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Graph structures for representing
and analysing genetic variation
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What is genetic variation data?

.

Graphs of primary sequence



What is this talk about?

| want to convince you that there are types of variation that are not well
represented by the binary incidence or genotype likelihood models.

| want to convince you that this variation is interesting from an
evolutionary and phenotypic perspective, hence the need for methods that
can access and analyse such variation.

| want to convince you that graph-based approaches are a powerful way to
represent and analyse both known and novel sequence.

— Reference graph for human variation.
— Assembly of hypervariable genes.



Example |: The vargenes of P. falciparum
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Alignment of P falciparum DBLo domains



There is little structure in the basic alighnment
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Mosaic structures reveal ancient origin for hypervariable genes
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Example II: Homology and paralogy in the Class | HLA genes
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Example II: Homology and paralogy in the Class | HLA genes
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Example II: Homology and paralogy in the Class | HLA genes

HLA-B
200 alleles, k =31
Coding sequence



Example II: Homology and paralogy in the Class | HLA genes

HLA-C
200 alleles, k =31
Coding sequence



Example II: Homology and paralogy in the Class | HLA genes

HLA-A, HLA-B, HLA-C
600 alleles, k = 31
Coding sequence



Example Ill: Structural variation in the HLA Class Il region
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Motivation and questions

e One of the most powerful insights from population genetics is that novel
sequences tend to look like those we’ve already seen, though with
mutation and recombination.

 Moreover, relatively few sequences are often needed to capture the vast
majority of sequence space.

e The big question is how to formalise this relationship so that we can best
assemble and interpret the genome of the next sample.



Graph structures for representing sequence and variation

Multiple sequence alignment

Statement of homology No statement of homology



A population reference graph (PRG) for the HLA

Inputs

|

— Reference contigs

Classical HLA alleles

1000 Genomes SNPs




Features of the PRG

e |tisacompression of the input data
— Long-range information can be retained if necessary as coloured paths

e |tisagenerative model

— New genomes can be simulated by choosing paths through the PRG

e |ts structure suggests an efficient method for genome inference in a novel
sample

— Use an HMM where emissions are the reads or a summary of them (diagnostic
kmers associated with each string)

— Current implementation is not optimal, but goal was to re-use as much of
current tool chain as possible.



Implementation

Stage 1

Reads converted to
cleaned de Bruijn graph

Yos

De Bruijn Graph (dBG)



Evaluation

Compare to Stampy/Platypus as ‘best-practice’ mapping-based approach

Evaluate on four data types
— SNP array data
— Sequence based typing (Sanger) of classical HLA alleles
— Kmer recovery from high throughput sequencing data
— Long-read (10kb) Moleculo data

Two sets of samples
— NA12878

— Five cohort samples from a GSK drug-safety study (CS2-6) [Not Moleculo]



Comparison to SNP array data

Low—diversity concordance
(SNP array genotypes)
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Comparison to Sanger sequence at classical HLA alleles

High—diversity concordance
(Classical HLA gene exons)
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Recovery of kmers across HLA (NA12878)

NA12878 spatial kMer recovery rate
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Zoom-in of kmer recovery

NA12878 spatial kMer recovery rate
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Comparison of Moleculo contigs (NA12878)

Contig alignment
edit distance
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Evidence for ‘missing’ variation in Class Il region
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Extending the method — A new data structure

e We have end-to-end prototype for a population reference graph and its use to
assemble variation within the HLA region.

e The current implementation is not optimal in a few regards:
— Use of de Bruijn graph throws away longer-range read data

— Two step chromotype -> re-mapping is inefficient and doesn’t add much

e Both issues can be solved with a novel data structure: annotated de Bruijn graph
— Related to idea of Conway and Bromage (2011).

A C
Structure enables error
correction and use of
B D paired-end information

Sample 0 | Samples 1,2

AO==QC A?/)C
B O==0D B oD




k-agnostic data structure —approximating a string graph

Median Contig Length (bp)
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Simulation: Staph Genome,
100bp singled-ended error-
free reads, 50x coverage

Basic de Bruijn graph —c. 50Gb for
one human.

One additional human c. 1Gb.
Should scale roughly as log(n).
Easy to operate — “drop-in” model.



Example: Using novel structure to assemble var genes

Sample Algorithm Contigs Max length Nso Junctions resolved
PGoos1_C (3D7) supernode 3544 3286 194 ©
PGoos1_C (3D7) single-end 1874 6437 591 5175 (59%)
PGoos1_C (3Dy) paired-end (one-way) 1564 7412 982 7498 (72%)
PGoos1_C (3D7) paired-end (two-way) 1517 7352 993 7552 (73%)
PGoos2_C (HB3) supernode 1710 4512 201 O
PGoos2_C (HB3) single-end 966 5007 903 2559 (59%)
PGoos2_C (HB3) paired-end (one-way) 802 5062 1503 3748 (72%)
PGoos2_C (HB3) paired-end (two-way) 786 5062 1526 3998 (74%)
PGoo63_C (progeny) supernode 2802 3114 191 O
PGoo63_C (progeny) single-end 1430 5807 697 4665 (63%)
PGoo63_C (progeny) paired-end (one-way) 1180 6429 1185 6413 (74%)
PGoo63_C (progeny) paired-end (two-way) 1146 7300 1229 7044 (77%)




Contigs identify recombinant sequences among progreny

Ectopic recombination event
Progeny (PG0063-C) /
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Kmer sharing demonstrates complexity of classical HLA allele sequence

e Structure of graph along CDS of 100 A, 100 B and 100 C alleles
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Annotated De Bruijn Graph: Variant calling

|dentify forks in the graph
Follow each path in each sample
Find where contigs join to find bubbles

T
a) b) ceacTTac c) A
GGACTCAC
GGGCTCAC
AT AC GC C

a) b) polymorphisms in the population; c) variant induced graph structure
d) Contigs assembled; e) contigs combined to reconstruct bubbles



