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What we will NOT cover

• Quantum verifier and messages 

• Non-signalling provers 

• Bell violations 

• Parallel repetition theorems 

• Unentangled provers 

• …



Background

• Interactive proof systems and the 
PCP theorem 

• Entanglement and non-locality 

• Two origins combined 
• All powerful provers 
• A CS approach to non-locality
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Problem setting and notions

• Strategy 

• Game values
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Problem setting and notions

• Strategy 

• Symmetry assumption 

• 𝜌-norm 

• Measurement strategy replacement
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Example I: Mermin-Peres magic square game

• Sample and send constraint-variable pair 

• Check 

• Constraint 
• Consistency 

• Magic: 1 = ⍵* > ⍵, 2 EPR pairs 

• Binary constraint system games [CM ’12] 

• An instance of 3-SAT with 24 clauses 

• 3-SAT*

x1 x2 x3
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Example 2: Quantum 3-coloring game

• Sample and send vertices u, v to A and B 
respectively 

• Check 
• a	
  =	
  b if u	
  =	
  v, and 
• a	
  ≠	
  b if u,	
  v	
  are adjacent 

• ∃ graph G, 1 = ⍵*(G) > ⍵(G) 

• 3-COLORING* 

• Entanglement undermines soundness 

• A bug or a feature?
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Entanglement undermines soundness

• Two-player XOR games 

• Unique Games with Entangled Provers are Easy 

• Unfixable bug…

⊕MIP*(2,1) ⊆ EXP

Tsirelson’s theorem: h�|Xs ⌦ Yt|�i = xs · yt

⊕MIP*(2,1) ⊆ QIP(2) ⊆ PSPACE

[CHTW ’04]

[Weh ’06] [JUW ‘09]

[KRT ’08]

⊕MIP (2,1) = NEXP [Hås ’01]

“Quantum rounding” of SDP from UGC



Entanglement resistant techniques

• Consistency check 

• Confusion check 

• A third player 

• Bob’ 

• 2-out-of-3 

• PIR, NP ⊆ ⊕MIP*(2)  [CGJ ‘09]

www.hammacher.com



Consistency check

• Send each player the same question q and expect the 
same answers 

• 2-player consistency check 

• Quantum 3-coloring game 

• 3-player consistency check 

• Linearity test and multilinearity test 

• PCP simulation test

[IV ’12]

[IKP+ ’08]



Consistency as a measure of “closeness”

• For two measurements A and B, define 

• Inconsistency as a “distance” of measurements
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Confusion check

• Sample two questions q, q’.	
  Send the unordered pair q,	
  q’ 
to A and q to B 

• Used to prove NP-hardness of computing ⍵* to inverse 
polynomial precision 

• Lemma CONF(A,B) =
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A third player

• Monogamy of entanglement 

• Bob’ construction 

• NP-hardness of 3-player games 

• Effect on the magic square game 

• 2-out-of-3 

• Used with low degree test in [Vid ’13]

AB B’

[KKM+ ’08]



NP-hardness of exact computation of ⍵*

• It is NP-hard to distinguish 

• ⍵* = 1 and 

• ⍵* ⩽ 1	
  −	
  O(1/nc) 

• State invariant lemma with Bob’ 

• Sequential measurement rounding 

• Bad soundness
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MIP = NEXP ⊆ MIP* [IV ’12]

• Entangled provers are at least as expressive as their 
classical counterpart 

• Any MIP protocol can be modified immune to 
entanglement 

• Bug fixed for once and for all 

• The best one can hope for using the entanglement 
resistant techniques



What to prove?

• Follows the proof of NEXP ⊆ MIP of [BFL ’91] 

• Multilinearity test is sound against entangled provers 

• Consistency test 

• Multilinearity test (axis aligned linearity test) 

• Classically: provers act according to a common 
multilinear function



What to prove?

• What is the right thing to prove in the quantum setting?
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Proof outline

• Remove the dependence on xi one by one by induction 

• Error (in terms of inconsistency) grows exponentially. 
Need an (active) consolidation step using SDPs 

• Pasting lemma + consolidation (self-improvement) lemma 

• The base step of the induction



The base step

• The statement 

• Construction of the B measurement
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Details
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Upper bounds?

• Nothing known 

• Possible approaches 

• Random projections? 

• Non-commutative Positivestellensatz 

• Connes' embedding problem and Tsirelson's problem

⍵* ⍵f≟ SDP Hierarchy

[DLTW ‘08]

[JNP+ ‘11]  [Fri ’12] 



Binary Constraint System Games

• The bug vs. feature question 

• Exact case characterization

A BCS game has a perfect 
quantum strategy

the corresponding BCS has a 
quantum satisfying assignment

if and only if

[ C M  ‘ 1 2 ,  A R X I V : 1 2 0 9 . 2 7 2 9 ]
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Quantum satisfying assignment

• Rewrite constraints as polynomials over reals



Quantum satisfying assignment

• Rewrite constraints as polynomials over reals

x1 � x2 = 0,

x1 � x2 = 1.

x1 + x2 � 2x1x2 = 0,

x1 + x2 � 1 = 0.



Quantum satisfying assignment

• Rewrite constraints as polynomials over reals

x1 � x2 = 0,

x1 � x2 = 1.

x1 + x2 � 2x1x2 = 0,

x1 + x2 � 1 = 0.

Quantum Satisfying Assignment xj 7! Xj



Quantum satisfying assignment

• Rewrite constraints as polynomials over reals

x1 � x2 = 0,

x1 � x2 = 1.

x1 + x2 � 2x1x2 = 0,

x1 + x2 � 1 = 0.

(a) Satisfy every polynomial constraints. 
(b) For all j, Xj2=Xj. 
(c) Each pair of operators Xj, Xk appearing in 

the same constraint commute.

Quantum Satisfying Assignment xj 7! Xj



Quantum satisfying assignment

• Rewrite constraints as polynomials over reals

x1 � x2 = 0,
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x1 + x2 � 2x1x2 = 0,
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Quantum satisfying assignment

• Rewrite constraints as polynomials over reals

x1 � x2 = 0,

x1 � x2 = 1.

x1 + x2 � 2x1x2 = 0,

x1 + x2 � 1 = 0.

(a) Satisfy every polynomial constraints. 
(b) For all j, Xj2=Xj. 
(c) Each pair of operators Xj, Xk appearing in 

the same constraint commute.

Quantum Satisfying Assignment xj 7! Xj

Locally 
Commutative 

Condition

Quantum 
Satisfiability



Magic square revisited

• Quantum satisfying assignment for 
magic square 

• Anti-commutativity gadget 

• Glue magic squares together 

• Add a trivial constraint 

• 3-SAT* with such trivial constraints
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Reductions of *-problems



Theorem. 3-SAT* is Karp reducible to 3-COLORING*.

Reductions of *-problems
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Triangular prism gadget

Commutativity gadget

2. Extendibility

Lemma. The only constraint on the coloring operators of 
vertices a and e in the gadget is that they commute.

Proof idea: Commutator is in the ideal generated by the 
constraints. Non-commutative Grobner basis.
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Commutativity gadget

2. Extendibility
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Triangular prism gadget

Commutativity gadget

2. Extendibility

Lemma. The only constraint on the coloring operators of 
vertices a and e in the gadget is that they commute.
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The complexity of 3-SAT*

• NP-hardness of 3-SAT* 

• Relation to the confusion check with x1 and x2 

• 3-SAT* without confusion check is NP-hard (with inverse 
polynomial gap) 

• Not known to be decidable 

• Relate it to approximate case?

x1 _ x2 _ yCommutativity gadget

No dimension bound



• k-SAT*, 1-in-3-SAT*, KOCHEN-SPECKER*, 
3-COLORING* and CLIQUE* are as hard as 3-SAT* 

• 2-SAT* and HORN-SAT* are in P 

• Affine-SAT* or parity BCS games? 

• EPR pairs are optimal for perfect BCS games

Hardness of the *-problems

[Ark ’12]

Schaefer’s dichotomy theorem?

A nonlocal NP theory



Yet another quantum PCP theorem/conjecture?

• Hardness of approximation 

• Constant approximation of ⍵* is NP-hard 

• Goal achieved with 3 players 

• Constant approximation of ⍵* is as hard as 
deciding ⍵*=1? 

• Nonlocal PCPs? (as non-signalling PCPs) 

• Locally-commutative PCPs?

[Vid ’13]
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Open problems

• Upper bound of MIP* 

• NEXP in MIP*(2,1)? 

• 3-player vs. 2-player 

• Power of 2-out-of-3 MIP*? 

• BCS related problems 

• …


