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Why Deep Networks?

Q: Why are deep networks successful?

A1: They have a lot of expressive power?

But: why do we need to such power of expression? and how
to find them?

A2: They generalize well?

But: Most of Theory is too general. Computational
complexity unclear.

A3: It is about the Data.

In particular, they work well and are needed on Data that is
generated hierarchically.
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Data Models and Deep Networks

Goal: Find data models that explain why deep nets work.

Elchanan Mossel Data Models and Deep Networks



The Dream

Goal: Find data models that explain why deep nets work.

=⇒ understanding of why/when deep networks work.

=⇒ provable algorithms for inference.

=⇒ robust provable algorithms for inference.

=⇒ Proof that depth is needed.
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Criteria

3 important criteria from a theory perspective:

1. Realism: Reasonable data models.

2. Reconstruction: Provable efficient algorithms for inference.

3. Depth: Proof that depth is needed.

Next we will explore some models suggested along this axis.
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Candidate 1: The Pure Theorist Model

TCS: Data: (xi , yi ), where xi are i.i.d. ∼ U({−1, 1}n) and

yi = f (xi ) where f = poly(n) size depth d circuit.

Circuit has (unbounded fan) AND/OR/NOT gates.

Thm(Hastad, Rossman, Servedio, Tan):

An explicit O(n) size depth d circuit labeling the data s.t.:

Any circuits g depth d − 1 with P[g(x) 6= f (x)] ≤ 0.5− ε
must be of size exp(nΩ(1/d)).

Score?

Score: Depth: 10, Reconstruction: 0, Realsim: 0.
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Candidate 1’: A DL Theorist Perspective

Slide by Telgarsky:

Consider the tent map

�(x) := �r(2x) � �r(4x � 2) =

(
2x x 2 [0, 1/2),

2(1 � x) x 2 [1/2, 1].

1

0 1

�.

1

0 1

�2 = � ��.

1

0 1

�k.

What is the e↵ect of composition?

f(�(x)) =

(
x 2 [0, 1/2) =) f(2x) = f squeezed into [0, 1/2],

x 2 [1/2, 1] =) f
�
2(1 � x)

�
= f reversed, squeezed.

�k uses O(k) layers & nodes, but has O(2k) bumps.
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Candidate 1’: A DL Theorist Perspective

Telgarsky: xi ∼ U[0, 1] and yi = f (xi ).

Thm(Telgarsky):

Explicit O(d2) size/depth RELU f net labelling the data s.t.

Any RELU net g of depth d has E [|f (x)− g(x)] ≤ 0.01 must
be of size exp(Ω(d)).

Score?

Score: Depth: 9, Reconstruction: 0, Realsim: 2.

Proof is elegant :)
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Candidate 2: Hacker models

Data is also generated by a network:

Ex 1: Reversible models: data: ⇓, inference: ⇑.

Ex 2: GANS (Goodfellow), Variational Auto encoders, ...

Score?

Score: Realsim: 9, Reconstruction: 2, Depth: 2.
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Candidate 2’: Theory Hacker model

Arora et al: Random, Sparse generative models.

Thm: Each pair of layers is a (noisy) auto encoder.

Thm: Efficient algorithm for learning the network.

Score?

Score: Realsim: 5, Reconstruction: 9, Depth: 4.
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Some intuition

Sparsity + Randomness =⇒ unique neighbor property =⇒
if a node is 1 at level 2 most of its neighbors at level 1 have it
as the only neighbor that is on.

=⇒ auto-encoding property.

=⇒ sisters/brothers tend to fire together.

Hebb: “Things that fire together wire together”

Also: a key property in recovery tree graphical models
(Neighbor Joining ...)
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Candidate 3: Scattering Transform

Mallat, Bruna+Mallat: Data generative model S that is:

Continuous with respect to natural geometric deformations at
different scales.

Generative process: Energy moves from high frequencies to
low frequencies.
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Candidate 3: Scattering Transform

Slide from Joan Bruna:

     Scattering Convolutional Network

| |f ⇧ ⇤j1,�1 | ⇧ ⇤j2,�2 | ⇧ ⇥J
�j1, j2
��1, �2

|WJ |

|f ⌅ ⇤j1,�1 | ⌅ ⇥J
�j1
��1| |f ⇥ �j1,�1

| ⇥ �j2,�2
|

|WJ |
|f ⇥ �j1,�1

|

f ⇥ �J
|WJ |

| |f ⇥ �j1,�1
· · · | ⇥ �jm+1,�m+1

|
Cascade of contractive operators.

· · · · · ·
| |f ⇥ �j1,�1

| · · · ⇥ �jm,�m
|

|WJ | | |f ⇧ ⇤j1,�1 | · · · ⇧ ⇤jm,�m | ⇧ ⇥J
⇥j1...jm

⇥�1...�m

f
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Candidate 3: Scattering Transform

Slide from Joan Bruna:

Properties of Scattering Moments
• Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]

• Cascading non-linearities is necessary to reveal higher-
order moments.

Elchanan Mossel Data Models and Deep Networks



Candidate 3: Scattering Transform

Mallat, Bruna+Mallat: Data generative model S that is:

Continuous with respect to natural geometric deformations at
different scales.

Generative process: Energy moves from high frequencies to
low frequencies.

Inference process: High frequency information is recovered via
a recursive non-linear procedure.

Depth: Bruna: “Cascading non-linearities is necessary to
reveal higher- order moments”

But this is not completely formal.

Score?

Score: Realsim: 8, Reconstruction: 5 (see e.g. Cohen and
Welling), Depth: 5.
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The Question Remains

Q: Is there

A natural data generative process with

Provable algorithms for learning classifier?

and where classifier provably requires depth?

It would be nice if classifier runs in linear time.
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Information Flow on Trees

Consider the following process
on a tree.

Color the root randomly.

Repeat: Copy color of parent
with probability θ. Otherwise,
chose color ∼ U[q].

In this talk, we will only
consider full binary trees.

More generally, we can consider
any Markov chain along the
edges and θ = 2nd eigenvalue
of transition matrix
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Is this process natural?

Bad model of speech/images.

But: Nice abstraction of multi-layer generative processes.

In fact, standard model of evolutionary dynamics of species
(since 1970s: Cavender-Farris-Neyman model).

A standard multi-layered model in statistical physics (since the
1920s: Ising Model on the Bethe lattice).

Realsim?

Overall: Realism: 6.
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What is the best classifier

Compute Bayes Posterior by running Belief Propagation.

Runs in linear time.
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Provable Algorithms for learning classifier

Learning the classifier is the same as learning Phylogenies.
Much is known in very general setups.

ESSW 90s: Polynomial time algorithm for learning graphical
model.

M-04, M-Steel-05, DMR-10: Phase transitions for sampling
complexity from logarithmic to polynomial.

M-Roch-05: PAC learning.

Reconstruction Score?

Reconstruction Score: 9.
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Depth Lower bounds

Note that the generative model has depth O(log n), so cannot
expect better than log n lower bounds.

Maybe the right scaling?

VGGNet (from 2014) has 16 layers with > 100M parameters.

Maybe not: ResNet (from 2015) beat it with 152 layers but
only 2M parameters.

Next we will discuss some recent depth lower bound for this
model (Moitra-M-Sandon).
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AC0

AC0 := class of bounded depth circuits with AND/OR
(unbounded fan) and NOT gates.

Thm: Moitra-M-Sandon-19:

AC0 cannot classify better than random.

Is this trivial?

Maybe not: Known that BP classifies better than random,
when 2θ2 > 1.

Also: Thm MMS-19: AC0 generates leaf distributions.
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TC0

TC0 := like AC0 but with Majority gates.

“Bounded depth deep nets”.

Thm (MMS-19): When q = 2 and θ < 1 is large enough, TC0

classifies as well as BP.

Conj: This is true for all θ when q = 2.

So maybe we can classify optimally in TC0?

Maybe bounded depth nets suffice?
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NC1

NC1 := class of O(log n) depth circuits with AND/OR (fan 2)
and NOT gates.

Known that TC0 ⊂ NC1. Open if they are the same.

Thm (MMS-19): One can classify as well as BP in NC1.

Thm (MMS-19): There is a broadcast process for which

classifying better than random is NC1-complete.

So, unless TC0 = NC1, log n depth is needed.

Depth score?

Depth score: 7.
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The KS bound and Circuit Complexity

The threshold 2θ2 = 1 is called the Kesten-Stigum threshold.

Above this threshold it is known that one neuron can classify
the root better than random (Kesten-Stigum-66).

Below this threshold, one neuron cannot (M-Peres-04).

Below this threshold, with enough i.i.d. noise on the leaves,
BP becomes trivial (Janson-M-05).

Related to “Replica Symmetry Breaking” in statistical physics
models (Mezard-Montanari-06).

Conjecture (Moitra-M-Sandon): For any broadcast process,
below the KS bound and where BP classifies better than
random, classification is NC1-complete.
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Some intuition for AC0 hardness

Standard technique in lower bounds: apply random
restrictions and show that

Circuit becomes constant.
Your function is not.

The tree broadcast process provides natural recursive random
restrictions:

Each child gets value 0 or 1 with probability (1− θ)/2.
All other children are assigned the same value as the root.

To generate: Go over all noise patterns that result in a certain
value.
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Some intuition for TC0 results

Circuit construction:

Perform majority on big sub-trees.
Run constant level BP on majorities.

Technical ingredient (M-Neeman-Sly-14): BP with noise
classifies as well as BP without noise if θ close enough to 1
and q = 2.
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Some intuition for NC1 hardness

Start from the word problem over A5 which is known to be
NC1-complete.

Show that an average version of the problem is also
NC1-complete.

Show that BP for an appropriate broadcast process solves this
problem.

Interestingly, broadcast process has second eigenvalue 0.
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The KS bound and Circuit Complexity
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Another model where the KS bound plays a role

Next we will discuss a related semi-supervised structure learning
where the KS bound plays a role.
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Phylogenetic Reconstruction

In Phylogenetic Reconstruction, want to reconstruct the a
Tree T .

When

T is a binary (d = 2) tree and
Data = sequences of colors ∈ [q] at leaves.

Sequences of colors are generated from the broadcast process
above.

E.G. q = 4 and colors are A,C ,G and T .
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The Phylogenetic Inference Problem

1 4 5 3 2 

A T T T A 
A G C G G 
C A C A C 

C C C T C 
G C C C C G 
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Broadcasting on trees and Phylogenetic trees

Picture courtesy of Costis Daskalakis

30mya 

20mya 

10mya 

today 

Three different tasks

Reconstruction: Given a known tree, reconstruct ancestral
sequence from sequences at the leaves.

Phylogeny Recovery: Given sequences reconstruct the tree.

Semi-supervised learning:
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A semi supervised setting

First	Dog
First	Cat

L
a
b
el

DOG DOG CAT CAT
??? ??? ??? ???
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Shallow Algorithms

Theorem (M-04 ... ; M-16)

Suppose that 2θ2 > 1 then for all q there is an algorithm that
labels all labelled data correctly. Moreover, this algorithm is
shallow.

Theorem (M-16)

Suppose that 2θ2 < 1 then it is information theoretically
impossible to classify better than random.

A Shallow algorithm cannot use the correlation between
different features in the labelled data.

Can use all the unlabelled data.
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Deep Algorithms

Theorem (M-16)

Suppose that 2θ2 < 1 then it is information theoretically
impossible for any shallow algorithm to label 0.6 of the unlabelled
data correctly.

Theorem (M-16)

Suppose that 2θ > 1 and q is large enough, then then it is possible
to label all the unlabelled data correctly.

Separation between deep and shallow learning.
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What is a shallow algorithm?

A shallow algorithm is an algorithm that cannot use
interaction between the features of the labelled data. More
formally:

Let A denote the unlabelled data and B denote the labelled
data.

The input to the shallow algorithm is:

(
σh(u) : u ∈ A

)
,

(
n`(j , a) : a, 1 ≤ j ≤ k

)
, n`(j , a) :=

∣∣∣{v : v ∈ B, L(v) = `, σvj = a}
∣∣∣
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More complex models?

Do the same results hold for more complex models?
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The phylogenetic Model Zoom Out
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The phylogenetic Model Zoom In

ACCTAGTCATCAGTCA….

ACCTCGTCAACAGTCA….

….
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Adding Interaction Between Features

a b	c a f a c b g	a c d a

a g	c a a a c b g a c d f

Mutation	=	nuisance	variables

Convolution	:	[q]2 ->	[q]2

b	d	d	g	c	c		f	b	d	e	d	f	
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Deep Algorithms

The following two theorems hold also when adding interaction
between features.

Theorem (M-16)

Suppose that 2θ2 < 1 then it is information theoretically
impossible for any shallow algorithm to label 0.6 of the unlabelled
data correctly.

Theorem (M-16)

Suppose that 2θ > 1 and q is large enough, then then it is possible
to label all the unlabelled data correctly.

Separation between deep and shallow learning!

Conjecture: Separation is typically much stronger.
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Natural Challenges

More realistic models and testing on data?

E.G: Malach-Shalev Schwartz (18) - image models with
provable reconstruction algorithms.

But no depth lower bounds.
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Malach-Shalev Schwartz

Figure 2: Left: Image generation process example. Right: Synthetic examples generated.

the lower-level image. If we succeed in doing so multiple times, we can infer the
topmost semantic image in the hierarchy. Assuming the high-level distribution G0 is
simple enough (for example, a linearly separable distribution with respect to some
embedding of the classes), we could then use a simple classification algorithm on the
high-level image to infer its label.

Unfortunately, we cannot learn these semantic classes directly as we are not given
access to the latent semantic images, but only to the lowest-level image generated by the
model. To learn these classes, we use a combination of a simple clustering algorithm
and a gradient-descent based algorithm that learns a single layer of a convolutional
neural network. Surprisingly, as we show in the theoretical section, the gradient-descent
finds an embedding of the patches such that patches from the same class are close to
each other, while patches from different classes are far away. The clustering step then
clusters together patches from the same class.

4.1 Algorithm Description
The algorithm we suggest is built from three building-blocks composed together to
construct the full algorithm: (1) clustering algorithm, (2) gradient-based optimization
of two-layer Conv net and (3) a simple classification algorithm. In order to expose the
latent representation of each layer in the generative model, we perform the following
iteratively:
(1) Run a centroid-based clustering algorithm on the patches of size

p
s ⇥p

s from the
input image defined by the previous step (or the original image in the first step), w.r.t.
the cosine distance, to get ` cluster centers.
(2) Run a convolution operation with the cluster centroids as kernels, followed by ReLU
with a fixed bias and a pooling operation. This will result in mapping the patches in the
input images to (approximately) orthogonal vectors in an intermediate space R`.
(3) Initialize a 1x1 convolution operation, that maps from ` channels into n channels,
followed by a linear layer that will output |Y| channels (where it’s input is the n ⇥
m ⇥ m tensor flattened into a vector). We train this two-layer subnet using a gradient-
based optimization method. As we show in the analysis, this step implicitly learns an
embedding of the patches into a space where patches from the same semantic class are
close to each other, while patches from different classes are far away, hence laying the

5
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Questions ??

Thank you
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Proof Ideas

•  Upper bound for small mutation:  
1) distance estimation 
2) reconstruct one (or a few) level(s) 
3) infer sequences at roots 

(1/2) Depth 

( )Depthexp  need 2
1∝k

Lower bound for high mutation: 
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The formal Model

Let T = (V ,E ) be a d-ary tree with h levels.

To each node v ∈ V associate a representation σ(v) ∈ [q]k

The process (σ(v))v∈V is a Markov Chain on the tree.

Let L(v) denote the set of labels of v .

Assume: the set of nodes with label ` are all the nodes below
a certain node v`.

Semi-supervised inference problem: Given
1 Labeled data: [(σ(v), L(v)) : v ∈ DL] and
2 Unlabelled data [(σ(v)) : v ∈ DU ] where DL ∪ DU are the

leaves of the tree.

Find L(v) for all (most) v ∈ DU .
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Examples

Let L(v) ∈ Dog, Cat, Labrador etc.

Let σ(v) be the DNA sequence of leaf v , or

Let σ(v) be an image of leaf v etc.
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The Markov Chain - Easy Version

Representations evolve from one layer to next via:
1 If v → u, the given σ(v), it holds for all 1 ≤ i ≤ k

independently that
2 σ(u)i = σ(v)iB(v) + (1− B(v))U(v) where B(v) are i.i.d.

Bernoulli θ and U(v) are i.i.d U[q].

This is a standard model of evolution in biology.
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The Markov Chain - Hard Version

Representations evolve from one layer to next via:
1 If v → u, the given σ(v), for all 1 ≤ i ≤ k independently set
2 τi = σ(v)iB(v) + (1− B(v))U(v) where B(v) are i.i.d.

Bernoulli θ and U(v) are i.i.d uniform.
3

(σ(v)2i−1, σ(v)2i ) = P
(
τΣ(2i−1), τΣ(2i)

)

4 where P is a permutation on [q]2 that depends only on the
level and

5 Σ is a permutation of the k positions that depends on the level
h′

6 Major example k is a power of 2 and Σ is the involution that
exchanges a and a⊕ 2h′ .

7 Models interaction between features as well as the non
canonical nature of representations.
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From one object to many

Tree of objects.

Sister objects share all representations but the last level.

Cousins share all representations but last two levels etc.

E.G.: Top node- mammals, a lower node: dog etc.
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The Inference Problem

Data: two collections of objects:

(
σh(u) : u ∈ A

)
,

((
σh(u), L(u)

)
: u ∈ B

)

where L(u) is the label of u (e.g. dog, cat, etc.)

Goal: Find L(u) for u ∈ B.

This is a semi-supervised learning problem.
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(Technical) Assumptions

The tree of objects is a d-ary tree of h levels.

For any label a:

The set of nodes labelled by ` consists of all nodes descending
from some node v`.
There are u1, u2 ∈ B whose most common ancestor is v` such
that L(u1) = L(u2) = `.

=⇒ if location of leaves in tree is known, can label A
correctly.
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Main Questions

When can we label leaves correctly?

Which algorithm can do so?

Do they have to be “deep”?
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What is a shallow algorithm?

A shallow algorithm is an algorithm that cannot use
interaction between the features of the labelled data. More
formally:

Let A denote the unlabelled data and B denote the labelled
data.

The input to the shallow algorithm is:

(
σh(u) : u ∈ A

)
,

(
n`(j , a) : a, 1 ≤ j ≤ k

)
, n`(j , a) :=

∣∣∣{v : v ∈ B, L(v) = `, σvj = a}
∣∣∣
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Main Results and Conjectures

Assume q →∞.

Positive: θ > b−1 =⇒ tree recovery and correct labelling.

Negative: θ < b−1/2 =⇒ shallow algorithms fail.

Conjecture: θ < 1− exp(−Ch) =⇒ shallow algorithms fail.
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