How to Delegate Computations: The Power of No-Signaling Proofs

Ran Raz

(Weizmann Institute & IAS)

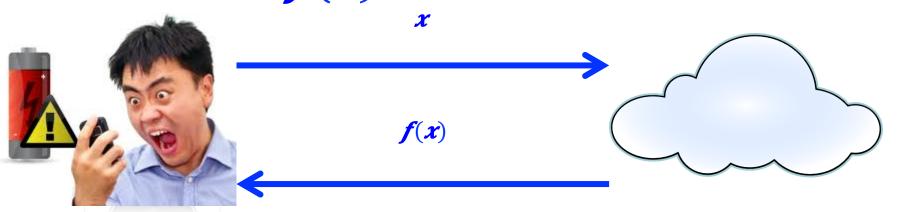
Joint work with:

Yael Tauman Kalai Ron Rothblum

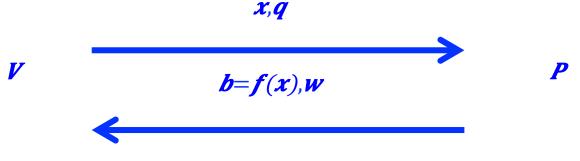
Delegation of Computation

Delegation of Computation:

Alice has $x \in \{0,1\} \uparrow n$ Alice needs to compute f(x), where f is publicly known Bob offers to compute f(x) for Alice Alice sends x to Bob Bob sends f(x) to Alice



1-Round Delegation Scheme for f:



Vaccepts or rejects

 $f \in Time[t(n)]$

- 1) Completeness: if P is honest: Pr[Vaccepts] = 1 neg
- 2) Soundness: $\forall P1 * \in Time[t1 * (n)]$, if $b \neq f(x)$:

Pr[V rejects] = 1 - neg

3) Running time of P: poly(t(n))

1) Dunning time of I/1 // +(m)

Previous Work [GKR+KR]:

If f is a logspace-uniform circuit of size t and depth d:

1-round delegation scheme s.t.:

Running time of P: poly(t)

Running time of V: O(n+poly(d))

(under exponential hardness assumptions)

Our Result:

```
If f \in Time[t(n)]
1-round delegation scheme s.t.:
Running time of P: poly(t(n))
Running time of V: n \cdot polylog(t(n))
(under exponential hardness assumptions)
```

Variants of Delegation Schemes:

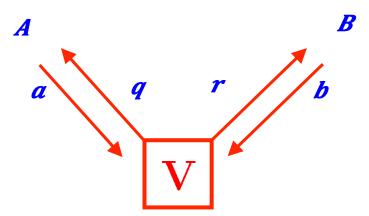
- 1-Round or Interactive Computational or Statistical soundness:
- 1-Round, Computational: This talk!
- 1-Round, Statistical: Impossible!
- Interactive, Computational: Solved! (with only 2-rounds) [Killian, Micali], (based on MIP=NEXP) [BFL]
- Interactive, Statistical: [GKR 08]
- Many other works, under unfalsifiable assumptions, or with preprocessing.

The Approach of Aiello et al.

2-Prover Interactive Proofs [BGKW]:

Provers A,B claim that $x \in L$

- V sends a query q to A and r to B no communication between A and B
- A answers by a=A(q)
- **B** answers by b=B(r)
- V decides accept/reject by q,r,a,b



MIP=NEXP (scaled down) [BFL+FL]:

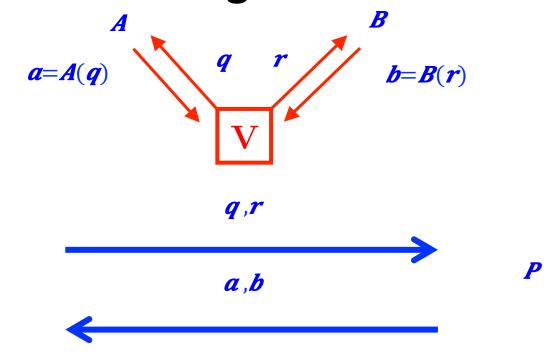
- $\forall L \in Time[t(n)], \exists 2-provers MIP s.t.:$
- 1) Completeness: if A,B are honest:

 Pr[Vaccepts]=1
- 2) Soundness: $\forall A \uparrow *, B \uparrow * \text{ if } x \notin L$: $\Pr[V \text{ rejects}] = \mathbf{1} neg$
- 3) Running time of A,B: poly(t(n))
- 4) Running time of V: O(n)
- 5) Communication: polylog(t(n))

[Aiello Bhatt Ostrovsky Sivarama 00]:

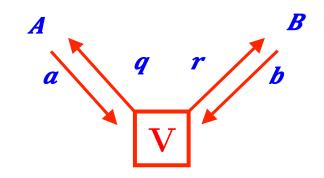
MIP ⇒ 1-Round Argument ?!?

MIP:



$$q,r$$
 = FHE of q,r (with different keys)
 α,b = FHE of $a=A(q),b=B(r)$

No-Signaling Strategies:



$$a=A(q,r,z)$$
, $b=B(q,r,z)$
(where z is a shared random string):
Given q , the random variables a,r
are independent
Given r , the random variables b,q

are independent

No-Signaling Strategies for k provers:

queries: $q \downarrow 1,...,q \downarrow k$, answers $a \downarrow 1,...,a \downarrow k$

ali=Ali(ql1,...,qlk,z), (z= random string)

For every $S \subset [k]$: Given $\{q\downarrow t : t \in S\}$, $\{q\downarrow i : i \notin S\}$, are independent

Soundness Against No-Signaling:

 $\forall no-signaling(A\downarrow1,...,A\downarrowk)\uparrow*$, if $x\notin L$: Pr[V rejects]=1-neg

We Show (using [ABOS 00]): MIP with no-signaling soundness ⇒ 1-Round Argument

(we need soundness for almost-no-signaling strategies)

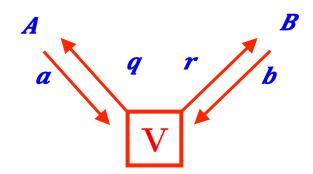
Corollary:

Interactive Proof \implies 1-Round Argument (under exponential hardness assumptions) Gives a simpler proof for [KR 09]

Challenge: Show stronger MIPs with no-signaling soundness

No-Signaling Strategies

Entangled Strategies:



- A,B share entangled quantum state $si \downarrow A,B$
- A gets q, B gets r
- A measures A, B measures B
- A answers α , B answers b
- Soundness Against Entangled Strategies:
- $\forall entangled (A \downarrow 1, ..., A \downarrow k) \uparrow * , if x \notin L$: Pr[V rejects] = 1 neg

Entangled vs. No-Signaling:

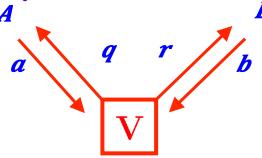
Entangled strategies are no-signaling

Signaling ⇒

information travels faster than light

Hence, no-signaling is likely to hold in any future ultimate theory of physics

No-signaling soundness is likely to ensure soundness in any future physical theory



MIPs with No-Signaling Soundness:

No-Sig cheating provers are powerful:

PSPACE \subseteq no-sig MIP \subseteq EXP no-sig MIP(2)=PSPACE (by linear programing)

In particular, all known protocols for MIP=NEXP are not sound for no-signaling

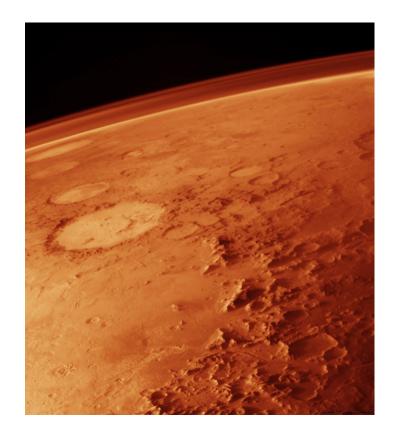
Example: Assume: V checks $a \oplus b = v \downarrow q, r$ Let $a = v \downarrow q, r \oplus z$. Let b = z. (z is random) Then V always accepts

Our Result: $no-sig\ MIP = EXP$

```
If L \in Time[t(n)], MIP s.t.:
Running time of P \downarrow 1, ..., P \downarrow k:
   poly(t(n))
Running time of V: O(n)
Number of provers: k = polylog(t(n))
Communication: polylog(t(n))
Completeness: 1
Soundness: against no-sig strategies
             (with negligible error)
```

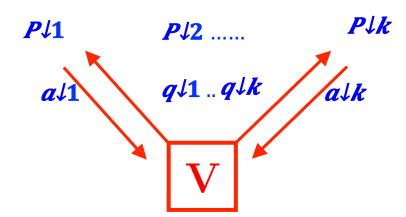
(aives soundness against entangled provers)

Delegating Computation to the Martians:



Delegating Computation to the Martians:

 $L \in Time[t(n)]$



Running time of provers: poly(t)

Running time of V: O(n)

Number of provers: k = polylog(t)

Number of provers: polylog(t)

Completeness: 1

Soundness: against no-sig strategies (with nealigible error)

Steps of the Proof

No-Signaling PCPs:

For every subset S of locations s.t. $|S| \le K$, \exists distribution $A \downarrow S$

If V queries locations $S = \{q \downarrow 1, ..., q \downarrow d\}$, the

answers are given by $(a \downarrow 1, ..., a \downarrow d) \in \downarrow R$ $A \downarrow S$

Guarantee: if $|S\downarrow1|$, $|S\downarrow2| \leq K$, then $A\downarrow$ $S\downarrow1$, $A\downarrow S\downarrow2$

agree on their intersection

Step I: Switch to PCP:

Our Result:

```
L \in Time[t(n)] PCP s.t.:
Running time of prover: poly(t)
Running time of V: O(n)
Number of queries: polylog(t)
Completeness: 1
Soundness: against no-sig strategies
with K = polylog(t)
(with negligible error)
```

Thank You!