A parallel repetition theorem for entangled two-player one-round games under product distributions

Rahul Jain¹ Attila Pereszlényi² Penghui Yao²

¹ Centre for Quantum Technologies and Department of Computer Science, National University of Singapore

²Centre for Quantum Technologies, National University of Singapore

Quantum Games and Protocols Workshop, Simons Institute, Berkeley 27th February, 2014

Centre for Ouantum

Outline

1 [Introduction](#page-3-0)

- [The Model of Games](#page-3-0)
- [Parallel Repetition Theorems](#page-16-0)

Outline

[Introduction](#page-3-0)

- [The Model of Games](#page-3-0)
- [Parallel Repetition Theorems](#page-16-0)

- [Idea Behind the Proof](#page-29-0)
- **•** [Some Details](#page-57-0)

1 [Introduction](#page-3-0)

• [The Model of Games](#page-3-0)

• [Parallel Repetition Theorems](#page-16-0)

[Proof of the Main Theorem](#page-29-0) • [Idea Behind the Proof](#page-29-0)

• [Some Details](#page-57-0)

[The Model of Games](#page-4-0)

Two-Player One-Round Games

Alice and Bob share an entangled state $|\varphi\rangle$.

[The Model of Games](#page-5-0)

Two-Player One-Round Games

Alice and Bob share an entangled state $|\varphi\rangle$.

[The Model of Games](#page-6-0)

- Alice and Bob share an entangled state $|\varphi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ.

[The Model of Games](#page-7-0)

- Alice and Bob share an entangled state $|\varphi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ.

- Alice and Bob share an entangled state $|\varphi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ .
- Alice and Bob answer $a \in \mathcal{A}$ and $b \in \mathcal{B}$ by performing measurements on $|\varphi\rangle$.

- Alice and Bob share an entangled state $|\varphi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ .
- Alice and Bob answer $a \in \mathcal{A}$ and $b \in \mathcal{B}$ by performing measurements on $|\varphi\rangle$.

- Alice and Bob share an entangled state $|\varphi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ .
- Alice and Bob answer $a \in \mathcal{A}$ and $b \in \mathcal{B}$ by performing measurements on $|\varphi\rangle$.
- They win if $V(x, y, a, b) = 1$.

- Alice and Bob share an entangled state $|\varphi\rangle$.
- The referee selects questions $(x, y) \in \mathcal{X} \times \mathcal{Y}$ according to distribution μ .
- Alice and Bob answer $a \in \mathcal{A}$ and $b \in \mathcal{B}$ by performing measurements on $|\varphi\rangle$.
- They win if $V(x, y, a, b) = 1$.
- The value of G, denoted by $\omega^*(G)$, is the supremum of the achievable winning probability.

[The Model of Games](#page-12-0)

Parallel Repetition of Games

 \bullet G^k is the game where k copies of G are played in parallel.

[The Model of Games](#page-13-0)

Parallel Repetition of Games

 \bullet G^k is the game where k copies of G are played in parallel.

$$
\bullet\ x = (x_1, x_2, \dots, x_k) \in \mathfrak{X}^{\times k},
$$

$$
y \in \mathcal{Y}^{\times k}, a \in \mathcal{A}^{\times k}, b \in \mathcal{B}^{\times k}
$$

[The Model of Games](#page-14-0)

Parallel Repetition of Games

- \bullet G^k is the game where k copies of G are played in parallel.
- $\mathsf{x}=(\mathsf{x}_1,\mathsf{x}_2,\ldots,\mathsf{x}_k)\in\mathfrak{X}^{\times k},$ $y \in \mathcal{Y}^{\times k}$, $a \in \mathcal{A}^{\times k}$, $b \in \mathcal{B}^{\times k}$
- \bullet (x, y) is distributed according to $\mu^{\otimes \mathrm{k}}$, where $\mu^{\otimes \mathrm{k}}$ denotes k independent copies of µ.

[Introduction](#page-3-0) **[Proof of the Main Theorem](#page-29-0) [Summary](#page-98-0) Summary** Summary

[The Model of Games](#page-15-0)

Parallel Repetition of Games

- \bullet G^k is the game where k copies of G are played in parallel.
- $\mathsf{x}=(\mathsf{x}_1,\mathsf{x}_2,\ldots,\mathsf{x}_k)\in\mathfrak{X}^{\times k},$ $y \in \mathcal{Y}^{\times k}$, $a \in \mathcal{A}^{\times k}$, $b \in \mathcal{B}^{\times k}$
- \bullet (x, y) is distributed according to $\mu^{\otimes \mathrm{k}}$, where $\mu^{\otimes \mathrm{k}}$ denotes k independent copies of µ.
- $V(x, y, a, b) = 1$ if the players win all the instances.

Outline

[Introduction](#page-3-0)

- [The Model of Games](#page-3-0)
- [Parallel Repetition Theorems](#page-16-0)

[Proof of the Main Theorem](#page-29-0) • [Idea Behind the Proof](#page-29-0)

• [Some Details](#page-57-0)

[Introduction](#page-3-0) [Proof of the Main Theorem](#page-29-0) [Summary](#page-98-0)

The Basic Question

 \rightarrow [Skip this part](#page-28-0)

The Basic Question

How does $\omega^*(\mathsf{G}^{\mathsf{k}})$ scale with k?

The Basic Question

How does $\omega^*(\mathsf{G}^{\mathsf{k}})$ scale with k?

Trivially, $\omega^*\big(\mathsf{G}^\mathsf{k}\big) \geqslant \omega^*(\mathsf{G})^\mathsf{k}.$

The Basic Question

How does $\omega^*(\mathsf{G}^{\mathsf{k}})$ scale with k?

- Trivially, $\omega^*\big(\mathsf{G}^\mathsf{k}\big) \geqslant \omega^*(\mathsf{G})^\mathsf{k}.$
- The reverse direction doesn't hold but we can still hope to show that $\omega^*({\sf G}^{\sf k})\approx \omega^*({\sf G})^{\sf k}.$

The Basic Question

How does $\omega^*(\mathsf{G}^{\mathsf{k}})$ scale with k?

- Trivially, $\omega^*\big(\mathsf{G}^\mathsf{k}\big) \geqslant \omega^*(\mathsf{G})^\mathsf{k}.$
- The reverse direction doesn't hold but we can still hope to show that $\omega^*({\sf G}^{\sf k})\approx \omega^*({\sf G})^{\sf k}.$

Analogous result holds for the classical value (denoted by $\omega(G)$):

Parallel Repetition Theorems for the Quantum Value

Parallel Repetition Theorems for the Quantum Value

Parallel repetition theorems for the quantum value were shown for some classes of games.

• Perfect parallel repetition holds for **XOR** games. [Cleve, Slofstra, Unger, Upadhyay '08]

Parallel Repetition Theorems for the Quantum Value

- Perfect parallel repetition holds for XOR games. [Cleve, Slofstra, Unger, Upadhyay '08]
- • Parallel repetition holds for the more general class of unique games [Kempe, Regev, Toner '10]

Parallel Repetition Theorems for the Quantum Value

- Perfect parallel repetition holds for XOR games. [Cleve, Slofstra, Unger, Upadhyay '08]
- Parallel repetition holds for the more general class of unique games [Kempe, Regev, Toner '10]
- • and the even more general class of projection games [Dinur, Steurer, Vidick '13].

Parallel Repetition Theorems for the Quantum Value

- Perfect parallel repetition holds for XOR games. [Cleve, Slofstra, Unger, Upadhyay '08]
- Parallel repetition holds for the more general class of unique games [Kempe, Regev, Toner '10]
- and the even more general class of projection games [Dinur, Steurer, Vidick '13].
- For general games, [Kempe and Vidick '11] showed a theorem where the rate of decay is inverse-polynomial. (Although not for G^k .)

Parallel Repetition Theorems for the Quantum Value

- Perfect parallel repetition holds for XOR games. [Cleve, Slofstra, Unger, Upadhyay '08]
- Parallel repetition holds for the more general class of unique games [Kempe, Regev, Toner '10]
- and the even more general class of projection games [Dinur, Steurer, Vidick '13].
- For general games, [Kempe and Vidick '11] showed a theorem where the rate of decay is inverse-polynomial. (Although not for G^k .)
- • [Chailloux and Scarpa '13] showed it for games where the input distribution is uniform.

Theorem (Main Theorem)

For any game G, where the *input distribution* μ *is product on* $\mathcal{X} \times \mathcal{Y}$ *, it holds that*

$$
\omega^*\big(G^k\big)=\left(1-(1-\omega^*(G))^3\right)^{\Omega\left(\frac{k}{\text{log}(|\mathcal{A}|\cdot|\mathcal{B}|)}\right)}.
$$

[Idea Behind the Proof](#page-29-0)

Outline

- [The Model of Games](#page-3-0)
- **[Parallel Repetition Theorems](#page-16-0)**

2 [Proof of the Main Theorem](#page-29-0) • [Idea Behind the Proof](#page-29-0) **• [Some Details](#page-57-0)**

[Idea Behind the Proof](#page-30-0)

In G^k , let us condition on success on a set $C \subseteq [k]$ of coordinates.

[Idea Behind the Proof](#page-31-0) Broad Idea

In G^k , let us condition on success on a set $C \subseteq [k]$ of coordinates.

• If the success probability is small enough then we are done.

- In G^k . let us condition on success on a set $C \subseteq [k]$ of coordinates.
	- If the success probability is small enough then we are done.
	- \bullet Otherwise, we show that there exists a $j \in \overline{\mathcal{C}} = [k] \setminus \mathcal{C}$ s.t. success in the j-th coordinate is bounded away from 1.

- In G^k , let us condition on success on a set $\mathcal{C} \subseteq [k]$ of coordinates.
	- If the success probability is small enough then we are done.
	- Otherwise, we show that there exists a $j \in \overline{C} = [k] \setminus C$ s.t. success in the j-th coordinate is bounded away from 1.
		- Doing this $\Omega(k)$ times, the success probability will be exponentially small in k.

- In G^k . let us condition on success on a set $C \subseteq [k]$ of coordinates.
	- If the success probability is small enough then we are done.
	- Otherwise, we show that there exists a $j \in \overline{C} = [k] \setminus C$ s.t. success in the j-th coordinate is bounded away from 1.
		- Doing this $\Omega(k)$ times, the success probability will be exponentially small in k.
		- Let $(x', y') \in \mathcal{X} \times \mathcal{Y}$ be distributed according to μ .

- In G^k , let us condition on success on a set $\mathcal{C} \subseteq [k]$ of coordinates.
	- If the success probability is small enough then we are done.
	- Otherwise, we show that there exists a $j \in \overline{C} = [k] \setminus C$ s.t. success in the j-th coordinate is bounded away from 1.
		- Doing this $\Omega(k)$ times, the success probability will be exponentially small in k.
		- Let $(x', y') \in \mathcal{X} \times \mathcal{Y}$ be distributed according to μ .
		- We show that the players can embed (x', y') into the j-th coordinate and generate the state of the whole system in G^{k} .

Broad Idea

[Idea Behind the Proof](#page-36-0)

- In G^k , let us condition on success on a set $\mathcal{C} \subseteq [k]$ of coordinates.
	- If the success probability is small enough then we are done.
	- Otherwise, we show that there exists a $j \in \overline{C} = [k] \setminus C$ s.t. success in the j-th coordinate is bounded away from 1.
		- Doing this $\Omega(k)$ times, the success probability will be exponentially small in k.
		- Let $(x', y') \in \mathcal{X} \times \mathcal{Y}$ be distributed according to μ .
		- We show that the players can embed (x', y') into the j-th coordinate and generate the state of the whole system in G^{k} .
		- If they could win the j-th instance with high probability then they would be able to win G with high probability.

Some Simplifications

Without loss of generality:

Let the questions and answers be part of the whole (classical-)quantum state.

Some Simplifications

Without loss of generality:

- Let the questions and answers be part of the whole (classical-)quantum state.
- Upon receiving the questions, the players apply unitaries on their parts, measure registers A and B, in the standard basis, and send the outcomes to the referee.

Some Simplifications

Without loss of generality:

- Let the questions and answers be part of the whole (classical-)quantum state.
- Upon receiving the questions, the players apply unitaries on their parts, measure registers A and B, in the standard basis, and send the outcomes to the referee.

The global state, conditioned on success in \mathcal{C} , after the unitaries is of the form

$$
\sigma=\sum_{x\in\mathfrak{X}^{\times k},y\in\mathcal{Y}^{\times k}}\mu^{\otimes k}(x,y)\,|xy\rangle\langle xy|^{XY}\otimes|\varphi_{xy}\rangle\langle\varphi_{xy}|
$$

Some Simplifications

Without loss of generality:

- Let the questions and answers be part of the whole (classical-)quantum state.
- Upon receiving the questions, the players apply unitaries on their parts, measure registers A and B, in the standard basis, and send the outcomes to the referee.

The global state, conditioned on success in \mathcal{C} , after the unitaries is of the form

$$
\sigma=\sum_{x\in\mathfrak{X}^{\times k},y\in\mathcal{Y}^{\times k}}\mu^{\otimes k}(x,y)\,|xy\rangle\langle xy|^{XY}\otimes|\varphi_{xy}\rangle\langle\varphi_{xy}|
$$

where (unnormalized) $|\phi_{xu}\rangle$ is shared between Alice and Bob.

How to generate the state in G^k ?

$$
|\phi\rangle=\sum_{x\in \mathfrak{X}^{\times k}, y\in \mathcal{Y}^{\times k}}\sqrt{\mu^{\otimes k}(x,y)}\,|xxyy\rangle^{X\tilde{X}Y\tilde{Y}}\otimes|\varphi_{xy}\rangle\,.
$$

How to generate the state in G^k ?

$$
|\phi\rangle=\sum_{x\in \mathfrak{X}^{\times k}, y\in \mathcal{Y}^{\times k}}\sqrt{\mu^{\otimes k}(x,y)}\,|xxyy\rangle^{X\tilde{X}Y\tilde{Y}}\otimes|\varphi_{xy}\rangle\,.
$$

$$
\bullet \ \textrm{Tr}_{\tilde{\mathfrak X}\otimes \tilde{\mathfrak Y}}(|\phi\rangle\langle \phi|)=\sigma.
$$

How to generate the state in G^k ?

Let us take a strategy for G where the players share

$$
|\phi\rangle=\sum_{x\in \mathfrak{X}^{\times k}, y\in \mathcal{Y}^{\times k}}\sqrt{\mu^{\otimes k}(x,y)}\,|xxyy\rangle^{X\tilde{X}Y\tilde{Y}}\otimes|\varphi_{xy}\rangle\,.
$$

•
$$
\text{Tr}_{\tilde{\mathcal{X}} \otimes \tilde{\mathcal{Y}}} (|\phi\rangle\langle\phi|) = \sigma.
$$

Alice and Bob get questions $(x', y') \in \mathcal{X} \times \mathcal{Y}$.

How to generate the state in G^k ?

$$
|\phi\rangle=\sum_{x\in \mathfrak{X}^{\times k}, y\in \mathcal{Y}^{\times k}}\sqrt{\mu^{\otimes k}(x,y)}\ket{xxyy}^{X\tilde{X}Y\tilde{Y}}\otimes\ket{\varphi_{xy}}.
$$

•
$$
\text{Tr}_{\tilde{\mathcal{X}} \otimes \tilde{\mathcal{Y}}} (|\phi\rangle\langle\phi|) = \sigma.
$$

- Alice and Bob get questions $(x', y') \in \mathcal{X} \times \mathcal{Y}$.
- Suppose they measure registers X_j and Y_j .

How to generate the state in G^k ?

$$
|\phi\rangle=\sum_{x\in \mathfrak{X}^{\times k}, y\in \mathcal{Y}^{\times k}}\sqrt{\mu^{\otimes k}(x,y)}\,|xxyy\rangle^{X\tilde{X}Y\tilde{Y}}\otimes|\varphi_{xy}\rangle\,.
$$

•
$$
\text{Tr}_{\tilde{\mathcal{X}} \otimes \tilde{\mathcal{Y}}} (|\phi\rangle\langle\phi|) = \sigma.
$$

- Alice and Bob get questions $(x', y') \in \mathcal{X} \times \mathcal{Y}$.
- Suppose they measure registers X_j and Y_j .
- If the outcomes of the measurements are x' and y' then they can further measure A_i and B_i and reply to the referee.

How to generate the state in G^k ?

$$
|\phi\rangle=\sum_{x\in \mathfrak{X}^{\times k}, y\in \mathcal{Y}^{\times k}}\sqrt{\mu^{\otimes k}(x,y)}\,|xxyy\rangle^{X\tilde{X}Y\tilde{Y}}\otimes|\varphi_{xy}\rangle\,.
$$

•
$$
\text{Tr}_{\tilde{\mathcal{X}} \otimes \tilde{\mathcal{Y}}} (|\phi\rangle\langle\phi|) = \sigma.
$$

- Alice and Bob get questions $(x', y') \in \mathcal{X} \times \mathcal{Y}$.
- Suppose they measure registers X_j and Y_j .
- If the outcomes of the measurements are x' and y' then they can further measure A_i and B_i and reply to the referee.
- \bullet This way, we embedded a single instance of G into G^k , with being conditioned on success in C.

How to generate the state in G^k ?

$$
|\phi\rangle=\sum_{x\in \mathfrak{X}^{\times k}, y\in \mathcal{Y}^{\times k}}\sqrt{\mu^{\otimes k}(x,y)}\,|xxyy\rangle^{X\tilde{X}Y\tilde{Y}}\otimes|\varphi_{xy}\rangle\,.
$$

•
$$
\text{Tr}_{\tilde{\mathcal{X}} \otimes \tilde{\mathcal{Y}}} (|\phi\rangle\langle\phi|) = \sigma.
$$

- Alice and Bob get questions $(x', y') \in \mathcal{X} \times \mathcal{Y}$.
- Suppose they measure registers X_j and Y_j .
- If the outcomes of the measurements are x' and y' then they can further measure A_i and B_i and reply to the referee.
- \bullet This way, we embedded a single instance of G into G^k , with being conditioned on success in C.
	- If $\omega^*(G)$ is bounded away from 1 then success in the j-th instance is also bounded away from 1.

Generate the state without measurements?

The previous argument doesn't work because the probability of getting (x', y') , when measuring X_j and Y_j , can be very small.

Generate the state without measurements?

The previous argument doesn't work because the probability of getting (x', y') , when measuring X_j and Y_j , can be very small.

Question

Is there a way to generate the post-measurement state (approximately) without measurements?

Generate the state without measurements?

The previous argument doesn't work because the probability of getting (x', y') , when measuring X_j and Y_j , can be very small.

Question

Is there a way to generate the post-measurement state (approximately) without measurements?

Answer

Yes, if the input distribution μ is product.

How to do it without measurements?

How to do it without measurements?

Let $\ket{\varphi_{\mathsf{x}'_j}}$ be the resulting state after Alice measures X_j in $\ket{\varphi}$ and gets $\chi'_\texttt{j}.$ States $\big|\phi_{\mathtt{y}'_\texttt{j}}\big>$ and $\big|\phi_{\mathtt{x}'_\texttt{j}\mathtt{y}'_\texttt{j}}\big>$ are defined similarly.

We show that $\overline{\mathrm{I}\left(\mathrm{X}_{\mathrm{j}}:\textsf{Bob}\right)}_{\phi}\approx 0$ and $\overline{\mathrm{I}\left(\mathrm{Y}_{\mathrm{j}}:\textsf{Alice}\right)}_{\phi}\approx 0.$

How to do it without measurements?

- We show that $\overline{\mathrm{I}\left(\mathrm{X}_{\mathrm{j}}:\textsf{Bob}\right)}_{\phi}\approx 0$ and $\overline{\mathrm{I}\left(\mathrm{Y}_{\mathrm{j}}:\textsf{Alice}\right)}_{\phi}\approx 0.$
- $I(X_j: Bob)_{\varphi} \approx 0$ implies that Bob's part of $|\varphi_{x'_j}\rangle$ is mostly independent of x'_j .

How to do it without measurements?

- We show that $\overline{\mathrm{I}\left(\mathrm{X}_{\mathrm{j}}:\textsf{Bob}\right)}_{\phi}\approx 0$ and $\overline{\mathrm{I}\left(\mathrm{Y}_{\mathrm{j}}:\textsf{Alice}\right)}_{\phi}\approx 0.$
- $I(X_j: Bob)_{\varphi} \approx 0$ implies that Bob's part of $|\varphi_{x'_j}\rangle$ is mostly independent of x'_j .
- By the unitary equivalence of purifications, \exists unitary ${\bf u}_{\mathrm{x}_j'}$ that Alice can apply to get $\left(\mathbf{U}_{\mathbf{x}_j'}\otimes \mathbb{1}_{\mathsf{Bob}}\right)|\phi\rangle\approx\left|\phi_{\mathbf{x}_j'}\right\rangle.$

How to do it without measurements?

- We show that $\overline{\mathrm{I}\left(\mathrm{X}_{\mathrm{j}}:\textsf{Bob}\right)}_{\phi}\approx 0$ and $\overline{\mathrm{I}\left(\mathrm{Y}_{\mathrm{j}}:\textsf{Alice}\right)}_{\phi}\approx 0.$
- $I(X_j: Bob)_{\varphi} \approx 0$ implies that Bob's part of $|\varphi_{x'_j}\rangle$ is mostly independent of x'_j .
- By the unitary equivalence of purifications, \exists unitary ${\bf u}_{\mathrm{x}_j'}$ that Alice can apply to get $\left(\mathbf{U}_{\mathbf{x}_j'}\otimes \mathbb{1}_{\mathsf{Bob}}\right)|\phi\rangle\approx\left|\phi_{\mathbf{x}_j'}\right\rangle.$
- Similarly, $\exists \mathbf{V}_{\mathbf{y'_j}}$ s.t. $\left(\mathbb{1}_{\mathrm{Alice}} \otimes \mathbf{V}_{\mathbf{y'_j}} \right)$ $\Big)\,|\phi\rangle\approx\big|\phi_{\mathtt{y'_j}}\rangle.$

How to do it without measurements?

- We show that $\overline{\mathrm{I}\left(\mathrm{X}_{\mathrm{j}}:\textsf{Bob}\right)}_{\phi}\approx 0$ and $\overline{\mathrm{I}\left(\mathrm{Y}_{\mathrm{j}}:\textsf{Alice}\right)}_{\phi}\approx 0.$
- $I(X_j: Bob)_{\varphi} \approx 0$ implies that Bob's part of $|\varphi_{x'_j}\rangle$ is mostly independent of x'_j .
- By the unitary equivalence of purifications, \exists unitary ${\bf u}_{\mathrm{x}_j'}$ that Alice can apply to get $\left(\mathbf{U}_{\mathbf{x}_j'}\otimes \mathbb{1}_{\mathsf{Bob}}\right)|\phi\rangle\approx\left|\phi_{\mathbf{x}_j'}\right\rangle.$
- Similarly, $\exists \mathbf{V}_{\mathbf{y'_j}}$ s.t. $\left(\mathbb{1}_{\mathrm{Alice}} \otimes \mathbf{V}_{\mathbf{y'_j}} \right)$ $\Big)\,|\phi\rangle\approx\big|\phi_{\mathtt{y'_j}}\rangle.$
- By [Jain, Radhakrishnan, Sen '08], if the distribution of $(\mathsf{x}_\mathsf{j}', \mathsf{y}_\mathsf{j}')$ is product then

$$
\left(\boldsymbol{U}_{\boldsymbol{x}^{\prime}_j} \otimes \boldsymbol{V}_{\boldsymbol{y}_j^{\prime}} \right) \vert \boldsymbol{\phi} \rangle \approx \big\vert \phi_{\boldsymbol{x}^{\prime}_j \boldsymbol{y}_j^{\prime}} \big\rangle.
$$

Outline

- [The Model of Games](#page-3-0)
- **[Parallel Repetition Theorems](#page-16-0)**

From Measurements to Unitaries (1 Sided)

Lemma

Let µ *be a probability distribution on* X*. Let*

$$
\left|\phi\right\rangle\overset{\text{def}}{=}\sum_{x\in\mathfrak{X}}\sqrt{\mu(x)}\left|x x\right\rangle^{\chi\tilde{X}}\otimes\left|\psi_{x}\right\rangle
$$

be shared by Alice and Bob, where X, X, and some part of $|\psi_x\rangle$ are *with Alice and the rest of* $|\psi_{x}\rangle$ *is with Bob.*

From Measurements to Unitaries (1 Sided)

Lemma

Let µ *be a probability distribution on* X*. Let*

$$
\left|\phi\right\rangle\overset{\text{def}}{=}\sum_{x\in\mathfrak{X}}\sqrt{\mu(x)}\left|x x\right\rangle^{\chi\tilde{X}}\otimes\left|\psi_{x}\right\rangle
$$

be shared by Alice and Bob, where X, X, and some part of $|\psi_x\rangle$ are *with Alice and the rest of* $|\psi_x\rangle$ *is with Bob. Let* $|\phi_x\rangle \stackrel{\mathsf{def}}{=} |\mathrm{x} \mathrm{x} \rangle \otimes |\psi_x\rangle$.

From Measurements to Unitaries (1 Sided)

Lemma

Let µ *be a probability distribution on* X*. Let*

$$
\ket{\phi} \stackrel{\text{def}}{=} \sum_{x \in \mathfrak{X}} \sqrt{\mu(x)} \ket{x x}^{X\tilde{X}} \otimes \ket{\psi_x}
$$

be shared by Alice and Bob, where X, X, and some part of $|\psi_x\rangle$ are *with Alice and the rest of* $|\psi_x\rangle$ *is with Bob. Let* $|\phi_x\rangle \stackrel{\mathsf{def}}{=} |\mathrm{xx}\rangle \otimes |\psi_x\rangle$. If $I(X: Bob)_{\omega} \leqslant \varepsilon$ *then there exist unitaries* $\{U_x\}_{x \in \mathcal{X}}$ *acting on Alice's space s.t.*

$$
\underset{x \leftarrow \mu}{\mathbb{E}}[\left\| \left| \phi_x \right\rangle \langle \phi_x | - \left(\mathbf{U}_x \otimes \mathbf{1}_{\text{Bob}} \right) | \phi \rangle \langle \phi | \left(\mathbf{U}_x^* \otimes \mathbf{1}_{\text{Bob}} \right) \right\|_1] \leqslant 4 \sqrt{\epsilon}.
$$

From Measurements to Unitaries (1 Sided)

Lemma

Let µ *be a probability distribution on* X*. Let*

$$
\left|\phi\right\rangle\overset{\text{def}}{=}\sum_{x\in\mathfrak{X}}\sqrt{\mu(x)}\left|x x\right\rangle^{\chi\tilde{X}}\otimes\left|\psi_{x}\right\rangle
$$

be shared by Alice and Bob, where X, X, and some part of $|\psi_{x}\rangle$ are *with Alice and the rest of* $|\psi_x\rangle$ *is with Bob. Let* $|\phi_x\rangle \stackrel{\mathsf{def}}{=} |\mathrm{xx}\rangle \otimes |\psi_x\rangle$. If $I(X: Bob)_{\omega} \leqslant \varepsilon$ *then there exist unitaries* $\{U_x\}_{x \in \mathcal{X}}$ *acting on Alice's space s.t.*

$$
\underset{x \leftarrow \mu}{\mathbb{E}}[\left\| \left| \phi_x \right\rangle \langle \phi_x \right| - \left(\mathbf{U}_x \otimes \mathbf{1}_{\text{Bob}} \right) \left| \phi \right\rangle \langle \phi | \left(\mathbf{U}_x^* \otimes \mathbf{1}_{\text{Bob}} \right) \right\|_1] \leqslant 4 \sqrt{\epsilon}.
$$

The proof easily follows from the unitary equivalence of purifications and Uhlmann's theorem.

From Measurements to Unitaries (2 Sided)

Lemma

Let μ *be a prob. dist. on* $\mathcal{X} \times \mathcal{Y}$ *with marginals* μ_X *and* μ_Y *. Let*

$$
|\phi\rangle\stackrel{\text{def}}{=}\sum_{x\in\mathfrak{X},y\in\mathcal{Y}}\sqrt{\mu(x,y)}\ket{xxyy}^{X\tilde{X}Y\tilde{Y}}\otimes\ket{\psi_{x,y}}
$$

be shared by Alice and Bob, where X, X, and some part of $|\psi_x\rangle$ are *with Alice and* Y, Y, and the rest of $|\psi_x\rangle$ are with Bob.

From Measurements to Unitaries (2 Sided)

Lemma

Let μ *be a prob. dist. on* $\mathcal{X} \times \mathcal{Y}$ *with marginals* μ_X *and* μ_Y *. Let*

$$
|\phi\rangle\stackrel{\text{def}}{=}\sum_{x\in\mathfrak{X},y\in\mathcal{Y}}\sqrt{\mu(x,y)}\ket{xxyy}^{X\tilde{X}Y\tilde{Y}}\otimes\ket{\psi_{x,y}}
$$

be shared by Alice and Bob, where X, X, and some part of $|\psi_x\rangle$ are *with Alice and* Y, \tilde{Y} *, and the rest of* $|\psi_x\rangle$ *are with Bob. If* $I(X: Bob)_{\omega} \leq \varepsilon$ *and* $I(Y: Alice)_{\omega} \leq \varepsilon$ *then there exist unitaries* $\left\{\mathbf{U}_\mathbf{x}\right\}_{\mathbf{x}\in\mathcal{X}}$ on Alice's space and $\left\{\mathbf{V}_\mathbf{y}\right\}_{\mathbf{y}\in\mathcal{Y}}$ on Bob's space

From Measurements to Unitaries (2 Sided)

Lemma

Let μ *be a prob. dist. on* $\mathcal{X} \times \mathcal{Y}$ *with marginals* μ_X *and* μ_Y *. Let*

$$
|\phi\rangle\stackrel{\text{def}}{=}\sum_{x\in\mathfrak{X},y\in\mathcal{Y}}\sqrt{\mu(x,y)}\ket{xxyy}^{X\tilde{X}Y\tilde{Y}}\otimes\ket{\psi_{x,y}}
$$

be shared by Alice and Bob, where X, X, and some part of $|\psi_x\rangle$ are *with Alice and* Y, \tilde{Y} *, and the rest of* $|\psi_x\rangle$ *are with Bob. If* $I(X: Bob)_{\omega} \leq \varepsilon$ *and* $I(Y: Alice)_{\omega} \leq \varepsilon$ *then there exist unitaries* $\left\{\mathbf{U}_\mathbf{x}\right\}_{\mathbf{x}\in\mathfrak{X}}$ on Alice's space and $\left\{\mathbf{V}_\mathbf{y}\right\}_{\mathbf{y}\in\mathfrak{Y}}$ on Bob's space s.t.

$$
\begin{aligned} \underset{(x,y) \leftarrow \mu}{\mathbb{E}} \Big[\big\| |\phi_{x,y} \rangle \langle \phi_{x,y}| - (\boldsymbol{U}_x \otimes \boldsymbol{V}_y) \, |\phi \rangle \langle \phi| \, \big(\boldsymbol{U}_x^* \otimes \boldsymbol{V}_y^* \big) \big\|_1 \Big] \\ \leqslant 8 \sqrt{\epsilon} + 2 \, \big\| \mu - \mu_X \otimes \mu_Y \big\|_1 \, . \end{aligned}
$$

From Measurements to Unitaries (2 Sided)

Lemma

Let μ *be a prob. dist. on* $\mathcal{X} \times \mathcal{Y}$ *with marginals* μ_X *and* μ_Y *. Let*

$$
|\phi\rangle\stackrel{\text{def}}{=}\sum_{x\in\mathfrak{X},y\in\mathcal{Y}}\sqrt{\mu(x,y)}\ket{xxyy}^{X\tilde{X}Y\tilde{Y}}\otimes\ket{\psi_{x,y}}
$$

be shared by Alice and Bob, where X, X, and some part of $|\psi_x\rangle$ are *with Alice and* Y, \tilde{Y} *, and the rest of* $|\psi_x\rangle$ *are with Bob. If* $I(X: Bob)_{\omega} \leq \varepsilon$ *and* $I(Y: Alice)_{\omega} \leq \varepsilon$ *then there exist unitaries* $\left\{\mathbf{U}_\mathbf{x}\right\}_{\mathbf{x}\in\mathfrak{X}}$ on Alice's space and $\left\{\mathbf{V}_\mathbf{y}\right\}_{\mathbf{y}\in\mathfrak{Y}}$ on Bob's space s.t.

$$
\underset{(x,y)\leftarrow \mu}{\mathbb{E}}\left[\left\|\left|\phi_{x,y}\right\rangle\!\left\langle\phi_{x,y}\right|-\left(\boldsymbol{U}_x\otimes \boldsymbol{V}_y\right)\left|\phi\right\rangle\!\left\langle\phi\right|\left(\boldsymbol{U}_x^*\otimes \boldsymbol{V}_y^*\right)\right|\right|_1\right]\\ \leqslant 8\sqrt{\epsilon}+2\left\|\mu-\mu_X\otimes\mu_Y\right\|_1.
$$

Proved by [Jain, Radhakrishnan, Sen '08].

[Introduction](#page-3-0) Contract Co

Our main theorem follows from the following lemma. \blacksquare

Lemma (Key Lemma) Let ¹/10 > δ_1 , δ_2 , δ_3 > 0 *s.t.* $\delta_3 = \delta_2 + \delta_1 \cdot log(|A| \cdot |B|)$ *. Let* $k' \stackrel{\text{def}}{=} \lfloor \delta_1 k \rfloor.$

Key Lemma

Our main theorem follows from the following lemma. \blacksquare

Lemma (Key Lemma)

 Let ¹/10 $> \delta_1$, δ_2 , δ_3 > 0 *s.t.* $\delta_3 = \delta_2 + \delta_1 \cdot log(|A| \cdot |B|)$ *. Let* $k' \stackrel{\mathsf{def}}{=} \lfloor \delta_1 k \rfloor$. Given any quantum strategy for G^k, there exists $\{\mathfrak{i}_1,\ldots,\mathfrak{i}_{\mathsf{k}'}\}$ s.t. for each $1\leqslant \mathsf{l}\leqslant \mathsf{k}'-1,$ either

$$
Pr\Big[T^{(1)}=1\Big]\leqslant 2^{-\delta_2 k}
$$

where $T_i \in \{0, 1\}$ *indicates success in the i-th repetition and* $T^{(1)} \stackrel{\text{def}}{=} \prod_{j=1}^{l} T_{i_j}.$

Key Lemma

Our main theorem follows from the following lemma. Gishow theorem

Lemma (Key Lemma)

 Let ¹/10 $> \delta_1$, δ_2 , δ_3 > 0 *s.t.* $\delta_3 = \delta_2 + \delta_1 \cdot log(|A| \cdot |B|)$ *. Let* $k' \stackrel{\mathsf{def}}{=} \lfloor \delta_1 k \rfloor$. Given any quantum strategy for G^k, there exists $\{\mathfrak{i}_1,\ldots,\mathfrak{i}_{\mathsf{k}'}\}$ s.t. for each $1\leqslant \mathsf{l}\leqslant \mathsf{k}'-1,$ either

$$
\text{Pr}\Big[T^{(1)}=1\Big] \leqslant 2^{-\delta_2 k} \qquad \text{or} \qquad \qquad \text{Pr}\Big[T_{i_{l+1}}=1\Big|T^{(1)}=1\Big] \leqslant \omega^*(G)+12\sqrt{10\delta_3}
$$

where $T_i \in \{0, 1\}$ *indicates success in the i-th repetition and* $T^{(1)} \stackrel{\text{def}}{=} \prod_{j=1}^{l} T_{i_j}.$

Proof of the Key Lemma

[Skip the proof](#page-98-1)

Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find the $(1 + 1)$ -th coordinate with the given properties.

Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find the $(l + 1)$ -th coordinate with the given properties.

Assume $q \stackrel{\text{def}}{=} \Pr[T^{(1)} = 1] > 2^{-\delta_2 k}$ as otherwise we are done.

Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find the $(l + 1)$ -th coordinate with the given properties.

Assume $q \stackrel{\text{def}}{=} \Pr[T^{(1)} = 1] > 2^{-\delta_2 k}$ as otherwise we are done.

• Let
$$
\mathcal{C} \stackrel{\text{def}}{=} \{i_1, \ldots, i_l\}
$$
.

Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find the $(1 + 1)$ -th coordinate with the given properties.

Assume $q \stackrel{\text{def}}{=} \Pr[T^{(1)} = 1] > 2^{-\delta_2 k}$ as otherwise we are done. Let $\mathcal{C} \stackrel{\text{def}}{=} \{i_1, \ldots, i_l\}.$

The purified state after the unitaries is

$$
\begin{aligned} |\theta\rangle \overset{\text{def}}{=} \sum_{x \in \mathcal{X}^{\times k}, y \in \mathcal{Y}^{\times k}} \sqrt{\mu^{\otimes k}(x, y)} \ket{xxyy}^{X\tilde{X}Y\tilde{Y}} \\ \otimes \sum_{\alpha_{\mathcal{C}} \in \mathcal{A}^{\times 1}, b_{\mathcal{C}} \in \mathcal{B}^{\times 1}} |a_{\mathcal{C}} b_{\mathcal{C}}\rangle^{A_{\mathcal{C}}B_{\mathcal{C}}} \otimes \ket{\gamma_{x,y,a_{\mathcal{C}},b_{\mathcal{C}}}}^{\text{E}_{A} \text{E}_{B}}. \end{aligned}
$$

Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find the $(1 + 1)$ -th coordinate with the given properties.

Assume $q \stackrel{\text{def}}{=} \Pr[T^{(1)} = 1] > 2^{-\delta_2 k}$ as otherwise we are done. Let $\mathcal{C} \stackrel{\text{def}}{=} \{i_1, \ldots, i_l\}.$

The purified state after the unitaries is

$$
\begin{aligned} |\theta\rangle \stackrel{\text{def}}{=} \sum_{x \in \mathfrak{X}^{\times k}, y \in \mathcal{Y}^{\times k}} \sqrt{\mu^{\otimes k}(x, y)} \ket{xxyy}^{X\tilde{X}Y\tilde{Y}} \\ \otimes \sum_{\alpha_{\mathcal{C}} \in \mathcal{A}^{\times l}, b_{\mathcal{C}} \in \mathcal{B}^{\times l}} |a_{\mathcal{C}}b_{\mathcal{C}}\rangle^{A_{\mathcal{C}}B_{\mathcal{C}}} \otimes \ket{\gamma_{x,y,a_{\mathcal{C}},b_{\mathcal{C}}}}^{\text{E}_{A}E_{B}}. \end{aligned}
$$

Conditioning on success in C gives us the state

$$
|\phi\rangle\stackrel{\text{def}}{=}\frac{1}{\sqrt{\mathfrak{q}}}\sum_{x,y}\sqrt{\mu^{\otimes k}(x,y)}\ket{xxyy}\sum_{\substack{a_{\mathfrak{C}},b_{\mathfrak{C}} \text{ s.t.}\\ \prod_{i\in\mathfrak{C}}I_{i}=1}}|a_{\mathfrak{C}}b_{\mathfrak{C}}\rangle\otimes\left|\gamma_{x,y,a_{\mathfrak{C}},b_{\mathfrak{C}}}\right\rangle.
$$

Lemma about the Relative Entropy

From $q > 2^{-\delta_2 k}$, we show the following simple lemma.

Lemma about the Relative Entropy

From $q > 2^{-\delta_2 k}$, we show the following simple lemma.

Intuitively,

o going from θ to φ causes a difference of at most $-\log q < \delta$ ₂k.

Lemma about the Relative Entropy

From $q > 2^{-\delta_2 k}$, we show the following simple lemma.

$$
\begin{aligned} \text{Lemma} \\ \mathbb{E} \, & \qquad \qquad \mathbb{E} \, \\ & \qquad \qquad \mathbb{E} \, \\ & \qquad \qquad \mathbb{E} \, \\ & \qquad \qquad \mathbb{E} \, \mathbb{E}
$$

Intuitively,

- o going from θ to φ causes a difference of at most $-\log q < \delta$ ₂k.
- • further measuring A_{\odot} and B_{\odot} results in a difference of at most $|\mathcal{C}| \cdot \log(|\mathcal{A}| \cdot |\mathcal{B}|) \leq \delta_1 k \cdot \log(|\mathcal{A}| \cdot |\mathcal{B}|).$

Upper Bound for the Mutual Information

Using the previous lemma, we can show the required upper bound for the mutual information. $\left(\rightarrow \text{skip} \right)$

Upper Bound for the Mutual Information

$$
\delta_3 k \geqslant \mathop{\mathbb{E}}_{x_{\mathcal{C}}, y_{\mathcal{C}}, a_{\mathcal{C}}, b_{\mathcal{C}} \leftarrow \varphi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}} \left[S \left(\varphi_{x_{\mathcal{C}}, y_{\mathcal{C}}, a_{\mathcal{C}}, b_{\mathcal{C}}}^{XY \tilde{X}_{\mathcal{C}} \tilde{Y}_{\mathcal{C}} \in E_{\mathcal{A}} E_{\mathcal{B}}} \middle\| \theta_{x_{\mathcal{C}}, y_{\mathcal{C}}}^{XY \tilde{X}_{\mathcal{C}} \tilde{Y}_{\mathcal{C}} \in E_{\mathcal{A}} E_{\mathcal{B}}} \right) \right]
$$

Upper Bound for the Mutual Information

$$
\delta_3k \geqslant \underset{\mathbf{x}_e, \mathbf{y}_e, \mathbf{a}_e, \mathbf{b}_e \leftarrow \varphi^{\mathbf{X}_e \mathbf{Y}_e \mathbf{A}_e \mathbf{B}_e}}{\mathbb{E}} \left[S \left(\varphi^{\mathbf{X} \mathbf{X}_e \mathbf{Y}_e \mathbf{A}_e \mathbf{B}_e}_{\mathbf{x}_e, \mathbf{y}_e, \mathbf{a}_e, \mathbf{b}_e} \middle\| \theta^{\mathbf{X} \mathbf{Y}_e \mathbf{Y}_e \mathbf{A}_e \mathbf{B}_e}_{\mathbf{x}_e, \mathbf{y}_e} \right) \right] \geqslant \mathbb{E} \left[S \left(\varphi^{\mathbf{X}(\text{Bob})}_{\mathbf{x}_e, \mathbf{y}_e, \mathbf{a}_e, \mathbf{b}_e} \middle\| \theta^{\mathbf{X}(\text{Bob})}_{\mathbf{x}_e, \mathbf{y}_e} \right) \right]
$$

where Bob
$$
\stackrel{\text{def}}{=} Y\tilde{Y}_{\overline{C}}E_B
$$
.

Upper Bound for the Mutual Information

$$
\delta_3k \geqslant \underset{x_e, y_e, a_e, b_e \leftarrow \varphi^{X_e Y_e A_e B_e}}{\mathbb{E}} \left[S \left(\varphi_{x_e, y_e, a_e, b_e}^{X Y \tilde{X}_e^{-Y} \tilde{e} \in A_e B_e} \middle\| \theta_{x_e, y_e}^{X Y \tilde{X}_e^{-Y} \tilde{e} \in A_e B_e} \right) \right]
$$
\n
$$
\geqslant \mathbb{E} \left[S \left(\varphi_{x_e, y_e, a_e, b_e}^{X(Bob)} \middle\| \theta_{x_e, y_e}^{X(Bob)} \right) \right]
$$
\n
$$
= \mathbb{E} \left[S \left(\varphi_{x_e, y_e, a_e, b_e}^{X(Bob)} \middle\| \theta_{x_e, y_e}^{X} \otimes \theta_{x_e, y_e}^{Bob} \right) \right]
$$

where Bob
$$
\stackrel{\text{def}}{=} Y\tilde{Y}_{\overline{C}}E_B
$$
.

Upper Bound for the Mutual Information

$$
\delta_{3}k \geqslant \underset{x_{e,y_{e},a_{e},b_{e} \leftarrow \varphi^{X_{e}Y_{e}A_{e}B_{e}}}{\mathbb{E}} \left[S \left(\varphi_{x_{e},y_{e},a_{e},b_{e}}^{XY\tilde{X}_{e}^{-}Y_{e} \in E_{A}E_{B}} \middle\| \theta_{x_{e},y_{e}}^{XY\tilde{X}_{e}^{-}Y_{e} \in E_{A}E_{B}} \right) \right]
$$
\n
$$
\geqslant \mathbb{E} \left[S \left(\varphi_{x_{e},y_{e},a_{e},b_{e}}^{X(\text{Bob})} \middle\| \theta_{x_{e},y_{e}}^{X(\text{Bob})} \right) \right]
$$
\n
$$
= \mathbb{E} \left[S \left(\varphi_{x_{e},y_{e},a_{e},b_{e}}^{X(\text{Bob})} \middle\| \theta_{x_{e},y_{e}}^{X} \otimes \theta_{x_{e},y_{e}}^{B_{\text{Bob}}} \right) \right]
$$
\n
$$
\geqslant \mathbb{E} \left[S \left(\varphi_{x_{e},y_{e},a_{e},b_{e}}^{X(\text{Bob})} \middle\| \varphi_{x_{e},y_{e},a_{e},b_{e}}^{X} \otimes \theta_{x_{e},y_{e},a_{e},b_{e}}^{B_{\text{Bob}}} \right) \right]
$$

where Bob
$$
\stackrel{\text{def}}{=} Y\tilde{Y}_{\overline{C}}E_B
$$
.

Upper Bound for the Mutual Information

$$
\delta_{3}k \geqslant \underset{x_{e,y_{e},a_{e},b_{e} \leftarrow \varphi^{X_{e}Y_{e}A_{e}B_{e}}}{\mathbb{E}} \left[S \left(\varphi_{x_{e},y_{e},a_{e},b_{e}}^{XY\tilde{X}_{e}^{-}Y_{e}E_{A}E_{B}} \middle\| \theta_{x_{e},y_{e}}^{XY\tilde{X}_{e}^{-}Y_{e}E_{A}E_{B}} \right) \right]
$$
\n
$$
\geqslant \mathbb{E} \left[S \left(\varphi_{x_{e},y_{e},a_{e},b_{e}}^{X(Bob)} \middle\| \theta_{x_{e},y_{e}}^{X(Bob)} \right) \right]
$$
\n
$$
= \mathbb{E} \left[S \left(\varphi_{x_{e},y_{e},a_{e},b_{e}}^{X(Bob)} \middle\| \theta_{x_{e},y_{e}}^{X(Bob)} \right) \right]
$$
\n
$$
\geqslant \mathbb{E} \left[S \left(\varphi_{x_{e},y_{e},a_{e},b_{e}}^{X(Bob)} \middle\| \theta_{x_{e},y_{e}}^{X} \otimes \theta_{x_{e},y_{e}}^{Bob} \right) \right]
$$
\n
$$
\geqslant \mathbb{E} \left[S \left(\varphi_{x_{e},y_{e},a_{e},b_{e}}^{X(Bob)} \middle\| \varphi_{x_{e},y_{e},a_{e},b_{e}}^{X} \otimes \varphi_{x_{e},y_{e},a_{e},b_{e}}^{Bob} \right) \right]
$$
\n
$$
= I(X:Bob|X_{e}Y_{e}A_{e}B_{e})_{\varphi}
$$

where Bob
$$
\stackrel{\text{def}}{=} Y\tilde{Y}_{\overline{C}}E_B
$$
.

Upper Bound for the Mutual Information

Using the previous lemma, we can show the required upper bound for the mutual information.

$$
\delta_{3}k \geqslant \underset{x_{c},y_{c},a_{c},b_{c} \leftarrow \varphi^{X_{c}Y_{c}A_{c}B_{c}}}{\mathbb{E}} \left[S \left(\varphi_{x_{c},y_{c},a_{c},b_{c}}^{XY\tilde{X}_{c}^{-}Y_{c} \in E_{A}E_{B}} \middle| \theta_{x_{c},y_{c}}^{XY\tilde{X}_{c}^{-}Y_{c} \in E_{A}E_{B}} \right) \right]
$$
\n
$$
\geqslant \mathbb{E} \left[S \left(\varphi_{x_{c},y_{c},a_{c},b_{c}}^{X(\text{Bob})} \middle| \theta_{x_{c},y_{c}}^{X(\text{Bob})} \right) \right]
$$
\n
$$
= \mathbb{E} \left[S \left(\varphi_{x_{c},y_{c},a_{c},b_{c}}^{X(\text{Bob})} \middle| \theta_{x_{c},y_{c}}^{X} \otimes \theta_{x_{c},y_{c}}^{Bob} \right) \right]
$$
\n
$$
\geqslant \mathbb{E} \left[S \left(\varphi_{x_{c},y_{c},a_{c},b_{c}}^{X(\text{Bob})} \middle| \theta_{x_{c},y_{c}}^{X} \otimes \theta_{x_{c},y_{c}}^{Bob} \right) \right]
$$
\n
$$
= I(X : \text{Bob}|X_{c}Y_{c}A_{c}B_{c})_{\varphi}
$$
\n
$$
= \sum_{i \in \overline{c}} I(X_{i} : \text{Bob}|X_{c \cup [i-1]}Y_{c}A_{c}B_{c})_{\varphi}
$$

where Bob $\overset{\mathsf{def}}{=} \mathsf{Y} \tilde{\mathsf{Y}}_{\overline{\mathcal{C}}} \mathsf{E}_{\mathsf{B}}.$

Distribution of Questions

Distribution of Questions

$$
\delta_3k\geqslant\mathop{\mathbb{E}}_{x_{\mathop{\mathcal{C}}},y_{\mathop{\mathcal{C}}},\alpha_{\mathop{\mathcal{C}}},b_{\mathop{\mathcal{C}}}\leftarrow\phi^{X_{\mathop{\mathcal{C}}}}\Upsilon_{\mathop{\mathcal{C}}}\wedge e_{\mathop{\mathcal{C}}}}}\Bigl[S\Bigl(\phi^{XY\tilde{X}_{\mathop{\mathcal{C}}}}_{x_{\mathop{\mathcal{C}}},y_{\mathop{\mathcal{C}}},a_{\mathop{\mathcal{C}}},b_{\mathop{\mathcal{C}}}}\Bigr\|\theta^{XY\tilde{X}_{\mathop{\mathcal{C}}}}_{x_{\mathop{\mathcal{C}}},y_{\mathop{\mathcal{C}}}}}{x_{\mathop{\mathcal{C}}}}\Bigr\|_{\theta}^{Z\Upsilon\tilde{X}_{\mathop{\mathcal{C}}}}\tilde{Y}_{\mathop{\mathcal{C}}}\varepsilon_{A}E_{B}}\Bigr)\Bigr]
$$

Distribution of Questions

$$
\begin{aligned} \delta_{3}k &\geqslant \underset{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}} \leftarrow \phi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}}{\mathbb{E}}\left[S\left(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}}^{X Y \tilde{X}_{\mathcal{C}} \tilde{Y}_{\mathcal{C}} \tilde{Y}_{\mathcal{C}}}{\mathbb{E}}_{A} E_{B}\right)\right] \\ &\geqslant \underset{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}} \leftarrow \phi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}}{\mathbb{E}}\left[S\left(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}}^{X Y}\middle|\theta_{x_{\mathcal{C}},y_{\mathcal{C}}}^{X Y}\right)\right] \end{aligned}
$$

Distribution of Questions

$$
\begin{aligned} \delta_{3}k &\geqslant \underset{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}} \leftarrow \varphi^{X_{\mathcal{C}}Y_{\mathcal{C}}B_{\mathcal{C}}}}{\mathbb{E}}\left[S\left(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}}^{XY\tilde{X}_{\mathcal{C}}\tilde{Y}_{\mathcal{C}}\tilde{Y}_{\mathcal{C}}E_{\mathcal{A}}E_{\mathcal{B}}}}\right)\right] \\ &\geqslant \underset{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}} \leftarrow \varphi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}}{\mathbb{E}}\left[S\left(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}}^{XY}\middle|\theta_{x_{\mathcal{C}},y_{\mathcal{C}}}^{XY}\right)\right] \\ &=\sum_{i \in \overline{\mathcal{C}}} \underset{r_{i} \leftarrow \varphi^{R_{i}}}{\mathbb{E}}\left[S\left(\phi_{r_{i}}^{X_{i}Y_{i}}\middle|\theta_{x_{\mathcal{C} \cup [i-1]},y_{\mathcal{C} \cup [i-1]}}^{XY}\right)\right] \end{aligned}
$$

$$
\text{where } \mathsf{R}_i \stackrel{\text{def}}{=} \mathsf{X}_{\mathcal{C} \cup [i-1]} \mathsf{Y}_{\mathcal{C} \cup [i-1]} \mathsf{A}_{\mathcal{C}} \mathsf{B}_{\mathcal{C}}.
$$

Distribution of Questions

$$
\begin{aligned} \delta_{3}k &\geqslant \underset{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}\leftarrow \phi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}}{\mathbb{E}}\Big[S\Big(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}}^{XY\tilde{X}_{\mathcal{C}}\tilde{Y}_{\mathcal{C}}\tilde{Y}_{\mathcal{C}}E_{\mathcal{A}}E_{\mathcal{B}}}}\Big)\Big] \\ &\geqslant \underset{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}\leftarrow \phi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}}{\mathbb{E}}\Big[S\Big(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}}^{XY}\Big\|\theta_{x_{\mathcal{C}},y_{\mathcal{C}}}^{XY}\Big) \Big] \\ &= \underset{i \in \mathcal{C}}{\sum}\underset{r_{i} \leftarrow \phi^{R_{i}}}{\mathbb{E}}\Big[S\Big(\phi_{r_{i}}^{X_{i}Y_{i}}\Big\|\theta_{x_{\mathcal{C}\cup \left[i-1 \right]}^{X_{i}Y_{i}}}^{X_{i}Y_{i}}\Big)\Big] \\ &\geqslant \underset{i \in \mathcal{C}}{\sum}\underset{r_{i} \leftarrow \phi^{R_{i}}}{\mathbb{E}}\Big[\Big\|\phi_{r_{i}}^{X_{i}Y_{i}} - \mu\Big\|_{1}^{2}\Big] \end{aligned}
$$

$$
\text{where } \mathsf{R}_i \stackrel{\text{def}}{=} \mathsf{X}_{\mathcal{C} \cup [i-1]} \mathsf{Y}_{\mathcal{C} \cup [i-1]} \mathsf{A}_{\mathcal{C}} \mathsf{B}_{\mathcal{C}}.
$$

Distribution of Questions

Using the same lemma, we show that for most of the coordinates in \overline{C} the distribution of questions is close to μ in $|\varphi\rangle$.

$$
\begin{aligned} \delta_{3}k &\geqslant \underset{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}\leftarrow \varphi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}}{\mathbb{E}}\left[S\left(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}}^{XY\tilde{\chi}_{\mathcal{C}}\tilde{\gamma}}\bar{c}_{\mathcal{C}}\bar{c}_{\mathcal{A}}E_{B}}\middle\Vert \theta_{x_{\mathcal{C}},y_{\mathcal{C}}}^{XY\tilde{\chi}_{\mathcal{C}}\tilde{\gamma}}\bar{c}_{\mathcal{C}}E_{A}E_{B}}\right)\right] \\ &\geqslant \underset{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}\leftarrow \varphi^{X_{\mathcal{C}}Y_{\mathcal{C}}A_{\mathcal{C}}B_{\mathcal{C}}}}{\mathbb{E}}\left[S\left(\phi_{x_{\mathcal{C}},y_{\mathcal{C}},\alpha_{\mathcal{C}},b_{\mathcal{C}}} \middle\Vert \theta_{x_{\mathcal{C}},y_{\mathcal{C}}}^{XY}\right)\right] \\ &=\sum_{i\in \overline{\mathcal{C}}} \underset{r_{i}\leftarrow \varphi^{R_{i}}}{\mathbb{E}}\left[S\left(\phi_{r_{i}}^{X_{i}Y_{i}}\middle\Vert \theta_{x_{\mathcal{C}\cup\left[i-1\right]},y_{\mathcal{C}\cup\left[i-1\right]}}^{X_{i}Y_{i}}\right)\right] \\ &\geqslant \sum_{i\in \overline{\mathcal{C}}} \underset{r_{i}\leftarrow \varphi^{R_{i}}}{\mathbb{E}}\left[\left\Vert \phi_{r_{i}}^{X_{i}Y_{i}}-\mu\right\Vert _{1}^{2}\right] \\ &\geqslant \sum_{i\in \overline{\mathcal{C}}} \left(\underset{r_{i}\leftarrow \varphi^{R_{i}}}{\mathbb{E}}\left[\left\Vert \phi_{r_{i}}^{X_{i}Y_{i}}-\mu\right\Vert _{1}\right]\right)^{2} \end{aligned}
$$

where $\mathsf{R}_{\mathfrak{t}}\stackrel{\mathsf{def}}{=} \mathsf{X}_{\mathcal{C}\cup [\mathfrak{t}-1]} \mathsf{Y}_{\mathcal{C}\cup [\mathfrak{t}-1]} \mathsf{A}_{\mathcal{C}} \mathsf{B}_{\mathcal{C}}.$

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{C}$ s.t.

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{C}$ s.t.

```
I(X_j : Bob | R_j)_{\varphi} \leqslant 10\delta_3
```
where $R_j = X_{\mathcal{C}\cup [j-1]}Y_{\mathcal{C}\cup [j-1]}A_{\mathcal{C}}B_{\mathcal{C}}.$

[Introduction](#page-3-0) [Proof of the Main Theorem](#page-29-0) [Summary](#page-98-0)

[Some Details](#page-93-0)

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{C}$ s.t.

$$
\begin{aligned} \mathrm{I}\left(X_{j}: \mathsf{Bob}\middle| \mathsf{R}_{j}\right)_{\phi} &\leqslant 10\delta_{3} \\ \mathrm{I}\left(Y_{j}: \mathsf{Alice}\middle| \mathsf{R}_{j}\right)_{\phi} &\leqslant 10\delta_{3} \end{aligned}
$$

where $R_j = X_{\mathcal{C}\cup [j-1]}Y_{\mathcal{C}\cup [j-1]}A_{\mathcal{C}}B_{\mathcal{C}}.$

[Introduction](#page-3-0) [Proof of the Main Theorem](#page-29-0) [Summary](#page-98-0)

[Some Details](#page-94-0)

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{C}$ s.t.

$$
\begin{aligned} \mathrm{I}\left(X_j:\mathsf{Bob}\middle| \mathsf{R}_j\right)_{\phi}&\leqslant 10\delta_3\\ \mathrm{I}\left(Y_j:\mathsf{Alice}\middle| \mathsf{R}_j\right)_{\phi}&\leqslant 10\delta_3\\ \left\Vert \phi^{X_jY_j}-\mu\right\Vert_1&\leqslant \underset{r_j\leftarrow \phi^{R_j}}{\mathbb{E}}\left[\left\Vert \phi^{X_jY_j}_{r_j}-\mu\right\Vert_1\right]\leqslant \sqrt{10\delta_3}\end{aligned}
$$

where $R_j = X_{\mathcal{C}\cup [j-1]}Y_{\mathcal{C}\cup [j-1]}A_{\mathcal{C}}B_{\mathcal{C}}.$

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{C}$ s.t.

$$
\begin{aligned} \mathrm{I}\left(X_j: \mathsf{Bob}\middle| \mathsf{R}_j\right)_{\phi}&\leqslant 10\delta_3\\ \mathrm{I}\left(Y_j: \mathsf{Alice}\middle| \mathsf{R}_j\right)_{\phi}&\leqslant 10\delta_3\\ \left\Vert \phi^{X_jY_j}-\mu\right\Vert_1&\leqslant \underset{r_j\leftarrow \phi}{\mathbb{E}}\left[\left\Vert \phi^{X_jY_j}_{r_j}-\mu\right\Vert_1\right]\leqslant \sqrt{10\delta_3}\end{aligned}
$$

where $R_j = X_{\mathcal{C} \cup [j-1]} Y_{\mathcal{C} \cup [j-1]} A_{\mathcal{C}} B_{\mathcal{C}}$. By similar arguments as in the previous slide, we also have

$$
\underset{r_j \leftarrow \phi^{R_j}}{\mathbb{E}}\left[\left\|\phi^{X_j Y_j}_{r_j} - \phi^{X_j}_{r_j} \otimes \phi^{Y_j}_{r_j}\right\|_1\right] \leqslant \sqrt{10\delta_3}
$$

Final Upper Bounds

By Markov's inequality, there exists a $j \in \overline{C}$ s.t.

$$
\begin{aligned} \mathrm{I}\left(X_j: \mathsf{Bob}\middle| \mathsf{R}_j\right)_{\phi}&\leqslant 10\delta_3\\ \mathrm{I}\left(Y_j: \mathsf{Alice}\middle| \mathsf{R}_j\right)_{\phi}&\leqslant 10\delta_3\\ \left\Vert \phi^{X_jY_j}-\mu\right\Vert_1&\leqslant \underset{r_j\leftarrow \phi}{\mathbb{E}}\left[\left\Vert \phi^{X_jY_j}_{r_j}-\mu\right\Vert_1\right]\leqslant \sqrt{10\delta_3}\end{aligned}
$$

where $R_j = X_{\mathcal{C} \cup [j-1]} Y_{\mathcal{C} \cup [j-1]} A_{\mathcal{C}} B_{\mathcal{C}}$. By similar arguments as in the previous slide, we also have

$$
\mathop{\mathbb{E}}_{r_j \leftarrow \phi^{R_j}} \Big[\Big\| \phi^{X_j Y_j}_{r_j} - \phi^{X_j}_{r_j} \otimes \phi^{Y_j}_{r_j} \Big\|_1 \Big] \leqslant \sqrt{10 \delta_3} \\\qquad \mathop{\mathbb{E}}_{x_j, y_j \leftarrow \phi^{X_j Y_j}} \Big[\Big\| \phi^{R_j}_{x_j, y_j} - \phi^{R_j} \Big\|_1 \Big] \leqslant \sqrt{10 \delta_3}.
$$

Final Upper Bounds

By Markov's inequality, there exists a $i \in \overline{C}$ s.t.

$$
\begin{aligned} \mathrm{I}\left(X_j: \mathsf{Bob}\middle| \mathsf{R}_j\right)_{\phi}&\leqslant 10\delta_3\\ \mathrm{I}\left(Y_j: \mathsf{Alice}\middle| \mathsf{R}_j\right)_{\phi}&\leqslant 10\delta_3\\ \left\Vert \phi^{X_jY_j}-\mu\right\Vert_1&\leqslant \underset{r_j\leftarrow \phi}{\mathbb{E}}\left[\left\Vert \phi^{X_jY_j}_{r_j}-\mu\right\Vert_1\right]\leqslant \sqrt{10\delta_3}\end{aligned}
$$

where $R_j = X_{\mathcal{C} \cup [j-1]} Y_{\mathcal{C} \cup [j-1]} A_{\mathcal{C}} B_{\mathcal{C}}$. By similar arguments as in the previous slide, we also have

$$
\mathop{\mathbb{E}}_{r_j \leftarrow \phi^{R_j}} \Big[\Big\| \phi^{X_j Y_j}_{r_j} - \phi^{X_j}_{r_j} \otimes \phi^{Y_j}_{r_j} \Big\|_1 \Big] \leqslant \sqrt{10 \delta_3} \\ \mathop{\mathbb{E}}_{x_j, y_j \leftarrow \phi^{X_j Y_j}} \Big[\Big\| \phi^{R_j}_{x_j, y_j} - \phi^{R_j} \Big\|_1 \Big] \leqslant \sqrt{10 \delta_3}.
$$

With these, and by treating R_i as public coins, it's easy to show that we can embed G into G^k .

We proved the following parallel repetition theorem.

Theorem (Main Theorem)

For any game G, where the *input distribution* μ *is product on* $\mathcal{X} \times \mathcal{Y}$ *, it holds that*

$$
\omega^*\big(G^k\big)=\Big(1-(1-\omega^*(G))^3\Big)^{\Omega\big(\frac{k}{\text{log}(|\mathcal{A}|\cdot|\mathcal{B}|)}\big)}
$$

We proved the following parallel repetition theorem.

Theorem (Main Theorem)

For any game G, where the *input distribution* μ *is product on* $\mathcal{X} \times \mathcal{Y}$, *it holds that*

$$
\omega^*\bigl(G^k\bigr)=\Bigl(1-(1-\omega^*(G))^3\Bigr)^{\Omega\bigl(\frac{k}{\text{log}(|\mathcal{A}|\cdot|\mathcal{B}|)}\bigr)}
$$

It improves upon the result of [Chailloux and Scarpa '13] by

• generalizing it from uniform to product distributions

We proved the following parallel repetition theorem.

Theorem (Main Theorem)

For any game G, where the *input distribution* μ *is product on* $\mathcal{X} \times \mathcal{Y}$, *it holds that*

$$
\omega^*\bigl(G^k\bigr)=\Bigl(1-(1-\omega^*(G))^3\Bigr)^{\Omega\bigl(\frac{k}{\text{log}(|\mathcal{A}|\cdot|\mathcal{B}|)}\bigr)}
$$

It improves upon the result of [Chailloux and Scarpa '13] by

- **•** generalizing it from uniform to product distributions and by
- removing the dependence on $|\mathcal{X}|$ and $|\mathcal{Y}|$.

We proved the following parallel repetition theorem.

Theorem (Main Theorem)

For any game G, where the *input distribution* μ *is product on* $\mathcal{X} \times \mathcal{Y}$, *it holds that*

$$
\omega^*\bigl(G^k\bigr)=\Bigl(1-(1-\omega^*(G))^3\Bigr)^{\Omega\bigl(\frac{k}{\text{log}(|\mathcal{A}|\cdot|\mathcal{B}|)}\bigr)}
$$

It improves upon the result of [Chailloux and Scarpa '13] by

- **•** generalizing it from uniform to product distributions and by
- removing the dependence on $|\mathcal{X}|$ and $|\mathcal{Y}|$.

A parallel repetition theorem for arbitrary games where the exponent only depends on k and $|\mathcal{A}| \cdot |\mathcal{B}|$ is still unknown.

Thank you for your attention!

The manuscript is available at $arXiv:1311.6309$.

