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Two-Player One-Round Games
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@ The referee selects questions
(/\) (x,y) € X x Y according to
distribution L.

AI .
ce @ Alice and Bob answer a € A and

b € B by performing
measurements on |@).
@ They winif V(x,y,a,b) = 1.

@ The value of G, denoted by
w*(G), is the supremum of the
achievable winning probability.
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Parallel Repetition Theorems

The Basic Question

How does w* (G*) scale with k?
o Trivially, w* (G¥) > w*(G)*.

@ The reverse direction doesn’t hold but we can still hope to show
that w* (G*) ~ w* (G)*.

Analogous result holds for the classical value (denoted by w (G)):

Theorem ([Raz '95] and [Holenstein '07])
d constant C s.t.

___k
[AT-TBI)

w(G¥) < (1 —Cc(- w(G))3) =




Parallel repetition theorems for the quantum value were shown for
some classes of games.
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Parallel Repetition Theorems for the Quantum Value

Parallel repetition theorems for the quantum value were shown for
some classes of games.

Perfect parallel repetition holds for XOR games. [Cleve, Slofstra,
Unger, Upadhyay ’08]

Parallel repetition holds for the more general class of unique
games [Kempe, Regev, Toner ’10]

and the even more general class of projection games [Dinur,
Steurer, Vidick '13].

For general games, [Kempe and Vidick ’11] showed a theorem
where the rate of decay is inverse-polynomial. (Although not for
G*)

[Chailloux and Scarpa '13] showed it for games where the input
distribution is uniform.




For any game G, where the input distribution w is product on X x Y, it
holds that

w*(6¥) = (1-(1 —w*(G))3)Q(">gTJhT'3_“) _
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Idea Behind the Proof

Broad Idea

In G, let us condition on success on a set @ C [k] of coordinates.
@ If the success probability is small enough then we are done.

@ Otherwise, we show that there exists aj € € = [k] \ € s.t.
success in the j-th coordinate is bounded away from 1.
e Doing this Q (k) times, the success probability will be
exponentially small in k.
e Let (x',y’) € X x Y be distributed according to p.
e We show that the players can embed (x’,y’) into the j-th
coordinate and generate the state of the whole system in G*.
e If they could win the j-th instance with high probability then they
would be able to win G with high probability.

G|
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Some Simplifications

Without loss of generality:
@ Let the questions and answers be part of the whole
(classical-)quantum state.

@ Upon receiving the questions, the players apply unitaries on their
parts, measure registers A and B, in the standard basis, and
send the outcomes to the referee.

The global state, conditioned on success in C, after the unitaries is of
the form

0= Z H®k(xsy) |XU><XU|XY b2y |¢xy><d)xy|
ngxk’yeyxk

where (unnormalized) |y ) is shared between Alice and Bob.

Gk
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@ Alice and Bob get questions (x’,y’) € X x Y.




Introduction Proof of the Main Theorem Summary
0000000 000®00000000000

Idea Behind the Proof

How to generate the state in G*?

Let us take a strategy for G where the players share

)= > TRy o) @ Iy
XECX:Xk,yEHXk

@ Tryey (lo)(0l) = 0.
@ Alice and Bob get questions (x’,y’) € X x Y.

@ Suppose they measure registers X; and Y;.




Introduction Proof of the Main Theorem Summary
0000000 000®00000000000

Idea Behind the Proof

How to generate the state in G*?

Let us take a strategy for G where the players share

)= > HER (x,y) hocyy) " @ [xy) -
ngxk’yeléxk

® Trygylo)(el) = o.
@ Alice and Bob get questions (x’,y’) € X x Y.

@ Suppose they measure registers X; and Y;.

@ If the outcomes of the measurements are x” and y’ then they can
further measure A; and B; and reply to the referee.
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Idea Behind the Proof

How to generate the state in G*?

Let us take a strategy for G where the players share

o= > e y) oy @ Iy

ngxk’yeyxk

Trigy (@) (0l) = 0.
Alice and Bob get questions (x’,y’) € X x Y.
Suppose they measure registers X; and Yj.

If the outcomes of the measurements are x” and y’ then they can
further measure A; and B; and reply to the referee.

This way, we embedded a single instance of G into G, with
being conditioned on success in C.
e If w*(G) is bounded away from 1 then success in the j-th
instance is also bounded away from 1.

G
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Generate the state without measurements?

The previous argument doesn’t work because the probability of getting
(x’,y’), when measuring X; and Yj, can be very small.
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Idea Behind the Proof

Generate the state without measurements?

The previous argument doesn’t work because the probability of getting
(x’,y’), when measuring X; and Yj, can be very small.

Question

Is there a way to generate the post-measurement state (approximately)
without measurements?

Answer
Yes, if the input distribution L is product.
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@ We show that I(X; : Bob)(p ~ 0 and I(Y; :AIice)(P ~ 0.
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/ . .
gets x{. States ](pyj/> and }(Px;gj'> are defined similarly.
@ We show that I(X; : Bob) _ ~ 0 and I(Y;j : Alice) _ ~ 0.
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o I(X;: Bob)(p ~ 0 implies that Bob’s part of ’(Px;> is mostly
independent of xj’.
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How to do it without measurements?

Let \(pxjx> be the resulting state after Alice measures X; in |¢) and
gets x{. States ](pyj/> and }(Px;yj'> are defined similarly.
@ We show that I(X; : Bob)(p ~0and I(Y;j: AIice)(P ~ 0.
o I(X;: Bob)(p ~ 0 implies that Bob’s part of ’(Px;> is mostly
independent of xj’.

@ By the unitary equivalence of purifications, 3 unitary ij/ that
Alice can apply to get (U.Xj/ ® ]lBob> lp) = ‘(PX]{>.

@ Similarly, EVyJ/ s.t. (11Alice ® Vy)/) |(p> ~ |(py]/>

@ By [Jain, Radhakrishnan, Sen '08], if the distribution of (x{,y;) is
product then

(W@ Vg ) o) = o)
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be shared by Alice and Bob, where X, X, and some part of W) ) are
with Alice and the rest of ")) is with Bob.
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Some Details

From Measurements to Unitaries (1 Sided)

Lemma
Let u be a probability distribution on X. Let

def Z Vi (x) [xx) X ® Wx)

xeX

be shared by Alice and Bob, where X, X, and some part of [\ ) are
with Alice and the rest of \p ) is with Bob. Let|@y) £ xx) ® px). If
[(X: Bob), < ¢ then there exist unitaries {Ux}, < acting on Alice’s
space s.t.

<_H[H|(P><><(Px| — (Uy ® Lgop) [@) (] (U} @ Lgop)||1] < 4v/e.

The proof easily follows from the unitary equivalence of purifications
and Uhimann’s theorem. s
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From Measurements to Unitaries (2 Sided)
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From Measurements to Unitaries (2 Sided)

Lemma
Let u be a prob. dist. on X x Y with marginals px and py. Let

@) =Y Vulay) kyy) Y @ by

xeX,yeYy

be shared by Alice and Bob, where X, X, and some part of Wby ) are
with Alice and Y, Y, and the rest of \by ) are with Bob. If

I(X: Bob)(p <eandI(Y: AIice)(p < ¢ then there exist unitaries
{Uy ) e 0on Alice’s space and {V }y cy on Bob’s space s.t.

E

(o) n [H|(Px,y><(9x,y| — (Ux ® Vy) o) (ol (u;kc ® V;) HJ

<8Ve+2||u— pux ® pyll; -

Summary
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Some Details

From Measurements to Unitaries (2 Sided)

Lemma
Let u be a prob. dist. on X x Y with marginals px and py. Let

@) =Y Vulay) kyy) Y @ by

xeX,yeYy

be shared by Alice and Bob, where X, X, and some part of Wby ) are
with Alice and Y, Y, and the rest of \by ) are with Bob. If

I(X: Bob)(p <eandI(Y: AIice)(p < ¢ then there exist unitaries
{Uy ) e 0on Alice’s space and {V }y cy on Bob’s space s.t.

E

W E [loxy)ionyl = Uee Vylo)ol Uz @ V)] ]

<8Ve+2||u— pux ® pyll; -

Proved by [Jain, Radhakrishnan, Sen '08]. G




Our main theorem follows from the following lemma.

Let1/10 > 81,02,03 > 0 s.t. 53 = 8o + 01 - Iog(I.AI -|B|). Let
k' <5k
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Key Lemma
Our main theorem follows from the following lemma.

Lemma (Key Lemma)
Let1/1o > 51,62, 53 > 0 s.t 63 = 62 -+ 61 0 |Og(|fl| 0 |B|) Let

k& |51k |. Given any quantum strategy for G¥, there exists
{iy,..., i/} s.t. foreach1 <1 < k! — 1, either

Pr {T(” = 1} g 2%k

where T; € {0, 1} indicates success in the i-th repetition and

def
T E L T,
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Key Lemma
Our main theorem follows from the following lemma.

Lemma (Key Lemma)
Let1/10 > 81,02,03 > 0 s.t. 53 = 8o + 01 - Iog(IAI -|B|). Let

k& |51k |. Given any quantum strategy for G¥, there exists
{iy,..., i/} s.t. foreach1 <1 < k! — 1, either

Pr |:T(U — 1i| g 2*52]{ or
Pr(Te.,, :1‘T“) = 1] < w*(6) + 12/105

where T; € {0, 1} indicates success in the i-th repetition and

def
T E L T,
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Suppose that we already identified 1 coordinates and we want to find
the (1 + 1)-th coordinate with the given properties.
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Some Details

Proof of the Key Lemma

Suppose that we already identified 1 coordinates and we want to find
the (1 + 1)-th coordinate with the given properties.

o Assume q & pr [T(V) = 1] > 2782% as otherwise we are done.
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Proof of the Key Lemma

Suppose that we already identified 1 coordinates and we want to find
the (1 + 1)-th coordinate with the given properties.

o Assume q & pr [T(V) = 1] > 2782% as otherwise we are done.

° LetGd:d{h,...,il}.
The purified state after the unitaries is

def XYY
DRI HE (x, y) boayy)
XGDCXk,yEHXk
EAE
® Z |aGbG>AeBe ® h/x,y,ae,be> .

aeE.AXI,bGGBXL
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Proof of the Key Lemma

Suppose that we already identified 1 coordinates and we want to find
the (1 + 1)-th coordinate with the given properties.

o Assume q & pr [T(V) = 1] > 2782% as otherwise we are done.

° LetGd:d{h,...,il}.
The purified state after the unitaries is

DY 1@k (x,y) hoayy) "
xeXxkyeyxk

AoB EAE
® Z lagbe) "¢ ® h/x,y,ae,be> .
ac€AXLbeeBx!

Conditioning on success in € gives us the state

1
o) = —= > \/uPk(xy)hoy) Y laebe) ® [Yxy.aebe) -
XY

\/a ﬂ(g,b(g s.t.

[Tice Ti=1




Sk

From q > 27 °2%, we show the following simple lemma.

B [ ( XYXEY@EAIIE)B
xe.Ye, ae be+pXe¥erebe FERIEREE

XYXoYoEAE
oI Ie)] < ok
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From q > 27 °2%, we show the following simple lemma.

B [ ( XYXEY@EAIIE)B
xe.Ye, ae be+pXe¥erebe FERIEREE

XYXoYoEAE
i IeE)] < sk

Intuitively,
@ going from 0 to ¢ causes a difference of at most —log q < 62k.
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Lemma about the Relative Entropy

From q > 2%2% we show the following simple lemma.

Lemma

XYX=YEAEp
Breme” )| < 8ok

XYX=Y=EAE
e YetAEs
£ [S< xe,Yye,ae,be

XeYe.ae,be+@XerereBe

Intuitively,
@ going from 0 to ¢ causes a difference of at most —log q < &2k.

@ further measuring Ae and Be results in a difference of at most
Cl - log (lA| - IB) < 81k - log(|Al - |B]).




Using the previous lemma, we can show the required upper bound for
the mutual information.
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Upper Bound for the Mutual Information

Using the previous lemma, we can show the required upper bound for
the mutual information.

XYX5VoEnEs
xe,Yye.ae,be

d3k > E [S (cp

XeYeAeB
xeYe,aebe—@reletese

XY%5YsEAEs
Xe.ye
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Upper Bound for the Mutual Information

Using the previous lemma, we can show the required upper bound for
the mutual information.

XYX5VoEnEs
xe,Yye.ae,be

d3k > E [S (cp

XeYeAeB
xeYe,aebe—@reletese

B[S (o5 0252

xe.Ye.ae,be

XY%5YsEAEs
Xe.ye

where Bob & YY&Es.
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Upper Bound for the Mutual Information

Using the previous lemma, we can show the required upper bound for
the mutual information.

XYX5Y=EAE XYX5Y=EAE
ok > E s (oreremte [esie==)]
xe.Ye.ae,beprevereBe eyede.be
X(Bob) X(Bob)
2 E [S ((pX@,y@,(l@,be exe,ye
. X(Bob) X Bob
=E [S ((px@,ye,a@,b@ Oxeye @ exe,yeﬂ

where Bob & YY&Es.
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Upper Bound for the Mutual Information

Using the previous lemma, we can show the required upper bound for
the mutual information.

Sk > E [ ( XYXeVeEALa g’x‘g@EAEBH
Xe,Yye.ae,be@XeYereBe e.Ye,ae,be
> B[ (000, [02552)]
=k [S ((pi(CB;t:)ach Gée!ye ® ezzt?ye)}
>E [S (‘Pif:t;),ae,be O eye.acbe @ (ngt!’ye!ae’beﬂ

where Bob & YY&Es.
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Upper Bound for the Mutual Information

Using the previous lemma, we can show the required upper bound for
the mutual information.

sk > E

e.Yye,ae,bes—pXeYereBe

(Bob) X(Bob)
[S( X@ Ye,ae,be exe,ye >:|

[S ((pX(Bob) 0% & @Bob )}

xe.Ye.ae;be XGUL xe,ye

(Bob)
[S ((‘oxe Ye.ae,be (pxc’ ye.aebe & (pxe Ye.ae, be)]
= I(X . BOb|X@Y@A@B@)(p

xesye

XYXYEaEs
xe.Ye.ae,be

XY)?@\?@EAEB)]

ﬁﬁﬁ

WV

where Bob & YY&Es.
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Upper Bound for the Mutual Information

Using the previous lemma, we can show the required upper bound for
the mutual information.

gk > E xe.Ye
e:Ye.aebe@Xerehele

XYX5VoEnEs
xe,Yye.ae,be

XY)?@\?@EAEB)]

Bob) (Bob)
E[S( Coracwe |B5550)]
o X(Bob) X Bob
—E[S ((PXeye ¢1C,bt eXeyL exzyeﬂ

(Bob)
>k [S ((‘oxe Ye ae,be (pxc’ ye.aebe @ (pxe Ye.ae, be)]

= I(X . BOb|XCYCACBC)(p

=3 I(X: Bob|Xeui—1 YeAeBe)
iee

where Bob & YY&Es.




Using the same lemma, we show that for most of the coordinates in C
the distribution of questions is close to w in |@).
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Distribution of Questions

Using the same lemma, we show that for most of the coordinates in €
the distribution of questions is close to in [@).

XYXGYgEAEB

bk > xeYe.ae,be

{ ( XYX@\?@EAEBH
xe.ye
xe.Ye,ae,bepXeYereBe
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Distribution of Questions

Using the same lemma, we show that for most of the coordinates in €
the distribution of questions is close to in [@).

Sk > { ( XYX@\%EAE’B iYXEY@EAEBﬂ
xeYe,ae,be @XeYeAeBe Xe,Yye,ae,oe cY¢e
XY XY
> E [S ((pxe,yc,ﬂeybeuexe,ye)]

XeYeApBe
xe.Ye.aeg,be—@rerenese

Centre for
Quantum
Technologies



Introduction Proof of the Main Theorem Summary
0000000 0000000000000e0

Some Details

Distribution of Questions

Using the same lemma, we show that for most of the coordinates in €
the distribution of questions is close to in [@).

Sk > { ( XYX@\%EAE,B iYXEY@EAEBﬂ
xeYe,ae,be @XeYeAeBe Xe,Yye,ae,oe cY¢e
XY XY
> E [S ((pxe,yc,ﬂeybeuexe,ye)]

XeYeApBe
xe.Ye.aeg,be—@rerenese

=Y E_[s(exv

R:
= ri<@fi
ieg T ®

eXiYi
Xeuli—-1)Yeuli—1]

def
where Ri = Xeyi—11Yeuli—1)AcBe. m-léﬂl‘n'ﬁ.';‘

Technologies
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Distribution of Questions

Using the same lemma, we show that for most of the coordinates in €
the distribution of questions is close to in [@).

XYXsYEaER
> c'e
dsk > xe.Ye.ae,be

XYXGYzEAES
Xe.Ye

Xe,Yye.ae,be—pXeYereBe [ (
> E [S ((‘Oi\é,yc,ﬂeybeueé\e{,ye)]

xe.Ye,ae,be@rerelele
— XiYi XiYi
B Z E [S <(‘Ofi excu[ifﬂsy(?u[ifﬂ

R
— ri<—ofi
ieg T ®

def
where Ri = Xeuti—11Yeuii—1/AcBe.
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Distribution of Questions

Using the same lemma, we show that for most of the coordinates in €
the distribution of questions is close to in [@).

XYXGYgEAEB
xe,ye.ae,be

Sak >

xe.ye

{ ( XYX@\?@EAEBH
XeYe,ae,be@Xererede

> E [S ((pi\(;,yc,ﬂeybeuexe Ue)]

xe.Ye,ae,be@rerelele
pXiYi
Xeuli—11-Yeuli—1]

=Y E_[s(exv

ET‘,H—(()Hi
XiYi
>3 B |l -]
2
> E [ XiY; ])
’ §?<fi<—chi H(P HH

def
where Ri = Xeuti—11Yeuii—1/AcBe.




By Markov’s inequality, there exists a j € C s.t.
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By Markov’s inequality, there exists a j € C s.t.

L(X; : Bob|Rj) , < 1085

where Rj = XCU[j—1]Y(‘3U[j—1]A(°,BC-




By Markov’s inequality, there exists a j € C s.t.

I(X; : Bob|Rj)
1(Y; : Alice|R;)

1003

0 S
o < 1083

where Rj = X(‘Zu[j—1]Y(‘3U[j—1]A(°,B(°,-




By Markov’s inequality, there exists a j € C s.t.

L(X; : Bob|Rj) , < 1085
L(Y; : Alice|R;) , < 108
lo% —ull, < E_[|e" | ] < V105
Tj4—@) 1

where Rj = X(‘Zu[j—1]Y(‘3U[j—1]A(°,B(°,-
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Final Upper Bounds

By Markov’s inequality, there exists aj € C s.t.
I(X; : Bob|R;)
1(Y; : Alice|Rj)
X;Y; X5Y;j
o=l < B [lob" -]
Ti<— @)

where Rj = Xey(j—11Yeulj—11AcBe. By similar arguments as in the
previous slide, we also have

R:
Ti<—@)

XiY; X Y;
E [on" - eon

] < vioss
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Final Upper Bounds

By Markov’s inequality, there exists aj € C s.t.
I(X; : Bob|R;

), < 1083
1(Y; : Alice|R;) , <
, |

1003

4/ 1003

@)
[0}
o~y < £ [lof" -] <

where Rj = Xey(j—11Yeulj—11AcBe. By similar arguments as in the
previous slide, we also have

XiY; X Y;
E [on" - eon
1

T

2 7] < vios

X:Y
XjYj—@ )
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Final Upper Bounds

By Markov’s inequality, there exists aj € C s.t.
I(X; : Bob|R;

), < 1083
1(Y; : Alice|Rj)
, |

1003

4/ 1003

0 S
0 S
v X
o —ul, < B [lof" ] ] <
Ti< @ 1
where Rj = Xey(j—11Yeulj—11AcBe. By similar arguments as in the
previous slide, we also have

XiY; X Y;
E [on" - eon
1

Ti<—@)

2 7] < vios

%Yj
Xj,yj<—(p

With these, and by treating R; as public coins, it's easy to show that
we can embed G into G¥. X -




We proved the following parallel repetition theorem.

For any game G, where the input distribution W is product on X x Y, it
holds that

w*(6%) = (1= (1 - w*())°)
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Theorem (Main Theorem)

For any game G, where the input distribution W is product on X x Y, it
holds that

w*(6¥) = (1-(1- w*(G))3)Q<M) .

It improves upon the result of [Chailloux and Scarpa '13] by

@ generalizing it from uniform to product distributions
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For any game G, where the input distribution W is product on X x Y, it
holds that

w*(6¥) = (1-(1- w*(G))s)Q<M) .

It improves upon the result of [Chailloux and Scarpa '13] by
@ generalizing it from uniform to product distributions and by
@ removing the dependence on |X| and |Y|.
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Summary

We proved the following parallel repetition theorem.

Theorem (Main Theorem)

For any game G, where the input distribution W is product on X x Y, it
holds that

w*(6¥) = (1-(1- w*(G))s)Q<"’Q(Ak'B)) .

It improves upon the result of [Chailloux and Scarpa '13] by
@ generalizing it from uniform to product distributions and by
@ removing the dependence on |X| and |Y|.

A parallel repetition theorem for arbitrary games where the exponent
only depends on k and |A| - |B| is still unknown.
G




Thank you for your attention!

The manuscript is available at arXiv:1311.6309.



http://arxiv.org/abs/1311.6309
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