def}}{=} \sum_{x\in\mathfrak{X},y\in\mathfrak{Y}} \sqrt{\mu(x,y)} \left|xxyy\right\rangle^{X\tilde{X}Y\tilde{Y}} \otimes \left|\psi_{x,y}\right\rangle$$

be shared by Alice and Bob, where X, \tilde{X} , and some part of $|\psi_{x}\rangle$ are with Alice and Y, \tilde{Y} , and the rest of $|\psi_{x}\rangle$ are with Bob. If $I(\mathsf{X}:\mathsf{Bob})_{\phi}\leqslant\epsilon \text{ and }I(\mathsf{Y}:\mathsf{Alice})_{\phi}\leqslant\epsilon \text{ then there exist unitaries }\{\mathbf{U}_{x}\}_{x\in\mathfrak{X}}\text{ on Alice's space and }\{\mathbf{V}_{y}\}_{y\in\mathfrak{Y}}\text{ on Bob's space }$

From Measurements to Unitaries (2 Sided)

Lemma

Let μ be a prob. dist. on $\mathfrak{X}\times \mathfrak{Y}$ with marginals μ_X and $\mu_Y.$ Let

$$\left|\phi\right\rangle \stackrel{\text{def}}{=} \sum_{x \in \mathfrak{X}, y \in \mathfrak{Y}} \sqrt{\mu(x,y)} \left|xxyy\right\rangle^{X\tilde{X}Y\tilde{Y}} \otimes \left|\psi_{x,y}\right\rangle$$

be shared by Alice and Bob, where X, \tilde{X} , and some part of $|\psi_x\rangle$ are with Alice and Y, \tilde{Y} , and the rest of $|\psi_x\rangle$ are with Bob. If $I(X : Bob)_{\phi} \leq \varepsilon$ and $I(Y : Alice)_{\phi} \leq \varepsilon$ then there exist unitaries $\{U_x\}_{x \in \mathfrak{X}}$ on Alice's space and $\{V_y\}_{y \in \mathfrak{Y}}$ on Bob's space s.t.

$$\begin{split} & \underset{(x,y)\leftarrow\mu}{\mathbb{E}} \Big[\Big\| |\phi_{x,y}\rangle \langle \phi_{x,y}| - (\mathbf{U}_x \otimes \mathbf{V}_y) |\phi\rangle \langle \phi| \left(\mathbf{U}_x^* \otimes \mathbf{V}_y^* \right) \Big\|_1 \Big] \\ & \leqslant 8\sqrt{\epsilon} + 2 \left\| \mu - \mu_X \otimes \mu_Y \right\|_1. \end{split}$$

From Measurements to Unitaries (2 Sided)

Lemma

Let μ be a prob. dist. on $\mathfrak{X}\times \mathfrak{Y}$ with marginals μ_X and $\mu_Y.$ Let

$$\left|\phi\right\rangle \stackrel{\text{def}}{=} \sum_{x\in\mathfrak{X},y\in\mathfrak{Y}} \sqrt{\mu(x,y)} \left|xxyy\right\rangle^{X\tilde{X}Y\tilde{Y}} \otimes \left|\psi_{x,y}\right\rangle$$

be shared by Alice and Bob, where X, \tilde{X} , and some part of $|\psi_x\rangle$ are with Alice and Y, \tilde{Y} , and the rest of $|\psi_x\rangle$ are with Bob. If $I(X : Bob)_{\phi} \leq \varepsilon$ and $I(Y : Alice)_{\phi} \leq \varepsilon$ then there exist unitaries $\{U_x\}_{x \in \mathfrak{X}}$ on Alice's space and $\{V_y\}_{y \in \mathfrak{Y}}$ on Bob's space s.t.

$$\begin{split} & \underset{(x,y)\leftarrow\mu}{\mathbb{E}} \Big[\Big\| |\phi_{x,y}\rangle \langle \phi_{x,y}| - (\mathbf{U}_x \otimes \mathbf{V}_y) |\phi\rangle \langle \phi| \left(\mathbf{U}_x^* \otimes \mathbf{V}_y^*\right) \Big\|_1 \Big] \\ & \leq 8\sqrt{\epsilon} + 2 \left\| \mu - \mu_X \otimes \mu_Y \right\|_1. \end{split}$$

Proved by [Jain, Radhakrishnan, Sen '08].

Our main theorem follows from the following lemma.

Show theorem

Key Lemma

Our main theorem follows from the following lemma.

Show theorem

Lemma (Key Lemma)

Let $1/10 > \delta_1, \delta_2, \delta_3 > 0$ s.t. $\delta_3 = \delta_2 + \delta_1 \cdot \log(|\mathcal{A}| \cdot |\mathcal{B}|)$. Let $k' \stackrel{\text{def}}{=} \lfloor \delta_1 k \rfloor$. Given any quantum strategy for G^k , there exists $\{i_1, \ldots, i_{k'}\}$ s.t. for each $1 \leq l \leq k' - 1$, either

$$\Pr\left[\mathsf{T}^{(1)}=1\right] \leqslant 2^{-\delta_2 k}$$

where $T_i \in \{0, 1\}$ indicates success in the *i*-th repetition and $T^{(1)} \stackrel{\text{def}}{=} \prod_{j=1}^{l} T_{i_j}$.

Key Lemma

Our main theorem follows from the following lemma.

Show theorem

Lemma (Key Lemma)

Let $1/10 > \delta_1, \delta_2, \delta_3 > 0$ s.t. $\delta_3 = \delta_2 + \delta_1 \cdot \log(|\mathcal{A}| \cdot |\mathcal{B}|)$. Let $k' \stackrel{\text{def}}{=} \lfloor \delta_1 k \rfloor$. Given any quantum strategy for G^k , there exists $\{i_1, \ldots, i_{k'}\}$ s.t. for each $1 \leq l \leq k' - 1$, either

$$\begin{split} & \mathsf{Pr}\Big[\mathsf{T}^{(1)}=1\Big] \leqslant 2^{-\delta_2 k} \quad \text{or} \\ & \mathsf{Pr}\Big[\mathsf{T}_{\mathfrak{i}_{l+1}}=1 \,\Big| \mathsf{T}^{(1)}=1\Big] \leqslant \omega^*(G) + 12\sqrt{10\delta_3} \end{split}$$

where $T_i \in \{0, 1\}$ indicates success in the *i*-th repetition and $T^{(1)} \stackrel{\text{def}}{=} \prod_{j=1}^{l} T_{i_j}$.

Proof of the Key Lemma

➡ Skip the proof

Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find the (l + 1)-th coordinate with the given properties.

Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find the (l + 1)-th coordinate with the given properties.

 $\bullet \mbox{ Assume } q \stackrel{\mbox{def}}{=} \mbox{Pr}\big[T^{(1)} = 1\big] > 2^{-\delta_2 k}$ as otherwise we are done.

Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find the (l + 1)-th coordinate with the given properties.

- Assume $q \stackrel{\text{def}}{=} \Pr[T^{(1)} = 1] > 2^{-\delta_2 k}$ as otherwise we are done.
- Let $\mathcal{C} \stackrel{\text{def}}{=} \{i_1, \dots, i_l\}.$

Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find the (l + 1)-th coordinate with the given properties.

• Assume $q \stackrel{\text{def}}{=} \Pr[T^{(l)} = 1] > 2^{-\delta_2 k}$ as otherwise we are done. • Let $\mathfrak{C} \stackrel{\text{def}}{=} \{i_1, \dots, i_l\}.$

The purified state after the unitaries is

$$\begin{split} \theta \rangle &\stackrel{\text{def}}{=} \sum_{x \in \mathfrak{X}^{\times k}, y \in \mathfrak{Y}^{\times k}} \sqrt{\mu^{\otimes k}(x,y)} \, |xxyy\rangle^{X\tilde{X}Y\tilde{Y}} \\ & \otimes \sum_{\mathfrak{a}_{\mathfrak{C}} \in \mathcal{A}^{\times 1}, \mathfrak{b}_{\mathfrak{C}} \in \mathfrak{B}^{\times 1}} |\mathfrak{a}_{\mathfrak{C}}\mathfrak{b}_{\mathfrak{C}}\rangle^{\mathsf{A}_{\mathfrak{C}}\mathsf{B}_{\mathfrak{C}}} \otimes \left|\gamma_{x,y,\mathfrak{a}_{\mathfrak{C}},\mathfrak{b}_{\mathfrak{C}}}\right\rangle^{\mathsf{E}_{\mathsf{A}}\mathsf{E}_{\mathsf{B}}}. \end{split}$$

Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find the (l + 1)-th coordinate with the given properties.

• Assume $q \stackrel{\text{def}}{=} \Pr[T^{(l)} = 1] > 2^{-\delta_2 k}$ as otherwise we are done. • Let $\mathcal{C} \stackrel{\text{def}}{=} \{i_1, \dots, i_l\}.$

The purified state after the unitaries is

$$\begin{split} |\theta\rangle &\stackrel{\text{def}}{=} \sum_{x\in\mathfrak{X}^{\times k},y\in\mathfrak{Y}^{\times k}} \sqrt{\mu^{\otimes k}(x,y)} \, |xxyy\rangle^{X\tilde{X}Y\tilde{Y}} \\ &\otimes \sum_{\mathfrak{a}_{\mathfrak{C}}\in\mathcal{A}^{\times 1}, \mathfrak{b}_{\mathfrak{C}}\in\mathfrak{B}^{\times 1}} |\mathfrak{a}_{\mathfrak{C}}\mathfrak{b}_{\mathfrak{C}}\rangle^{A_{\mathfrak{C}}B_{\mathfrak{C}}} \otimes \left|\gamma_{x,y,\mathfrak{a}_{\mathfrak{C}},\mathfrak{b}_{\mathfrak{C}}}\rangle^{E_{A}E_{B}} \right. \end{split}$$

Conditioning on success in $\ensuremath{\mathfrak{C}}$ gives us the state

$$|\phi\rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{q}} \sum_{x,y} \sqrt{\mu^{\otimes k}(x,y)} |xxyy\rangle \sum_{\substack{\mathfrak{a}_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}} \text{ s.t.} \\ \prod_{i \in \mathbb{C}} T_i = 1}} |\mathfrak{a}_{\mathbb{C}} \mathfrak{b}_{\mathbb{C}}\rangle \otimes \left|\gamma_{x,y,\mathfrak{a}_{\mathbb{C}},\mathfrak{b}_{\mathbb{C}}}\right\rangle.$$

Lemma about the Relative Entropy

From $q > 2^{-\delta_2 k}$, we show the following simple lemma.

Lemma about the Relative Entropy

From $q > 2^{-\delta_2 k}$, we show the following simple lemma.

$$\begin{split} \text{Lemma} \\ & \mathbb{E}_{\substack{x_{e}, y_{e}, a_{e}, b_{e} \leftarrow \phi^{x_{e} y_{e} A_{e} B_{e}}} \left[S\left(\phi^{\text{XY} \tilde{x}_{\overline{e}} \tilde{Y}_{\overline{e}} \mathsf{E}_{\mathsf{A}} \mathsf{E}_{\mathsf{B}}}_{x_{e}, y_{e}, a_{e}, b_{e}} \left\| \theta^{\text{XY} \tilde{x}_{\overline{e}} \tilde{Y}_{\overline{e}} \mathsf{E}_{\mathsf{A}} \mathsf{E}_{\mathsf{B}}}_{x_{e}, y_{e}} \right) \right] \leqslant \delta_{3} k \end{split}$$

Intuitively,

• going from θ to ϕ causes a difference of at most $-\log q < \delta_2 k.$

Lemma about the Relative Entropy

From $q > 2^{-\delta_2 k}$, we show the following simple lemma.

$$\mathbb{E}_{\substack{x_{c}, y_{c}, a_{c}, b_{c} \leftarrow \phi^{x_{c} Y_{c} A_{c} B_{c}}}} \left[S \left(\phi_{x_{c}, y_{c}, a_{c}, b_{c}}^{XY \tilde{x}_{\overline{c}} \tilde{Y}_{\overline{c}} E_{A} E_{B}} \right\| \theta_{x_{c}, y_{c}}^{XY \tilde{x}_{\overline{c}} \tilde{Y}_{\overline{c}} E_{A} E_{B}} \right) \right] \leqslant \delta_{3} k$$

Intuitively,

emma

- going from θ to ϕ causes a difference of at most $-\log q < \delta_2 k.$
- further measuring $A_{\mathcal{C}}$ and $B_{\mathcal{C}}$ results in a difference of at most $|\mathcal{C}| \cdot \log(|\mathcal{A}| \cdot |\mathcal{B}|) \leqslant \delta_1 k \cdot \log(|\mathcal{A}| \cdot |\mathcal{B}|).$

Upper Bound for the Mutual Information

Upper Bound for the Mutual Information

$$\delta_{3}k \geqslant \mathbb{E}_{\substack{x_{c}, y_{c}, a_{c}, b_{c} \leftarrow \phi^{x_{c} y_{c} A_{c} B_{c}}}} \left[S\left(\phi_{x_{c}, y_{c}, a_{c}, b_{c}}^{XY\tilde{x}_{\overline{c}}\tilde{Y}_{\overline{c}} E_{A} E_{B}} \right\| \theta_{x_{c}, y_{c}}^{XY\tilde{x}_{\overline{c}}\tilde{Y}_{\overline{c}} E_{A} E_{B}} \right) \right]$$

Upper Bound for the Mutual Information

$$\begin{split} \delta_{3}k & \geqslant \mathop{\mathbb{E}}_{x_{\mathcal{C}},y_{\mathcal{C}},a_{\mathcal{C}},b_{\mathcal{C}}\leftarrow\phi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}}\left[S\left(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},a_{\mathcal{C}},b_{\mathcal{C}}}^{XY\tilde{x}_{\mathcal{C}}^{*}\tilde{y}_{\mathcal{C}}E_{A}E_{B}}\right)\right] \\ & \geqslant \mathbb{E}\left[S\left(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},a_{\mathcal{C}},b_{\mathcal{C}}}^{X(\text{Bob})}\left\|\theta_{x_{\mathcal{C}},y_{\mathcal{C}}}^{X(\text{Bob})}\right)\right] \end{split}$$

where
$$Bob \stackrel{\text{def}}{=} Y \tilde{Y}_{\overline{\mathbb{C}}} E_B$$
.

Upper Bound for the Mutual Information

$$\begin{split} \delta_{3}k &\geqslant \mathop{\mathbb{E}}_{x_{c},y_{c},a_{c},b_{c}\leftarrow\phi^{X_{c}Y_{c}A_{c}B_{c}}}\left[S\left(\phi^{XY\bar{X}_{c}\bar{e}\bar{Y}_{c}E_{A}E_{B}}_{x_{c},y_{c},a_{c},b_{c}}\left\|\theta^{XY\bar{X}_{c}\bar{e}\bar{Y}_{c}E_{A}E_{B}}_{x_{c},y_{c},a_{c},b_{c}}\right\|\right] \\ &\geqslant \mathbb{E}\left[S\left(\phi^{X(Bob)}_{x_{c},y_{c},a_{c},b_{c}}\left\|\theta^{X(Bob)}_{x_{c},y_{c}}\right)\right] \\ &= \mathbb{E}\left[S\left(\phi^{X(Bob)}_{x_{c},y_{c},a_{c},b_{c}}\left\|\theta^{X}_{x_{c},y_{c}}\otimes\theta^{Bob}_{x_{c},y_{c}}\right)\right]\right] \end{split}$$

where
$$Bob \stackrel{\text{def}}{=} Y \tilde{Y}_{\overline{\mathbb{C}}} E_B$$
.

Upper Bound for the Mutual Information

$$\begin{split} \delta_{3}k & \geqslant \mathop{\mathbb{E}}_{\substack{x_{e}, y_{e}, a_{e}, b_{e} \leftarrow \phi^{X_{e}Y_{e}A_{e}B_{e}}} \left[S\left(\phi^{XY\tilde{x}_{e}\tilde{Y}_{e}E_{A}E_{B}}_{x_{e}, y_{e}, a_{e}, b_{e}} \middle\| \theta^{XY\tilde{x}_{e}\tilde{Y}_{e}E_{A}E_{B}}_{x_{e}, y_{e}, a_{e}, b_{e}} \right\| \right] \\ & \geqslant \mathbb{E} \left[S\left(\phi^{X(Bob)}_{x_{e}, y_{e}, a_{e}, b_{e}} \middle\| \theta^{X(Bob)}_{x_{e}, y_{e}} \right) \right] \\ & = \mathbb{E} \left[S\left(\phi^{X(Bob)}_{x_{e}, y_{e}, a_{e}, b_{e}} \middle\| \theta^{X}_{x_{e}, y_{e}} \otimes \theta^{Bob}_{x_{e}, y_{e}} \right) \right] \\ & \geqslant \mathbb{E} \left[S\left(\phi^{X(Bob)}_{x_{e}, y_{e}, a_{e}, b_{e}} \middle\| \theta^{X}_{x_{e}, y_{e}, a_{e}, b_{e}} \otimes \phi^{Bob}_{x_{e}, y_{e}, a_{e}, b_{e}} \right) \right] \end{split}$$

where Bob
$$\stackrel{\text{def}}{=} Y \tilde{Y}_{\overline{\mathcal{C}}} E_B$$
.

Upper Bound for the Mutual Information

$$\begin{split} \delta_{3}k &\geqslant \mathop{\mathbb{E}}_{x_{e},y_{e},a_{e},b_{e}\leftarrow\phi^{X_{e}Y_{e}A_{e}B_{e}}} \left[S\left(\phi_{x_{e},y_{e},a_{e},b_{e}}^{XY\bar{X}_{e}\bar{\Psi}_{e}E_{A}E_{B}} \left\| \theta_{x_{e},y_{e}}^{XY\bar{X}_{e}\bar{\Psi}_{e}E_{A}E_{B}} \right) \right] \\ &\geqslant \mathbb{E} \left[S\left(\phi_{x_{e},y_{e},a_{e},b_{e}}^{X(Bob)} \left\| \theta_{x_{e},y_{e}}^{X(Bob)} \right) \right] \\ &= \mathbb{E} \left[S\left(\phi_{x_{e},y_{e},a_{e},b_{e}}^{X(Bob)} \left\| \theta_{x_{e},y_{e}}^{X} \otimes \theta_{x_{e},y_{e}}^{Bob} \right) \right] \\ &\geqslant \mathbb{E} \left[S\left(\phi_{x_{e},y_{e},a_{e},b_{e}}^{X(Bob)} \left\| \phi_{x_{e},y_{e},a_{e},b_{e}}^{X} \otimes \phi_{x_{e},y_{e},a_{e},b_{e}}^{Bob} \right) \right] \\ &= I(X:Bob|X_{e}Y_{e}A_{e}B_{e})_{\phi} \end{split}$$

where
$$\mathsf{Bob} \stackrel{\mathsf{def}}{=} \mathsf{Y} \tilde{\mathsf{Y}}_{\overline{\mathfrak{C}}} \mathsf{E}_{\mathsf{B}}.$$

Upper Bound for the Mutual Information

Using the previous lemma, we can show the required upper bound for the mutual information.

$$\begin{split} \delta_{3}k & \geqslant \mathop{\mathbb{E}}_{x_{e},y_{e},a_{e},b_{e}\leftarrow\phi^{X_{e}Y_{e}A_{e}B_{e}}} \left[S\left(\phi_{x_{e},y_{e},a_{e},b_{e}}^{XY\tilde{x}_{e}\tilde{Y}_{e}E_{A}E_{B}} \left\| \theta_{x_{e},y_{e}}^{XY\tilde{x}_{e}\tilde{Y}_{e}E_{A}E_{B}} \right) \right] \\ & \geqslant \mathbb{E} \left[S\left(\phi_{x_{e},y_{e},a_{e},b_{e}}^{X(Bob)} \left\| \theta_{x_{e},y_{e}}^{X}\right) \right] \\ & = \mathbb{E} \left[S\left(\phi_{x_{e},y_{e},a_{e},b_{e}}^{X(Bob)} \left\| \theta_{x_{e},y_{e}}^{X} \otimes \theta_{x_{e},y_{e}}^{Bob} \right) \right] \\ & \geqslant \mathbb{E} \left[S\left(\phi_{x_{e},y_{e},a_{e},b_{e}}^{X(Bob)} \left\| \phi_{x_{e},y_{e},a_{e},b_{e}}^{X} \otimes \phi_{x_{e},y_{e},a_{e},b_{e}}^{Bob} \right) \right] \\ & = I(X:Bob|X_{e}Y_{e}A_{e}B_{e})_{\phi} \\ & = \sum_{i\in\overline{e}} I\left(X_{i}:Bob|X_{e\cup[i-1]}Y_{e}A_{e}B_{e}\right)_{\phi} \end{split}$$

where $Bob \stackrel{\text{def}}{=} Y \tilde{Y}_{\overline{\mathbb{C}}} E_B$.

Distribution of Questions

Distribution of Questions

$$\delta_{3}k \geqslant \underset{x_{\mathbb{C}},y_{\mathbb{C}},a_{\mathbb{C}},b_{\mathbb{C}} \leftarrow \phi^{x_{\mathbb{C}} Y_{\mathbb{C}} A_{\mathbb{C}} B_{\mathbb{C}}}}{\mathbb{E}} \left[S \left(\phi_{x_{\mathbb{C}},y_{\mathbb{C}},a_{\mathbb{C}},b_{\mathbb{C}}}^{XY\tilde{x}_{\overline{\mathbb{C}}}\tilde{Y}_{\overline{\mathbb{C}}} E_{A} E_{B}} \right) \right]$$

Distribution of Questions

$$\begin{split} \delta_{3}k & \geqslant \mathop{\mathbb{E}}_{\substack{x_{e}, y_{e}, a_{e}, b_{e} \leftarrow \phi^{x_{e} y_{e}A_{e}B_{e}}} \left[S\left(\phi_{x_{e}, y_{e}, a_{e}, b_{e}}^{XY\tilde{x}_{e}\overline{Y}_{e}\overline{E}A_{e}B_{e}} \left\| \theta_{x_{e}, y_{e}}^{XY\tilde{x}_{e}\overline{Y}_{e}\overline{E}A_{e}B_{e}} \right) \right] \\ & \geqslant \mathop{\mathbb{E}}_{\substack{x_{e}, y_{e}, a_{e}, b_{e} \leftarrow \phi^{x_{e} y_{e}A_{e}B_{e}}} \left[S\left(\phi_{x_{e}, y_{e}, a_{e}, b_{e}}^{XY} \left\| \theta_{x_{e}, y_{e}}^{XY} \right) \right] \end{split}$$

Some Details

Distribution of Questions

$$\begin{split} \delta_{3}k & \geqslant \mathop{\mathbb{E}}_{x_{\mathcal{C}},y_{\mathcal{C}},a_{\mathcal{C}},b_{\mathcal{C}}\leftarrow\phi^{x_{\mathcal{C}}y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}}\left[S\left(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},a_{\mathcal{C}},b_{\mathcal{C}}}^{XY\tilde{x}_{\mathcal{C}}\tilde{Y}_{\mathcal{C}}E_{A}E_{B}}\right\|\theta_{x_{\mathcal{C}},y_{\mathcal{C}}}^{XY\tilde{x}_{\mathcal{C}}\tilde{Y}_{\mathcal{C}}E_{A}E_{B}}\right)\right] \\ & \geqslant \mathop{\mathbb{E}}_{x_{\mathcal{C}},y_{\mathcal{C}},a_{\mathcal{C}},b_{\mathcal{C}}\leftarrow\phi^{x_{\mathcal{C}}y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}}\left[S\left(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},a_{\mathcal{C}},b_{\mathcal{C}}}^{XY}\right\|\theta_{x_{\mathcal{C}},y_{\mathcal{C}}}^{XY}\right) \\ & = \sum_{i\in\overline{\mathcal{C}}}\mathop{\mathbb{E}}_{r_{i}\leftarrow\phi^{\mathsf{R}_{i}}}\left[S\left(\phi_{r_{i}}^{x_{i}}\right\|\theta_{x_{\mathcal{C}\cup[i-1]},y_{\mathcal{C}\cup[i-1]}}^{x_{i}}\right)\right] \end{split}$$

where
$$\mathsf{R}_{\mathfrak{i}} \stackrel{\text{def}}{=} \mathsf{X}_{\mathcal{C} \cup [\mathfrak{i}-1]} \mathsf{Y}_{\mathcal{C} \cup [\mathfrak{i}-1]} \mathsf{A}_{\mathcal{C}} \mathsf{B}_{\mathcal{C}}.$$

Some Details

Distribution of Questions

$$\begin{split} \delta_{3}k &\geqslant \mathop{\mathbb{E}}_{\substack{x_{\mathcal{C}}, y_{\mathcal{C}}, a_{\mathcal{C}}, b_{\mathcal{C}} \leftarrow \phi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}} \left[S\left(\phi^{XY\tilde{X}_{\mathcal{C}}\tilde{Y}_{\mathcal{C}}E_{A}E_{B}}_{x_{\mathcal{C}}, y_{\mathcal{C}}, a_{\mathcal{C}}, b_{\mathcal{C}}} \middle\| \theta^{XY\tilde{X}_{\mathcal{C}}\tilde{Y}_{\mathcal{C}}E_{A}E_{B}}_{x_{\mathcal{C}}, y_{\mathcal{C}}, a_{\mathcal{C}}, b_{\mathcal{C}}} \right\| \right) \right]} \\ &\geqslant \mathop{\mathbb{E}}_{\substack{x_{\mathcal{C}}, y_{\mathcal{C}}, a_{\mathcal{C}}, b_{\mathcal{C}} \leftarrow \phi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}} \\ x_{\mathcal{C}}, y_{\mathcal{C}}, a_{\mathcal{C}}, b_{\mathcal{C}} \leftarrow \phi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}} \left[S\left(\phi^{XY}_{x_{\mathcal{C}}, y_{\mathcal{C}}, a_{\mathcal{C}}, b_{\mathcal{C}}} \middle\| \theta^{XY}_{x_{\mathcal{C}}, y_{\mathcal{C}}} \right) \right]} \\ &= \sum_{i \in \overline{\mathcal{C}}} \mathop{\mathbb{E}}_{i \leftarrow \phi^{\mathsf{R}_{i}}} \left[S\left(\phi^{X_{i}Y_{i}}_{r_{i}} \middle\| \theta^{X_{i}Y_{i}}_{x_{\mathcal{C}\cup[i-1]}, y_{\mathcal{C}\cup[i-1]}} \right) \right] \\ &\geqslant \sum_{i \in \overline{\mathcal{C}}} \mathop{\mathbb{E}}_{r_{i} \leftarrow \phi^{\mathsf{R}_{i}}} \left[\left\| \phi^{X_{i}Y_{i}}_{r_{i}} - \mu \right\|_{1}^{2} \right] \end{split}$$

where
$$\mathsf{R}_{\mathfrak{i}} \stackrel{\text{def}}{=} \mathsf{X}_{\mathcal{C} \cup [\mathfrak{i}-1]} \mathsf{Y}_{\mathcal{C} \cup [\mathfrak{i}-1]} \mathsf{A}_{\mathcal{C}} \mathsf{B}_{\mathcal{C}}.$$

Distribution of Questions

Using the same lemma, we show that for most of the coordinates in $\overline{\mathbb{C}}$ the distribution of questions is close to μ in $|\phi\rangle$.

$$\begin{split} \delta_{3}k & \geqslant \mathop{\mathbb{E}}_{\substack{x_{e}, y_{e}, a_{e}, b_{e} \leftarrow \phi^{X_{e} Y_{e}A_{e}B_{e}}}} \left[S\left(\phi^{XY\tilde{X}_{\overline{e}}\tilde{Y}_{\overline{e}}E_{A}E_{B}}_{x_{e}, y_{e}, a_{e}, b_{e} \leftarrow \phi^{X_{e} Y_{e}A_{e}B_{e}}} \left[S\left(\phi^{XY}_{x_{e}, y_{e}, a_{e}, b_{e}} \left\| \theta^{XY}_{x_{e}, y_{e}} \right) \right] \right] \\ & \geqslant \mathop{\mathbb{E}}_{\substack{x_{e}, y_{e}, a_{e}, b_{e} \leftarrow \phi^{X_{e} Y_{e}A_{e}B_{e}}}} \left[S\left(\phi^{XY}_{x_{e}, y_{e}, a_{e}, b_{e}} \left\| \theta^{XY}_{x_{e}, y_{e}} \right) \right] \right] \\ & = \sum_{i \in \overline{e}} \mathop{\mathbb{E}}_{r_{i} \leftarrow \phi^{R_{i}}} \left[S\left(\phi^{X_{i}Y_{i}}_{r_{i}} \left\| \theta^{X_{i}Y_{i}}_{x_{e\cup\left[i-1\right]}, y_{e\cup\left[i-1\right]}} \right) \right] \right] \\ & \geqslant \sum_{i \in \overline{e}} \mathop{\mathbb{E}}_{r_{i} \leftarrow \phi^{R_{i}}} \left[\left\| \phi^{X_{i}Y_{i}}_{r_{i}} - \mu \right\|_{1}^{2} \right] \\ & \geqslant \sum_{i \in \overline{e}} \left(\mathop{\mathbb{E}}_{r_{i} \leftarrow \phi^{R_{i}}} \left[\left\| \phi^{X_{i}Y_{i}}_{r_{i}} - \mu \right\|_{1}^{2} \right] \right)^{2} \end{split}$$

where $\mathsf{R}_{i} \stackrel{\text{def}}{=} \mathsf{X}_{\mathcal{C} \cup [i-1]} \mathsf{Y}_{\mathcal{C} \cup [i-1]} \mathsf{A}_{\mathcal{C}} \mathsf{B}_{\mathcal{C}}.$

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{\mathbb{C}}$ s.t.

Some Details

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{\mathbb{C}}$ s.t.

```
I\left(X_{j}: \text{Bob} \middle| R_{j}\right)_{\phi} \leqslant 10\delta_{3}
```

where $R_j = X_{\mathcal{C} \cup [j-1]} Y_{\mathcal{C} \cup [j-1]} A_{\mathcal{C}} B_{\mathcal{C}}$.

Summary

Some Details

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{\mathbb{C}}$ s.t.

$$\begin{split} & I\left(X_{j}:\text{Bob}\big|\text{R}_{j}\right)_{\phi} \leqslant 10\delta_{3} \\ & I\left(Y_{j}:\text{Alice}\big|\text{R}_{j}\right)_{\phi} \leqslant 10\delta_{3} \end{split}$$

where $R_j = X_{\mathcal{C} \cup [j-1]} Y_{\mathcal{C} \cup [j-1]} A_{\mathcal{C}} B_{\mathcal{C}}$.

Summary

Some Details

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{\mathbb{C}}$ s.t.

$$\begin{split} I\left(X_{j}:\text{Bob}\big|\mathsf{R}_{j}\right)_{\phi} &\leqslant 10\delta_{3}\\ I\left(Y_{j}:\text{Alice}\big|\mathsf{R}_{j}\right)_{\phi} &\leqslant 10\delta_{3}\\ \left\|\phi^{X_{j}Y_{j}}-\mu\right\|_{1} &\leqslant \mathop{\mathbb{E}}_{r_{j}\leftarrow\phi^{\mathsf{R}_{j}}}\left[\left\|\phi^{X_{j}Y_{j}}_{r_{j}}-\mu\right\|_{1}\right] &\leqslant \sqrt{10\delta_{3}} \end{split}$$

where $\mathsf{R}_{j}=\mathsf{X}_{\mathfrak{C}\cup[j-1]}\mathsf{Y}_{\mathfrak{C}\cup[j-1]}\mathsf{A}_{\mathfrak{C}}\mathsf{B}_{\mathfrak{C}}.$

Summary

Some Details

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{\mathbb{C}}$ s.t.

$$\begin{split} I\left(X_{j}:\text{Bob}\big|\mathsf{R}_{j}\right)_{\phi} &\leqslant 10\delta_{3}\\ I\left(Y_{j}:\text{Alice}\big|\mathsf{R}_{j}\right)_{\phi} &\leqslant 10\delta_{3}\\ \left\|\phi^{X_{j}Y_{j}}-\mu\right\|_{1} &\leqslant \underset{r_{j}\leftarrow\phi^{R_{j}}}{\mathbb{E}}\left[\left\|\phi^{X_{j}Y_{j}}_{r_{j}}-\mu\right\|_{1}\right] \leqslant \sqrt{10\delta_{3}} \end{split}$$

where $R_j=X_{\mathcal{C}\cup[j-1]}Y_{\mathcal{C}\cup[j-1]}A_{\mathcal{C}}B_{\mathcal{C}}.$ By similar arguments as in the previous slide, we also have

$$\mathbb{E}_{r_{j} \leftarrow \phi^{R_{j}}} \left[\left\| \phi_{r_{j}}^{X_{j}Y_{j}} - \phi_{r_{j}}^{X_{j}} \otimes \phi_{r_{j}}^{Y_{j}} \right\|_{1} \right] \leqslant \sqrt{10\delta_{3}}$$

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{\mathbb{C}}$ s.t.

$$\begin{split} I\left(X_{j}:\text{Bob}\big|\mathsf{R}_{j}\right)_{\phi} &\leqslant 10\delta_{3}\\ I\left(Y_{j}:\text{Alice}\big|\mathsf{R}_{j}\right)_{\phi} &\leqslant 10\delta_{3}\\ \left\|\phi^{X_{j}Y_{j}}-\mu\right\|_{1} &\leqslant \underset{r_{j}\leftarrow\phi^{R_{j}}}{\mathbb{E}}\left[\left\|\phi^{X_{j}Y_{j}}_{r_{j}}-\mu\right\|_{1}\right] \leqslant \sqrt{10\delta_{3}} \end{split}$$

where $R_j = X_{\mathcal{C} \cup [j-1]} Y_{\mathcal{C} \cup [j-1]} A_{\mathcal{C}} B_{\mathcal{C}}$. By similar arguments as in the previous slide, we also have

$$\begin{split} & \underset{r_{j} \leftarrow \phi^{R_{j}}}{\mathbb{E}} \left[\left\| \phi_{r_{j}}^{X_{j}Y_{j}} - \phi_{r_{j}}^{X_{j}} \otimes \phi_{r_{j}}^{Y_{j}} \right\|_{1} \right] \leqslant \sqrt{10\delta_{3}} \\ & \underset{x_{j}, y_{j} \leftarrow \phi^{X_{j}Y_{j}}}{\mathbb{E}} \left[\left\| \phi_{x_{j}, y_{j}}^{R_{j}} - \phi^{R_{j}} \right\|_{1} \right] \leqslant \sqrt{10\delta_{3}}. \end{split}$$

Summary

Some Details

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{\mathbb{C}}$ s.t.

$$\begin{split} I\left(X_{j}:\text{Bob}\big|\mathsf{R}_{j}\right)_{\phi} &\leqslant 10\delta_{3}\\ I\left(Y_{j}:\text{Alice}\big|\mathsf{R}_{j}\right)_{\phi} &\leqslant 10\delta_{3}\\ \left\|\phi^{X_{j}Y_{j}}-\mu\right\|_{1} &\leqslant \underset{r_{j}\leftarrow\phi^{R_{j}}}{\mathbb{E}}\left[\left\|\phi^{X_{j}Y_{j}}_{r_{j}}-\mu\right\|_{1}\right] \leqslant \sqrt{10\delta_{3}} \end{split}$$

where $R_j=X_{\mathcal{C}\cup[j-1]}Y_{\mathcal{C}\cup[j-1]}A_{\mathcal{C}}B_{\mathcal{C}}.$ By similar arguments as in the previous slide, we also have

$$\begin{split} & \mathbb{E}_{\substack{r_{j} \leftarrow \phi^{R_{j}}}} \left[\left\| \phi_{r_{j}}^{X_{j}Y_{j}} - \phi_{r_{j}}^{X_{j}} \otimes \phi_{r_{j}}^{Y_{j}} \right\|_{1} \right] \leqslant \sqrt{10\delta_{3}} \\ & \mathbb{E}_{\substack{x_{j}, y_{j} \leftarrow \phi^{X_{j}Y_{j}}}} \left[\left\| \phi_{x_{j}, y_{j}}^{R_{j}} - \phi^{R_{j}} \right\|_{1} \right] \leqslant \sqrt{10\delta_{3}}. \end{split}$$

With these, and by treating R_j as public coins, it's easy to show that we can embed G into G^k .

We proved the following parallel repetition theorem.

Theorem (Main Theorem)

For any game G, where the input distribution μ is product on $\mathfrak{X}\times \mathfrak{Y},$ it holds that

$$\boldsymbol{\omega}^* \left(\boldsymbol{G}^k \right) = \left(1 - (1 - \boldsymbol{\omega}^*(\boldsymbol{G}))^3 \right)^{\Omega \left(\frac{k}{\log \left(|\mathcal{A}| \cdot |\mathcal{B}| \right)} \right)}$$

.

We proved the following parallel repetition theorem.

Theorem (Main Theorem)

For any game G, where the input distribution μ is product on $\mathfrak{X}\times \mathfrak{Y},$ it holds that

$$\boldsymbol{\omega}^* \big(\boldsymbol{G}^k \big) = \Big(1 - (1 - \boldsymbol{\omega}^*(\boldsymbol{G}))^3 \Big)^{\Omega \left(\frac{k}{\log(|\mathcal{A}| \cdot |\mathcal{B}|)} \right)}$$

It improves upon the result of [Chailloux and Scarpa '13] by

generalizing it from uniform to product distributions

We proved the following parallel repetition theorem.

Theorem (Main Theorem)

For any game G, where the input distribution μ is product on $\mathfrak{X}\times \mathfrak{Y},$ it holds that

$$\boldsymbol{\omega}^* \big(\boldsymbol{G}^k \big) = \Big(1 - (1 - \boldsymbol{\omega}^* (\boldsymbol{G}))^3 \Big)^{\Omega \left(\frac{k}{\log (|\mathcal{A}| \cdot |\mathcal{B}|)} \right)}$$

It improves upon the result of [Chailloux and Scarpa '13] by

- generalizing it from uniform to product distributions and by
- removing the dependence on $|\mathcal{X}|$ and $|\mathcal{Y}|$.

We proved the following parallel repetition theorem.

Theorem (Main Theorem)

For any game G, where the input distribution μ is product on $\mathfrak{X}\times \mathfrak{Y},$ it holds that

$$\boldsymbol{\omega}^* \big(\boldsymbol{G}^k \big) = \Big(1 - (1 - \boldsymbol{\omega}^*(\boldsymbol{G}))^3 \Big)^{\Omega \left(\frac{k}{\log(|\mathcal{A}| \cdot |\mathcal{B}|)} \right)}$$

It improves upon the result of [Chailloux and Scarpa '13] by

- generalizing it from uniform to product distributions and by
- removing the dependence on $|\mathcal{X}|$ and $|\mathcal{Y}|$.

A parallel repetition theorem for arbitrary games where the exponent only depends on \mathbf{k} and $|\mathcal{A}| \cdot |\mathcal{B}|$ is still unknown.

Thank you for your attention!

The manuscript is available at arXiv:1311.6309.

