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SETUP

Spin s particles. Local dimension d=2s+1

Regular lattice

Interact with those closeby in a uniform way h,
hermitian matrix of small size (d" x d").

h, Interaction h located at position i.

H = Ehi ®1,.,. Hamiltonian = Energy
N i

Ground state (GS) = (normalized) eigenvector of minimal eigenvalue of H

Even if the particles only interact with those closeby, the entanglement of the
GS can have a very global nature (Topological entanglement or order)

This is not just a mathematical statement. There are real systems out there
with this type of entanglement (FQH, High Tc-superconductors, spin liquids)



Outlook

. Where does topological order come from?

. How can one define it formally?

. How can one construct topologically ordered
states?

. Open problems.



Phases. Order. Symmetries

Temperature

LIQUID GAS

Disorder. Full
translational symmetry

Order. Only lattice
symmetry



Phases. Order. Symmetries
Q-phase (T=0)?

Parameters in the Hamiltonian
bt ] >N NN

P \ >/ \/
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Ferromagnetic state. Spin liquid. All
Some order. symmetries
Local SU(2) symmetry broken

(Z,)=0

<Zl,> =] Magnetization per particle distinguishes the phases.
It is a local order parameter.

Landau Approach to Phases

There can be different types of order (ferromagnetic, antiferromagnetic, ...).
They are characterized by a broken symmetry (detected by some order parameter).




80’s. New type of order. Topological order. RVB. QDM

: 1 1
— 4 > singlet (10 =110) =75 (lo1) - 10)
— ——f Configuration = covering of the lattice.

configurations.

Configurations non-orthogonal.
QDM = orthogonal “by definition” and we
restrict to the Hilbert space spanned by the |

Rokhsar-Kivelson 1988 [




Quantum Dimer Model
H = St(1IX=|+he)sv( 1IN +]=X=])

QDM
e T P T . TS
—d —d > = &
T al» RK point < - 4

v/ 1
Column order /t Staggered order

% T |RVB) x E‘conﬁg> % — 0

config



RVB state

The RVBS does not break any symmetry = spin liquid

Postulated by Anderson (1987) to explain high Tc
superconductivity.

Candidate for a new (unobserved) phase] topologicalspin

liquid — \I,
QDM :
Need a frustrated lattice #€=—= GS degeneracy, etc.

l l

Triangular | | Kagomeé

: Meng et al.
| Real materials Natu?.e 2010

| AF Heisenberg in the same
phase (numerical evidence)

Yan et al.,
Science 2011



Topological order in the QDM

<.
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Number of cuts = even
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One obtains all

|
|
- >
>
configurations from a
reference one (column) by . . ‘ ‘ - o
> T

local resonating moves.

This can be changed if we change the topology. TORUS



Different topological sectors.

Within each one, all states related by
local resonating moves.

Parity of dimers intersecting the 2 ” ’;’
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No way to move between sectors — == — == --L.f-.
with local resonating moves. pEETN '

|
Sectors labeled by some winding
numbers. In the triangular lattice = V"‘
reeference lines (4 sectors). ’.’ ‘A’

...... NN
At the RK point, GS = the RVB within AL A A
each sector. Degeneracy = number
of sectors /\ AVA Aw"
Moessner-Raman (2008)



Definition of topological order

Degeneracy of the Hamiltonian (constant and) depends on topology
All GS are indistinguishable locally (no local order parameter).

To map between them you need a non-local operator.

Excitations behave like quasiparticles with anyonic statistics.

s w N e

Moessner-Raman (2008)

5. Thereis an energy gap in the Hamiltonian.
Which properties do arise from 1-5?
Is there a systematic way to construct systems with 1-57



Consequences of topological order

7R\ Topologically ordered systems are robust. Candidates for quantum
W memories. Information encoded in the topological sector.

("7 They are difficult to create.

Theorem (Bravyi-Hastings-Verstraete 2006): To create topological
order with a (time-dependent) geometrically local Hamiltonian one
needs time of the order of the size of the system.

Proof: Lieb-Robinson bounds.



Topological order is difficult to create
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‘IIJI> = U‘I/JO> Topologically ordered

3‘1/J2>J_‘1/)1>,,<1/)1 ‘A‘qjl> = <1/J2 ‘A‘w2> If A local observable
Define \1’/30> = U*‘I/J2>J_‘I/JO> We will see that

<UJ0 \A\%> = <?])O ‘A‘@O>,VA local = ‘I/JO> was topologically ordered
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<7,U1 ‘UAU*“/’1> - <'/J0 ‘A‘¢0> =<’z7)0 ‘A‘lp0> - <'/J2 ‘UAU*"/’2>

UAU"

UAU  also LOCAL



How to construct topologically
ordered systems. PEPS

They approximate well GS of local Hamiltonians
(Hastings)



Basics in PEPS. Box-leg notation for tensors

Each leg = one index

vector matrix

w2 — A = ZAll)

Joining leg = tensor contraction

R 3

ijk

Scalar product Matrix Multiplication

2V,
i —
ijk



1D PEPS = MPS

lllzooolN>

= Y (A A A

> Physical index. Dimension d

> Virtual index. Dim D = bond dimension




Parent Hamiltonian
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Parent Hamiltonian
H=Yh  H=0 H/MPS)=0 MPSisGSofH

The same in 2D o e e I s I e N e B
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Parent Hamiltonian
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Topology in PEPS. Gauge symmetry

G any finite group. For example G =Z, = {1,Z}
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Topology in PEPS. Gauge symmetry

Contractible loops of Z vanish.

What about not contractible loops?



Topology in PEPS. Gauge symmetry
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Non contractible loops can be arbitrarily deformed but they do not vanish.



Topology in PEPS. Gauge symmetry
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Non contractible loops can be arbitrarily deformed but they do not vanish.
New ground states of the parent Hamiltonian (which are locally equal).



Excitations = open strings
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Open strings can be arbitrarily deformed except for the extreme points

(quasi-particles).

All of them have the same energy (=2). Quasi-particles can move freely.




We recover topological order

Degeneracy of the Hamiltonian depends on topology
All GS are indistinguishable locally (no local order parameter).
Excitations behave like quasiparticles with anyonic statistics.

B w e

To move between GS: non-local operator.

Indeed one does need some extra condition for this to hold (G-isometric)

on top of
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Anyonic statistics (G non-abelian)

Moving one excitation around another one has a non-trivial effect.
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32 32 BIB2



More and more weird models

Q G =Z, Toriccode
Ofsl-0- - s
Q G =S5, Universal topological
quantum computation
Beyond groups
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Weird models. All models?
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=V"(g),w EH(G,U())

Buerschaper et al.

Can one classify all possibilities?
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the only possibility to get topological order in PEPS?

Is there a PEPS in any phase?
What happens in the 3D case?




More open problems. About RVB

When considering the real/ RVB (non- s KAXAXAXAXAXAX
orthogonal singlets) and not the QDM.
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PROBLEM: NO HAMILTONIAN
“The RVB is a wavefunction looking for a Hamiltonian” (Sondhi 2003)

Using PEPS, Schuch-Poilblanc-Cirac-PG, we found in 2012 a Hamiltonian for
which the RVB is the unique (up to topology) GS.

Question 1: Is that Hamiltonian gapped?

Question 2: |s there a better Hamiltonian (e.g. with only 2-body interaction).

The smallest known (Zhou et al. 2014) is one star L

Question 3: Can one take the AF Heisenberg interaction? H = E AR
(i.J)



QUESTIONS?



