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Introduction Proof of the Main Theorem Summary

The Model of Games

Two-Player One-Round Games

Game G

Alice Bob

Referee

|ϕ〉
Alice and Bob share an
entangled state |ϕ〉.

The referee selects questions
(x,y) ∈ X× Y according to
distribution µ.

Alice and Bob answer a ∈ A and
b ∈ B by performing
measurements on |ϕ〉.
They win if V (x,y,a,b) = 1.

The value of G, denoted by
ω∗(G), is the supremum of the
achievable winning probability.
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The Model of Games

Parallel Repetition of Games

Game Gk

Alice Bob

Referee

|ϕ〉

x

ya

b

V (x,y,a,b)

Gk is the game where k copies
of G are played in parallel.

x = (x1, x2, . . . , xk) ∈ X×k,
y ∈ Y×k, a ∈ A×k, b ∈ B×k

(x,y) is distributed according to
µ⊗k, where µ⊗k denotes k
independent copies of µ.

V (x,y,a,b) = 1 if the players
win all the instances.
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Parallel Repetition Theorems

The Basic Question

How doesω∗
(
Gk
)

scale with k?

Trivially,ω∗
(
Gk
)
> ω∗(G)k.

The reverse direction doesn’t hold but we can still hope to show
thatω∗

(
Gk
)
≈ ω∗(G)k.

Analogous result holds for the classical value (denoted byω(G)):

Theorem ([Raz ’95] and [Holenstein ’07])

∃ constant C s.t.

ω
(
Gk
)
6
(

1 − C (1 −ω(G))3
) k

log(|A|·|B|)
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Parallel Repetition Theorems

Parallel Repetition Theorems for the Quantum Value

Parallel repetition theorems for the quantum value were shown for
some classes of games.

Perfect parallel repetition holds for XOR games. [Cleve, Slofstra,
Unger, Upadhyay ’08]

Parallel repetition holds for the more general class of unique
games [Kempe, Regev, Toner ’10]

and the even more general class of projection games [Dinur,
Steurer, Vidick ’13].

For general games, [Kempe and Vidick ’11] showed a theorem
where the rate of decay is inverse-polynomial. (Although not for
Gk.)

[Chailloux and Scarpa ’13] showed it for games where the input
distribution is uniform.
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Parallel Repetition Theorems

Our Contribution

Theorem (Main Theorem)

For any game G, where the input distribution µ is product on X× Y, it
holds that

ω∗
(
Gk
)
=
(

1 − (1 −ω∗(G))3
)Ω( k

log(|A|·|B|)

)
.
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Idea Behind the Proof

Broad Idea

In Gk, let us condition on success on a set C ⊆ [k] of coordinates.

If the success probability is small enough then we are done.

Otherwise, we show that there exists a j ∈ C = [k] \ C s.t.
success in the j-th coordinate is bounded away from 1.

Doing thisΩ(k) times, the success probability will be
exponentially small in k.
Let (x ′,y ′) ∈ X× Y be distributed according to µ.
We show that the players can embed (x ′,y ′) into the j-th
coordinate and generate the state of the whole system in Gk.
If they could win the j-th instance with high probability then they
would be able to win G with high probability.
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Idea Behind the Proof

Some Simplifications

Without loss of generality:

Let the questions and answers be part of the whole
(classical-)quantum state.

Upon receiving the questions, the players apply unitaries on their
parts, measure registers A and B, in the standard basis, and
send the outcomes to the referee.

The global state, conditioned on success in C, after the unitaries is of
the form

σ =
∑

x∈X×k,y∈Y×k
µ⊗k(x,y) |xy〉〈xy|XY ⊗ |φxy〉〈φxy|

where (unnormalized) |φxy〉 is shared between Alice and Bob.
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Idea Behind the Proof

How to generate the state in Gk?

Let us take a strategy for G where the players share

|ϕ〉 =
∑

x∈X×k,y∈Y×k

√
µ⊗k(x,y) |xxyy〉XX̃YỸ ⊗ |φxy〉 .

TrX̃⊗Ỹ(|ϕ〉〈ϕ|) = σ.

Alice and Bob get questions (x ′,y ′) ∈ X× Y.

Suppose they measure registers Xj and Yj.

If the outcomes of the measurements are x ′ and y ′ then they can
further measure Aj and Bj and reply to the referee.

This way, we embedded a single instance of G into Gk, with
being conditioned on success in C.

Ifω∗(G) is bounded away from 1 then success in the j-th
instance is also bounded away from 1.
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being conditioned on success in C.

Ifω∗(G) is bounded away from 1 then success in the j-th
instance is also bounded away from 1.
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Idea Behind the Proof

Generate the state without measurements?

The previous argument doesn’t work because the probability of getting
(x ′,y ′), when measuring Xj and Yj, can be very small.

Question
Is there a way to generate the post-measurement state (approximately)
without measurements?

Answer
Yes, if the input distribution µ is product.
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How to do it without measurements?

Let
∣∣ϕx ′j〉 be the resulting state after Alice measures Xj in |ϕ〉 and

gets x ′j. States
∣∣ϕy ′j〉 and

∣∣ϕx ′jy ′j〉 are defined similarly.

We show that I
(
Xj : Bob

)
ϕ
≈ 0 and I

(
Yj : Alice

)
ϕ
≈ 0.

I
(
Xj : Bob

)
ϕ
≈ 0 implies that Bob’s part of

∣∣ϕx ′j〉 is mostly

independent of x ′j.

By the unitary equivalence of purifications, ∃ unitary Ux ′j that

Alice can apply to get
(
Ux ′j ⊗ 1Bob

)
|ϕ〉 ≈

∣∣ϕx ′j〉.
Similarly, ∃Vy ′j s.t.

(
1Alice ⊗Vy ′j

)
|ϕ〉 ≈

∣∣ϕy ′j〉.
By [Jain, Radhakrishnan, Sen ’08], if the distribution of

(
x ′j,y

′
j

)
is

product then (
Ux ′j ⊗Vy ′j

)
|ϕ〉 ≈

∣∣ϕx ′jy ′j〉.
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Some Details

From Measurements to Unitaries (1 Sided)

Lemma

Let µ be a probability distribution on X. Let

|ϕ〉 def
=

∑
x∈X

√
µ(x) |xx〉XX̃ ⊗ |ψx〉

be shared by Alice and Bob, where X, X̃, and some part of |ψx〉 are

with Alice and the rest of |ψx〉 is with Bob.

Let |ϕx〉
def
= |xx〉 ⊗ |ψx〉. If

I(X : Bob)ϕ 6 ε then there exist unitaries {Ux}x∈X acting on Alice’s
space s.t.

E
x←µ

[‖|ϕx〉〈ϕx|− (Ux ⊗ 1Bob) |ϕ〉〈ϕ| (U∗x ⊗ 1Bob)‖1] 6 4
√
ε.

The proof easily follows from the unitary equivalence of purifications
and Uhlmann’s theorem.
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From Measurements to Unitaries (2 Sided)

Lemma

Let µ be a prob. dist. on X× Y with marginals µX and µY. Let

|ϕ〉 def
=

∑
x∈X,y∈Y

√
µ(x,y) |xxyy〉XX̃YỸ ⊗ |ψx,y〉

be shared by Alice and Bob, where X, X̃, and some part of |ψx〉 are
with Alice and Y, Ỹ, and the rest of |ψx〉 are with Bob.

If
I(X : Bob)ϕ 6 ε and I(Y : Alice)ϕ 6 ε then there exist unitaries
{Ux}x∈X on Alice’s space and {Vy}y∈Y on Bob’s space s.t.

E
(x,y)←µ

[∥∥|ϕx,y〉〈ϕx,y|− (Ux ⊗Vy) |ϕ〉〈ϕ|
(
U∗x ⊗V∗y

)∥∥
1

]
6 8
√
ε+ 2 ‖µ− µX ⊗ µY‖1 .

Proved by [Jain, Radhakrishnan, Sen ’08].
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Key Lemma

Our main theorem follows from the following lemma. Show theorem

Lemma (Key Lemma)

Let 1/10 > δ1, δ2, δ3 > 0 s.t. δ3 = δ2 + δ1 · log(|A| · |B|). Let

k ′
def
= bδ1kc.

Given any quantum strategy for Gk, there exists
{i1, . . . , ik ′} s.t. for each 1 6 l 6 k ′ − 1, either

Pr
[
T (l) = 1

]
6 2−δ2k

or

Pr
[
Til+1 = 1

∣∣∣T (l) = 1
]
6 ω∗(G) + 12

√
10δ3

where Ti ∈ {0, 1} indicates success in the i-th repetition and

T (l)
def
=

∏l
j=1 Tij .
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Proof of the Key Lemma

Suppose that we already identified l coordinates and we want to find
the (l+ 1)-th coordinate with the given properties.

Assume q
def
= Pr

[
T (l) = 1

]
> 2−δ2k as otherwise we are done.

Let C
def
= {i1, . . . , il}.

The purified state after the unitaries is

|θ〉 def
=

∑
x∈X×k,y∈Y×k

√
µ⊗k(x,y) |xxyy〉XX̃YỸ

⊗
∑

aC∈A×l,bC∈B×l
|aCbC〉ACBC ⊗

∣∣γx,y,aC,bC

〉EAEB .

Conditioning on success in C gives us the state

|ϕ〉 def
=

1
√
q

∑
x,y

√
µ⊗k(x,y) |xxyy〉

∑
aC,bC s.t.∏
i∈C Ti=1

|aCbC〉⊗
∣∣γx,y,aC,bC

〉
.
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Lemma about the Relative Entropy

From q > 2−δ2k, we show the following simple lemma.

Lemma

E
xC,yC,aC,bC←ϕXCYCACBC

[
S
(
ϕ

XYX̃CỸCEAEB

xC,yC,aC,bC

∥∥∥θXYX̃CỸCEAEB
xC,yC

)]
6 δ3k

Intuitively,

going from θ to ϕ causes a difference of at most − logq < δ2k.

further measuring AC and BC results in a difference of at most
|C| · log(|A| · |B|) 6 δ1k · log(|A| · |B|).



Introduction Proof of the Main Theorem Summary

Some Details

Lemma about the Relative Entropy

From q > 2−δ2k, we show the following simple lemma.

Lemma

E
xC,yC,aC,bC←ϕXCYCACBC

[
S
(
ϕ

XYX̃CỸCEAEB
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Upper Bound for the Mutual Information

Using the previous lemma, we can show the required upper bound for
the mutual information. Skip

δ3k > E
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=
∑
i∈C

I
(
Xi : Bob

∣∣XC∪[i−1]YCACBC

)
ϕ

where Bob
def
= YỸCEB.
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Distribution of Questions

Using the same lemma, we show that for most of the coordinates in C

the distribution of questions is close to µ in |ϕ〉. Skip
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xC,yC

)]
> E
xC,yC,aC,bC←ϕXCYCACBC

[
S
(
ϕXY
xC,yC,aC,bC

∥∥θXY
xC,yC

)]
=

∑
i∈C

E
ri←ϕRi

[
S
(
ϕXiYi
ri

∥∥∥θXiYi
xC∪[i−1],yC∪[i−1]

)]
>

∑
i∈C

E
ri←ϕRi

[∥∥ϕXiYi
ri

− µ
∥∥2

1

]
>

∑
i∈C

(
E

ri←ϕRi

[∥∥ϕXiYi
ri

− µ
∥∥

1
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where Ri
def
= XC∪[i−1]YC∪[i−1]ACBC.
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Final Upper Bounds

By Markov’s inequality, there exists a j ∈ C s.t.

I
(
Xj : Bob

∣∣Rj)ϕ 6 10δ3

I
(
Yj : Alice

∣∣Rj)ϕ 6 10δ3∥∥ϕXjYj − µ
∥∥

1 6 E
rj←ϕ

Rj

[∥∥∥ϕXjYj
rj − µ

∥∥∥
1

]
6
√

10δ3

where Rj = XC∪[j−1]YC∪[j−1]ACBC. By similar arguments as in the
previous slide, we also have

E
rj←ϕ

Rj

[∥∥∥ϕXjYj
rj −ϕ

Xj
rj ⊗ϕ

Yj
rj

∥∥∥
1

]
6
√

10δ3

E
xj,yj←ϕ

XjYj

[∥∥∥ϕRj
xj,yj −ϕ

Rj
∥∥∥

1

]
6
√

10δ3.

With these, and by treating Rj as public coins, it’s easy to show that
we can embed G into Gk.
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Yj : Alice

∣∣Rj)ϕ 6 10δ3∥∥ϕXjYj − µ
∥∥

1 6 E
rj←ϕ

Rj

[∥∥∥ϕXjYj
rj − µ

∥∥∥
1

]
6
√

10δ3

where Rj = XC∪[j−1]YC∪[j−1]ACBC. By similar arguments as in the
previous slide, we also have

E
rj←ϕ

Rj

[∥∥∥ϕXjYj
rj −ϕ

Xj
rj ⊗ϕ

Yj
rj

∥∥∥
1

]
6
√

10δ3

E
xj,yj←ϕ

XjYj

[∥∥∥ϕRj
xj,yj −ϕ

Rj
∥∥∥

1

]
6
√

10δ3.

With these, and by treating Rj as public coins, it’s easy to show that
we can embed G into Gk.
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Summary

We proved the following parallel repetition theorem.

Theorem (Main Theorem)

For any game G, where the input distribution µ is product on X× Y, it
holds that

ω∗
(
Gk
)
=
(

1 − (1 −ω∗(G))3
)Ω( k

log(|A|·|B|)

)
.

It improves upon the result of [Chailloux and Scarpa ’13] by

generalizing it from uniform to product distributions and by

removing the dependence on |X| and |Y|.

A parallel repetition theorem for arbitrary games where the exponent
only depends on k and |A| · |B| is still unknown.
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Thank you for your attention!

The manuscript is available at arXiv:1311.6309.

http://arxiv.org/abs/1311.6309
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