# Nearest Neighbors I: Regression and Classification

Kamalika Chaudhuri

University of California, San Diego

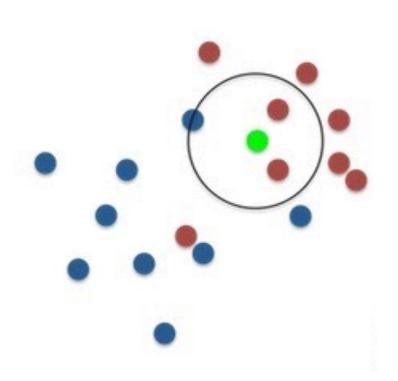
## Talk Outline

- Part I: k-Nearest neighbors: Regression and Classification
- Part II: k-Nearest neighbors (and other nonparametrics): Adversarial examples

# k Nearest Neighbors

**Given:** training data  $(x_1, y_1), \dots, (x_n, y_n)$  in X x {0, 1} query point x

Predict y for x from the k closest neighbors of x among  $x_i$ 



#### Example:

k-NN classification: predict majority label of k closest neighbors

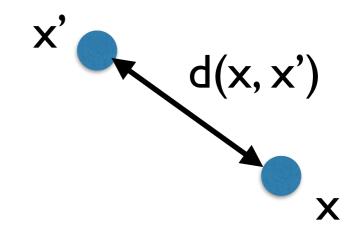
k-NN regression: predict average label of k closest neighbors

## The Metric Space

Data points lie in metric space with distance function d

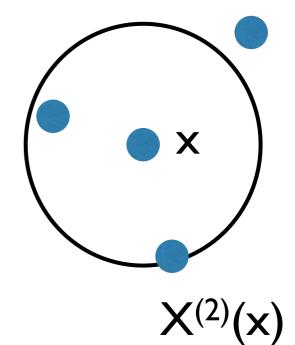
#### **Examples:**

 $X = R^{D}$ , d = Euclidean distance $X = R^{D}$ ,  $d = I_{p}$  distance Metric based on user preferences



#### Notation

 $X^{(i)}(x) = i$ -th nearest neighbor of x  $Y^{(i)}(x) = label of X^{(i)}(x)$ 



# **Tutorial Outline**

- Nearest Neighbor Regression
  - The Setting
  - Universal Consistency
  - Rates of Convergence
- Nearest Neighbor Classification
  - The Statistical Learning Framework
  - Consistency
  - Rates of Convergence

# **NN Regression Setting**

Compact metric space (X, d) Uniform measure  $\mu$  on X (for now)

# **NN Regression Setting**

Compact metric space (X, d) Uniform measure  $\mu$  on X (for now)

Input: Training data  $(x_1, y_1), ..., (x_n, y_n)$ where:  $x_i \sim \mu$  $y_i = f(x_i) + noise$ unknown f

# **NN Regression Setting**

Compact metric space (X, d) Uniform measure  $\mu$  on X (for now)

Input: Training data  $(x_1, y_1), ..., (x_n, y_n)$ where:  $x_i \sim \mu$  $y_i = f(x_i) + noise$ unknown f

**k-NN Regressor:** 
$$\hat{f}_k(x) = \frac{1}{k} \sum_{i=1}^k Y^{(i)}(x)$$

# Universality

Input: Training data  $(x_1, y_1), ..., (x_n, y_n)$ where  $y_i = f(x_i) + noise$ 

**k-NN Regressor:** 
$$\hat{f}_k(x) = \frac{1}{k} \sum_{i=1}^k Y^{(i)}(x)$$

What f can k-NN regression represent?

# Universality

Input: Training data  $(x_1, y_1), ..., (x_n, y_n)$ where  $y_i = f(x_i) + noise$ 

**k-NN Regressor:** 
$$\hat{f}_k(x) = \frac{1}{k} \sum_{i=1}^k Y^{(i)}(x)$$

#### What f can k-NN regression represent?

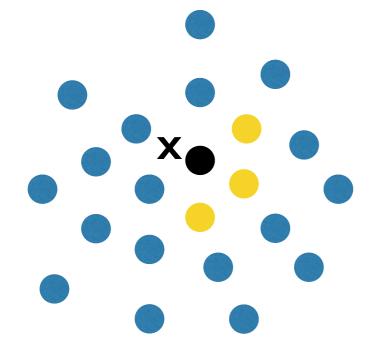
**Answer:** Any f, provided k grows suitably with n [Devroye, Gyorfi, Kryzak, Lugosi, 94]

## More Formally...

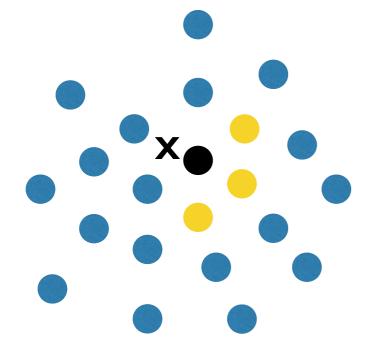
k<sub>n</sub> NN Regression: when k grows with n

Theorem: If  $k_n \to \infty$  and if  $k_n/n \to 0$ , then for any f,  $\mathbb{E}_{X \sim \mu}[|f(X) - \hat{f}_{k_n}(X)|] \to 0$ as  $n \to \infty$ 

#### k<sub>n</sub> NN Regression is universally consistent

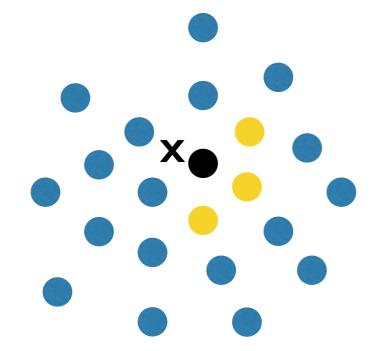


As n grows,  $X^{(i)}(x)$  move closer to x (continuous  $\mu$ )



As n grows,  $X^{(i)}(x)$  move closer to x (continuous  $\mu$ )

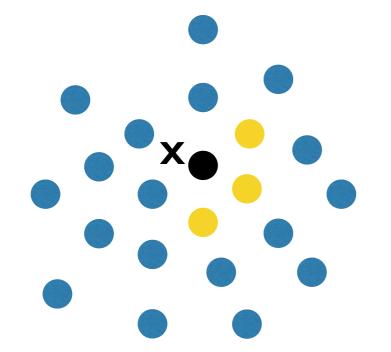
If  $k_n$  is constant or grows slowly  $(k_n/n \to 0)$  then  $X^{(i)}(x) \to x, i \le k_n$ 



As n grows,  $X^{(i)}(x)$  move closer to x (continuous  $\mu$ )

If  $k_n$  is constant or grows slowly  $(k_n/n \to 0)$  then  $X^{(i)}(x) \to x, i \le k_n$ 

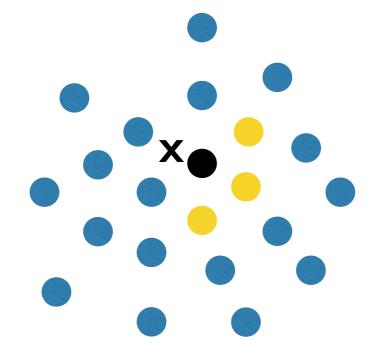
If f is continuous, then  $f(X^{(i)}(x)) \to f(x), 1 \le i \le k_n$ 



As n grows,  $X^{(i)}(x)$  move closer to x (continuous  $\mu$ )

If  $k_n$  is constant or grows slowly  $(k_n/n \to 0)$  then  $X^{(i)}(x) \to x, i \le k_n$ 

If f is continuous, then  $f(X^{(i)}(x)) \to f(x), 1 \le i \le k_n$ If  $k_n \to \infty$ , then  $\frac{1}{k_n} \sum_{i=1}^{k_n} (f(X^{(i)}(x)) + \text{noise}) \to f(x)$ 



As n grows,  $X^{(i)}(x)$  move closer to x (continuous  $\mu$ )

If  $k_n$  is constant or grows slowly  $(k_n/n \to 0)$  then  $X^{(i)}(x) \to x, i \le k_n$ 

If f is continuous, then  $f(X^{(i)}(x)) \to f(x), 1 \le i \le k_n$ If  $k_n \to \infty$ , then  $\frac{1}{k_n} \sum_{i=1}^{k_n} (f(X^{(i)}(x)) + \text{noise}) \to f(x)$ 

Any f can be approximated arbitrarily well by continuous f

# **Tutorial Outline**

- Nearest Neighbor Regression
  - The Setting
  - Universality
  - Rates of Convergence
- Nearest Neighbor Classification
  - The Statistical Learning Framework
  - Consistency
  - Rates of Convergence

### **Convergence Rates**

**Definition:** f is L-Lipschitz if for all x and x',  $|f(x) - f(x')| \le L \cdot d(x, x')$ 

### **Convergence Rates**

**Definition:** f is L-Lipschitz if for all x and x',  $|f(x) - f(x')| \le L \cdot d(x, x')$ 

**Theorem:** If f is L-Lipschitz then for  $k_n = \Theta(n^{2/(2+D)})$ , there exists a constant C such that

$$\mathbb{E}_{x \sim \mu}[\|\hat{f}_k(x) - f(x)\|^2] \le C n^{-2/(2+D)}$$
 (D = data dim)

### **Convergence Rates**

**Definition:** f is L-Lipschitz if for all x and x',  $|f(x) - f(x')| \le L \cdot d(x, x')$ 

**Theorem:** If f is L-Lipschitz then for  $k_n = \Theta(n^{2/(2+D)})$ , there exists a constant C such that

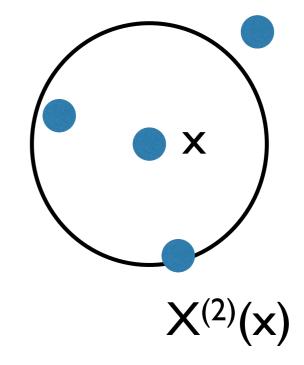
$$\mathbb{E}_{x \sim \mu}[\|\hat{f}_k(x) - f(x)\|^2] \le C n^{-2/(2+D)} \quad \text{(D = data dim)}$$

Better bounds for low intrinsic dimension [Kpotufe I]  $k_n = \Theta(n^{2/(2+D)})$  is the optimal value of k<sub>n</sub>

# How fast is convergence?

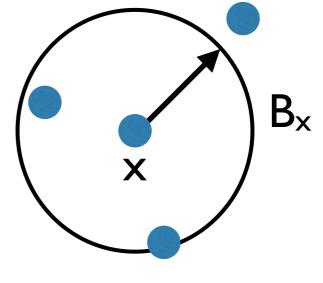
- How small are k-NN distances?
- From distances to convergence rates

Given i.i.d.  $x_1, \ldots, x_n \sim \mu$ Define:  $r_k(x) = d(x, X^{(k)}(x))$ 



#### How small is $r_k(x)$ ?

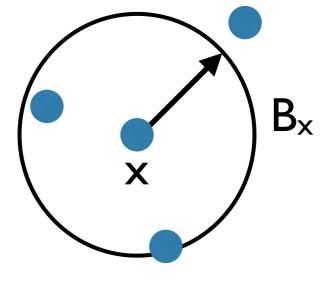
Given i.i.d.  $x_1, \ldots, x_n \sim \mu$ Define:  $r_k(x) = d(x, X^{(k)}(x))$ 



 $X^{(k)}(x)$ 

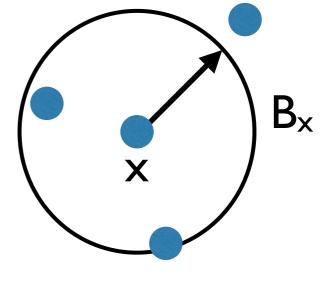
Given i.i.d.  $x_1, \ldots, x_n \sim \mu$ Define:  $r_k(x) = d(x, X^{(k)}(x))$ 

Let  $B_x = Ball(x, r_k(x))$ 



 $X^{(k)}(x)$ 

Given i.i.d.  $x_1, \ldots, x_n \sim \mu$ Define:  $r_k(x) = d(x, X^{(k)}(x))$ 



Let  $B_x = Ball(x, r_k(x))$ 

 $X^{(k)}(x)$ 

 $\hat{\mu}(B_x) = k/n \quad \approx \mu(B_x)$  (whp for large k, n)

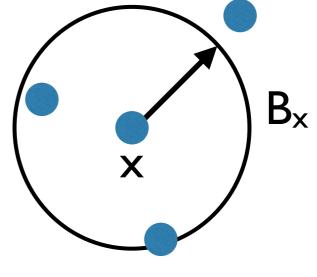
Given i.i.d.  $x_1, \ldots, x_n \sim \mu$ Define:  $r_k(x) = d(x, X^{(k)}(x))$ 

Let  $B_x = Ball(x, r_k(x))$ 

 $X^{(k)}(x)$ 

$$\hat{\mu}(B_x) = k/n \quad \approx \mu(B_x) \quad \text{(whp for large k, n)}$$
$$\mu(B_x) = \int_{B_x} \mu(x') dx' \approx \mu(x) \int_{B_x} dx' \approx \mu(x) r_k(x)^D$$

Given i.i.d.  $x_1, \ldots, x_n \sim \mu$ Define:  $r_k(x) = d(x, X^{(k)}(x))$ 



Let  $B_x = Ball(x, r_k(x))$ 

 $X^{(k)}(x)$ 

$$\begin{split} \hat{\mu}(B_x) &= k/n \quad \approx \mu(B_x) \quad \text{(whp for large k, n)} \\ \mu(B_x) &= \int_{B_x} \mu(x') dx' \approx \mu(x) \int_{B_x} dx' \approx \mu(x) r_k(x)^D \\ r_k(x) &\approx \left(\frac{1}{\mu(x)} \cdot \frac{k}{n}\right)^{1/D} \quad \text{(D = data dimension)} \end{split}$$

Given i.i.d.  $x_1, \ldots, x_n \sim \mu$ Define:  $r_k(x) = d(x, X^{(k)}(x))$   $r_k(x) \approx \left(\frac{1}{\mu(x)} \cdot \frac{k}{n}\right)^{1/D}$  (Curse of  $X^{(k)}(x)$ dimensionality)

Better for data with low intrinsic dimension [Kpotufe, 2011], [Samworth 12], [Costa and Hero 04]

### From Distances to Rates

- I. Bias-Variance Decomposition
- 2. Bound Bias and Variance in terms of distances
- 3. Integrate over the space

### **Bias-Variance Decomposition**

#### For a fixed x, and $\{x_i\}$ , define:

$$\tilde{f}_k(x) = \frac{1}{k} \sum_{i=1}^k \mathbb{E}[Y^{(i)}(x)|\{x_i\}]$$

#### Then:

 $\mathbb{E}[\|f_k(x) - f(x)\|^2] = \mathbb{E}[\|\tilde{f}_k(x) - f(x)\|^2] + \mathbb{E}[\|f_k(x) - \tilde{f}_k(x)\|^2]$   $\mathbf{H}_{\mathbf{B}}$ Bias
Variance

Bounding bias: For any x, $\|\tilde{f}_k(x) - f(x)\|^2 \le \left(\frac{1}{k}\sum_{i=1}^k |f(x) - f(X^{(i)}(x)|\right)^2$ 

Bounding bias: For any x,  $\|\tilde{f}_k(x) - f(x)\|^2 \leq \left(\frac{1}{k}\sum_{i=1}^k |f(x) - f(X^{(i)}(x)|\right)^2$  $\leq (L \cdot d(x, X^{(k)}(x)))^2 \quad \text{(by Lipschitzness)}$ 

Bounding bias: For any x,  $\|\tilde{f}_k(x) - f(x)\|^2 \leq \left(\frac{1}{k}\sum_{i=1}^k |f(x) - f(X^{(i)}(x)|\right)^2$   $\leq (L \cdot d(x, X^{(k)}(x)))^2 \quad \text{(by Lipschitzness)}$   $\leq \Theta \left(\frac{k}{n}\right)^{2/D} \quad \text{(from distances)}$ 

Bounding bias: For any x,  

$$\|\tilde{f}_k(x) - f(x)\|^2 \leq \left(\frac{1}{k}\sum_{i=1}^k |f(x) - f(X^{(i)}(x)|\right)^2$$

$$\leq (L \cdot d(x, X^{(k)}(x)))^2 \quad \text{(by Lipschitzness)}$$

$$\leq \Theta\left(\frac{k}{n}\right)^{2/D} \quad \text{(from distances)}$$

Bounding variance:

$$\mathbb{E}[\|f_k(x) - \tilde{f}_k(x)\|^2] = \mathbb{E}\left(\frac{1}{k}(Y^{(i)}(x) - \mathbb{E}[Y^{(i)}(x)])^2\right) = \frac{\sigma_Y^2}{k}$$

#### Integrating across the space

### $\mathbb{E}[\|f_k(x) - f(x)\|^2] = \mathbb{E}[\|\tilde{f}_k(x) - f(x)\|^2] + \mathbb{E}[\|f_k(x) - \tilde{f}_k(x)\|^2]$

Variance

 $\underset{\approx}{\operatorname{Bias}} + \left(\frac{k}{n}\right)^{2/D}$ 

## Integrating across the space

### $\mathbb{E}[\|f_k(x) - f(x)\|^2] = \mathbb{E}[\|\tilde{f}_k(x) - f(x)\|^2] + \mathbb{E}[\|f_k(x) - \tilde{f}_k(x)\|^2]$

 $\underset{\approx}{\text{Bias}} + \left(\frac{k}{n}\right)^{2/D}$ 

Y

Variance

Optimizing for k:  $k_n = \Theta(n^{2/(2+D)})$ 

### Integrating across the space

 $\mathbb{E}[\|f_k(x) - f(x)\|^2] = \mathbb{E}[\|\tilde{f}_k(x) - f(x)\|^2] + \mathbb{E}[\|f_k(x) - \tilde{f}_k(x)\|^2]$ 

 $\underset{\approx}{\operatorname{Bias}} + \left(\frac{k}{n}\right)^{2/D}$ 

Variance

Optimizing for k:  $k_n = \Theta(n^{2/(2+D)})$ Which leads to:  $\mathbb{E}[\|f_k(x) - f(x)\|^2] \le n^{-2/(2+D)}$ 

Bound is optimal, better for low intrinsic dimension

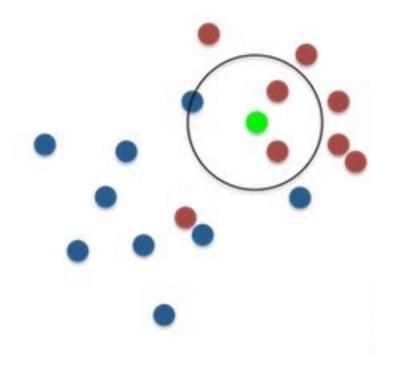
## **Tutorial Outline**

- Nearest Neighbor Regression
  - The Setting
  - Universality
  - Rates of Convergence
- Nearest Neighbor Classification
  - The Statistical Learning Framework
  - Consistency
  - Rates of Convergence

## **Nearest Neighbor Classification**

**Given:** training data  $(x_1, y_1), \dots, (x_n, y_n)$  in X x {0, 1} query point x

Predict majority label of the k closest points closest to x



 $h_{n,k} = k$ -NN classifier on n points

$$h_{n,k}(\mathbf{x}) = \mathbf{0}, \text{ if } \frac{1}{k} \sum_{i=1}^{k} Y^{(i)}(x) \le \frac{1}{2}$$

= I, otherwise

## The Statistical Learning Framework

Metric space (X, d)

Underlying measure  $\mu$  on X from which points are drawn Label of x is a coin flip with bias  $\eta(x) = \Pr(y = 1|x)$ 

Risk or error of a classifier h:  $R(h) = Pr(h(X) \neq Y)$ Accuracy(h) = I - R(h)

Goal: Find h that minimizes risk or maximizes accuracy

### The Bayes Optimal Classifier

$$h(\mathbf{x}) = \begin{cases} \mathbf{0}, & \text{if } \eta(x) \leq 1/2 \\ \mathbf{I}, & \text{otherwise} \end{cases}$$

$$\mathsf{Risk}(\mathsf{h}) = \mathbb{E}_X[\min(\eta(X), 1 - \eta(X))] = \mathsf{R}^*$$

The Bayes Optimal Classifier minimizes risk

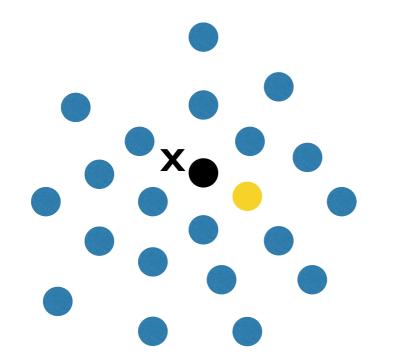
## **Tutorial Outline**

- Nearest Neighbor Regression
  - The Setting
  - Universality
  - Rates of Convergence
- Nearest Neighbor Classification
  - The Statistical Learning Framework
  - Consistency
  - Rates of Convergence

## Consistency

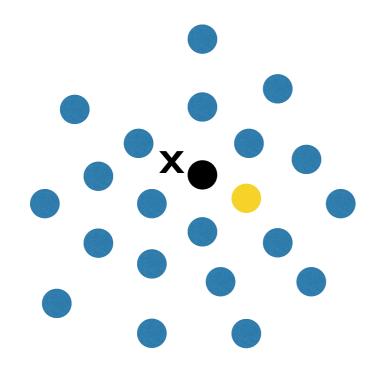
Does  $R(h_{n,k})$  converge to  $R^*$  as n goes to infinity?

# **Consistency of I-NN**



Assume: Continous  $\eta$ Absolutely continuous  $\mu$ 

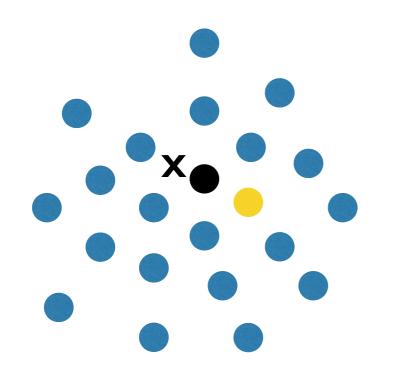
# **Consistency of I-NN**



Assume: Continous  $\eta$ Absolutely continuous  $\mu$ 

$$R(h_{n,1}) \to \mathbb{E}_X[2\eta(X)(1-\eta(X))] \neq R^*$$

# **Consistency of I-NN**

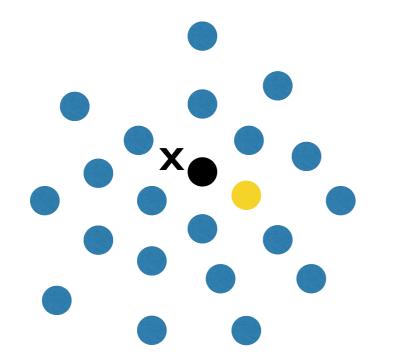


Assume: Continous  $\eta$ Absolutely continuous  $\mu$ 

 $R(h_{n,1}) \to \mathbb{E}_X[2\eta(X)(1-\eta(X))] \neq R^*$ 

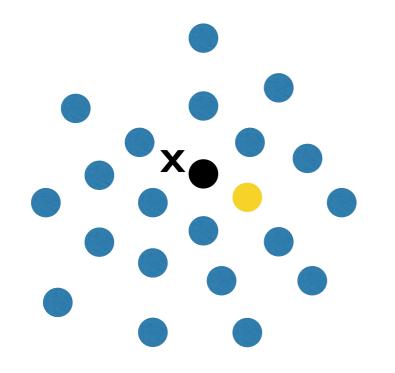
#### I-NN is inconsistent

k-NN for constant k is also inconsistent [Cover and Hart, 67]



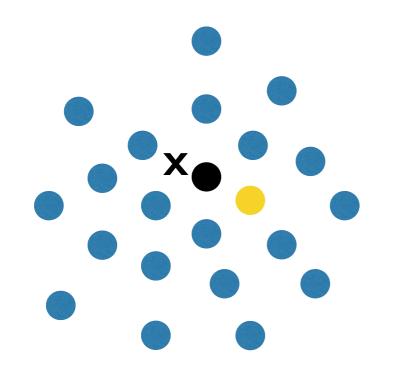
Assume: Continous  $\eta$ Absolutely continuous  $\mu$ 

For any x,  $X^{(1)}(x)$  converges to x



Assume: Continous  $\eta$ Absolutely continuous  $\mu$ 

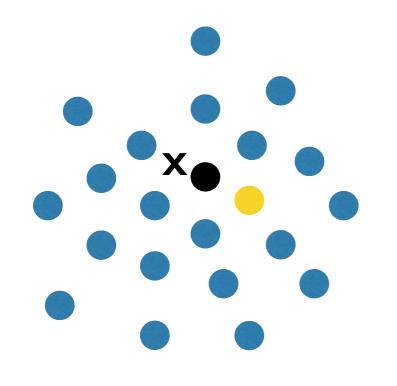
For any x,  $X^{(I)}(x)$  converges to x By continuity,  $\eta(X^{(1)}(x)) \rightarrow \eta(x)$ 



Assume: Continous  $\eta$ Absolutely continuous  $\mu$ 

For any x,  $X^{(I)}(x)$  converges to x By continuity,  $\eta(X^{(1)}(x)) \rightarrow \eta(x)$ 

$$\Pr(Y^{(1)}(x) \neq y) = \eta(x)(1 - \eta(X^{(1)}(x)) + \eta(X^{(1)}(x))(1 - \eta(x)))$$
$$\to 2\eta(x)(1 - \eta(x))$$



Assume: Continous  $\eta$ Absolutely continuous  $\mu$ 

For any x,  $X^{(I)}(x)$  converges to x By continuity,  $\eta(X^{(1)}(x)) \rightarrow \eta(x)$ 

$$\Pr(Y^{(1)}(x) \neq y) = \eta(x)(1 - \eta(X^{(1)}(x)) + \eta(X^{(1)}(x))(1 - \eta(x)))$$
$$\to 2\eta(x)(1 - \eta(x))$$

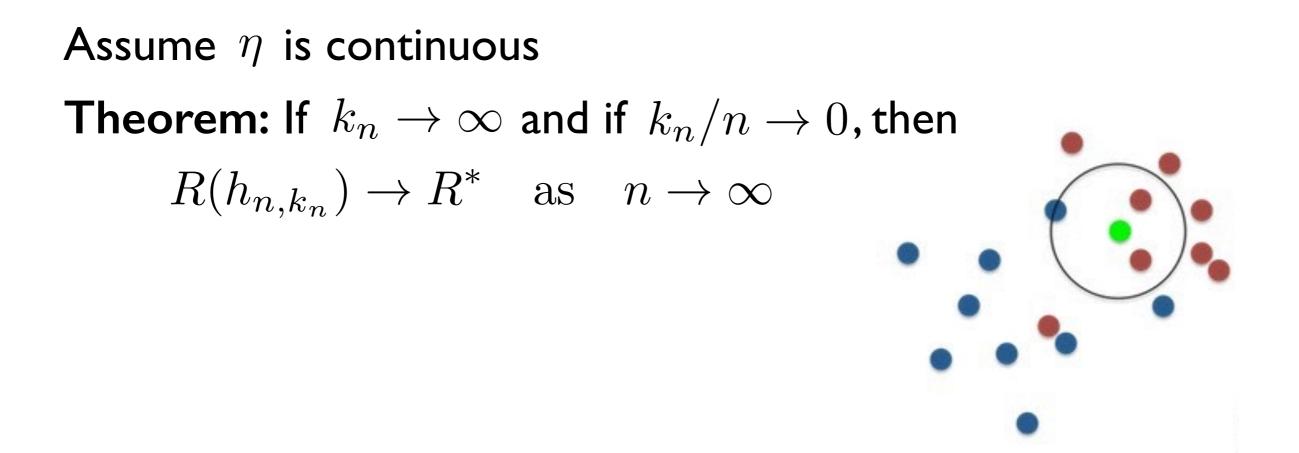
Thus:  $R(h_{n,1}) \to \mathbb{E}_X[2\eta(X)(1-\eta(X))] \neq R^*$ 

## **Consistency under Continuity**

Assume  $\eta$  is continuous

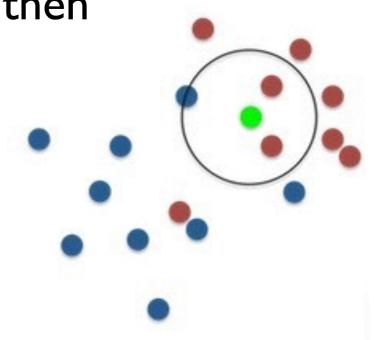
**Theorem:** If  $k_n \to \infty$  and if  $k_n/n \to 0$ , then  $R(h_{n,k_n}) \to R^*$  as  $n \to \infty$ 

[Fix and Hodges'51, Stone'77, Cover and Hart 65,67,68]



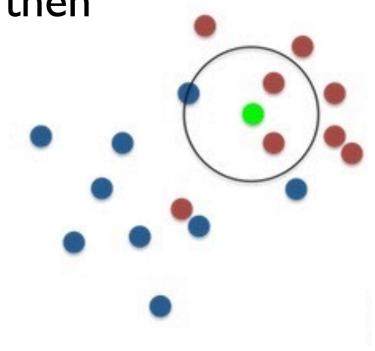
Assume  $\eta$  is continuous **Theorem:** If  $k_n \to \infty$  and if  $k_n/n \to 0$ , then  $R(h_{n,k_n}) \to R^*$  as  $n \to \infty$ 

**Proof:**  $X^{(1)}(x), ..., X^{(kn)}(x)$  lie in a ball of prob. mass  $\approx k_n/n$ 



Assume  $\eta$  is continuous **Theorem:** If  $k_n \to \infty$  and if  $k_n/n \to 0$ , then  $R(h_{n,k_n}) \to R^*$  as  $n \to \infty$ 

Proof:  $X^{(1)}(x), \dots, X^{(kn)}(x)$  lie in a ball of prob. mass  $\approx k_n/n$  $X^{(1)}(x), \dots, X^{(k_n)}(x) \rightarrow x$ 



Assume  $\eta$  is continuous **Theorem:** If  $k_n \to \infty$  and if  $k_n/n \to 0$ , then  $R(h_{n,k_n}) \to R^* \quad \text{as} \quad n \to \infty$ **Proof:**  $X^{(1)}(x), ..., X^{(kn)}(x)$  lie in a ball of prob. mass  $\approx k_n/n$  $X^{(1)}(x), \dots, X^{(k_n)}(x) \to x$ By continuity,  $\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x)) \rightarrow \eta(x)$ 

Assume  $\eta$  is continuous **Theorem:** If  $k_n \to \infty$  and if  $k_n/n \to 0$ , then  $R(h_{n,k_n}) \to R^* \quad \text{as} \quad n \to \infty$ **Proof:**  $X^{(1)}(x), ..., X^{(kn)}(x)$  lie in a ball of prob. mass  $\approx k_n/n$  $X^{(1)}(x), \dots, X^{(k_n)}(x) \to x$ By continuity,  $\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x)) \rightarrow \eta(x)$ As  $k_n$  grows,  $\frac{1}{k_n} \sum_{i=1}^{k_n} Y^{(i)}(x) \to \eta(x)$ 

**Theorem:** Let (X, d,  $\mu$ ) be a separable metric measure space where the Lebesgue differentiation property holds:

For any bounded measurable f,

$$\lim_{r \downarrow 0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f d\mu = f(x)$$

for almost all  $\mu$  -a.e x in X

**Theorem:** Let (X, d,  $\mu$ ) be a separable metric measure space where the Lebesgue differentiation property holds:

For any bounded measurable f,

$$\lim_{r \downarrow 0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f d\mu = f(x)$$

for almost all  $\mu$  -a.e x in X

If  $k_n \to \infty$  and  $k_n/n \to 0$  then  $R(h_{n,k_n}) \to R^*$  in probability If in addition  $k_n/\log n \to 0$  then  $R(h_{n,k_n}) \to R^*$  almost surely [Chaudhuri and Dasgupta, 14]

• Since  $k_n/n \to 0$ ,  $X^{(1)}(x), \ldots, X^{(k_n)}(x) \to x$ 

- Since  $k_n/n \to 0$ ,  $X^{(1)}(x), \ldots, X^{(k_n)}(x) \to x$
- Earlier continuity argument:  $\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x)) \rightarrow \eta(x)$

- Since  $k_n/n \to 0$ ,  $X^{(1)}(x), \ldots, X^{(k_n)}(x) \to x$
- Earlier continuity argument:  $\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x)) \rightarrow \eta(x)$
- It suffices that  $\operatorname{avg}(\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x))) \to \eta(x)$

- Since  $k_n/n \to 0$ ,  $X^{(1)}(x), \dots, X^{(k_n)}(x) \to x$
- Earlier continuity argument:  $\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x)) \rightarrow \eta(x)$
- It suffices that  $\operatorname{avg}(\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x))) \to \eta(x)$
- $X^{(1)}(x)$ , ...,  $X^{(kn)}(x)$  lie in some ball B(x, r). For suitable r, they are random draws from  $\mu$  restricted to B(x, r)

- Since  $k_n/n \to 0$ ,  $X^{(1)}(x), \ldots, X^{(k_n)}(x) \to x$
- Earlier continuity argument:  $\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x)) \rightarrow \eta(x)$
- It suffices that  $\operatorname{avg}(\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x))) \to \eta(x)$
- X<sup>(1)</sup>(x), ..., X<sup>(kn)</sup>(x) lie in some ball B(x, r). For suitable r, they are random draws from µ restricted to B(x, r)
- $\operatorname{avg}(\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x)))$  is close to  $\operatorname{avg} \eta$  in B(x, r)

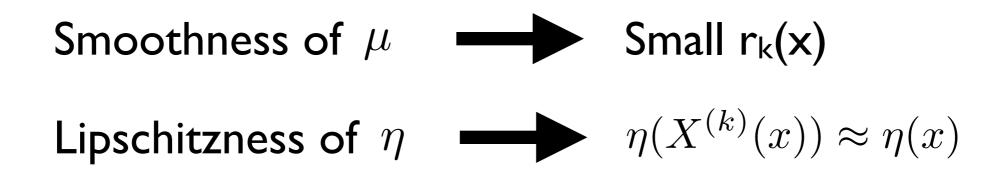
- Since  $k_n/n \to 0$ ,  $X^{(1)}(x), \ldots, X^{(k_n)}(x) \to x$
- Earlier continuity argument:  $\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x)) \rightarrow \eta(x)$
- It suffices that  $\operatorname{avg}(\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x))) \to \eta(x)$
- X<sup>(1)</sup>(x), ..., X<sup>(kn)</sup>(x) lie in some ball B(x, r). For suitable r, they are random draws from µ restricted to B(x, r)
- $\operatorname{avg}(\eta(X^{(1)}(x)), \ldots, \eta(X^{(k_n)}(x)))$  is close to  $\operatorname{avg} \eta$  in B(x, r)
- As n grows, this ball shrinks. Thus it is enough that

$$\lim_{r \downarrow 0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} \eta d\mu = \eta(x)$$

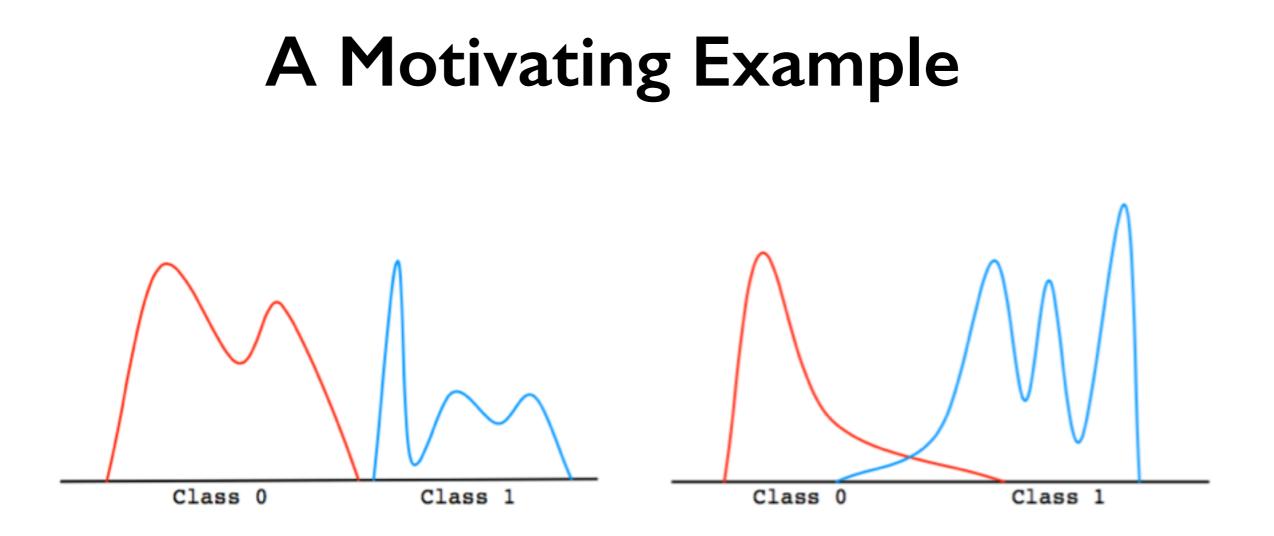
## **Tutorial Outline**

- Nearest Neighbor Regression
  - The Setting
  - Universality
  - Rates of Convergence
- Nearest Neighbor Classification
  - The Statistical Learning Framework
  - Consistency
  - Rates of Convergence

## Main Idea in Prior Analysis



#### Neither smoothness nor Lipschitzness matter! [Chaudhuri and Dasgupta'14]



#### Property of interest:

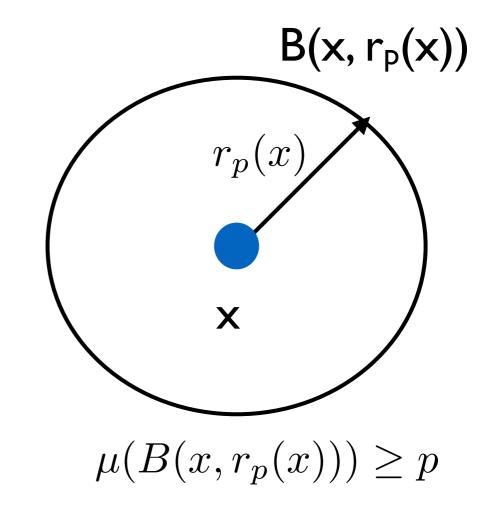
Balls of probability mass approx. k/n around x where x is close to the decision boundary

### **Some Notation**

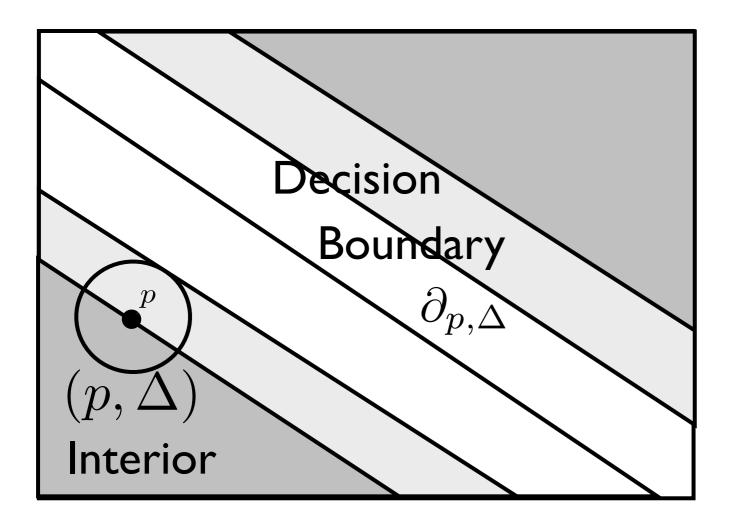
Probability-radius  $r_P(x)$ :  $r_p(x) = \inf\{r | \mu(B(x, r)) \ge p\}$ 

Conditional probability for a set:

$$\eta(A) = \frac{1}{\mu(A)} \int_A \eta d\mu$$



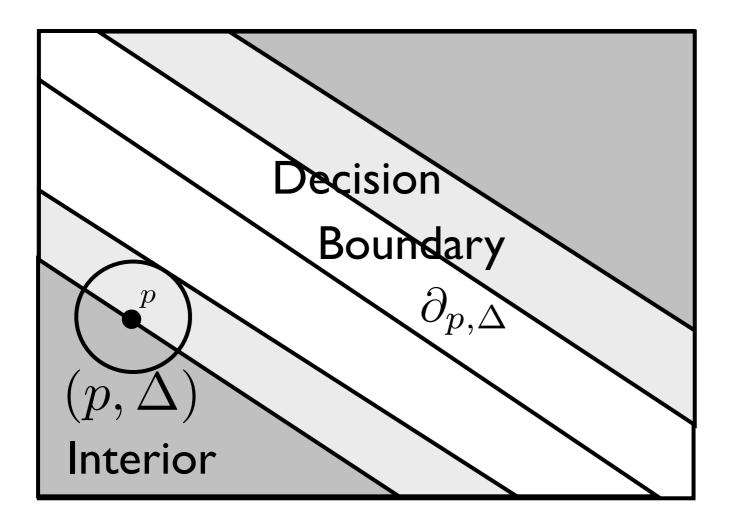
## **Effective Interiors and Boundaries**



**Positive Interior:** 

$$\mathcal{X}_{p,\Delta}^{+} = \{ x | \eta(x) \ge 1/2,$$
$$\eta(B(x,r)) \ge 1/2 + \Delta,$$
for all  $r \le r_p(x) \}$ 

## **Effective Interiors and Boundaries**

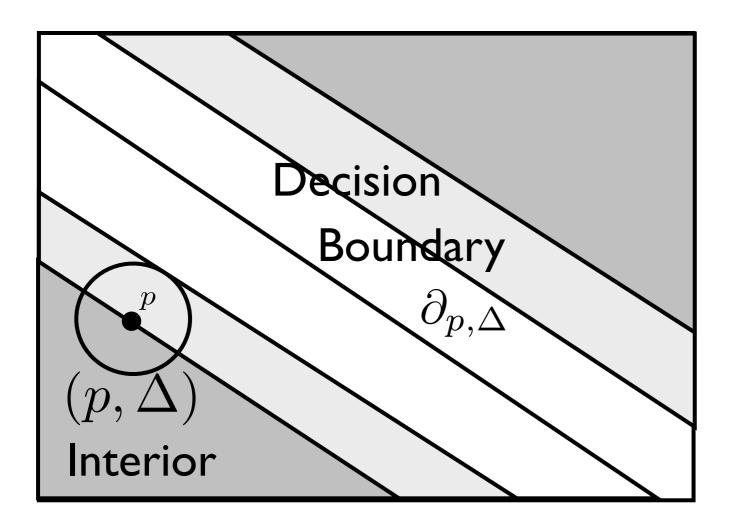


**Positive Interior:** 

$$\mathcal{X}_{p,\Delta}^{+} = \{ x | \eta(x) \ge 1/2,$$
$$\eta(B(x,r)) \ge 1/2 + \Delta,$$
for all  $r \le r_p(x) \}$ 

Similarly Negative Interior

## **Effective Interiors and Boundaries**



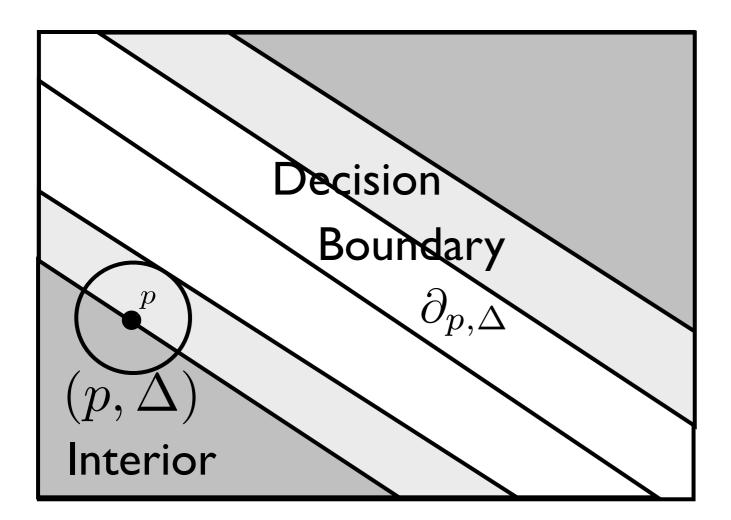
**Positive Interior:** 

$$\mathcal{X}_{p,\Delta}^{+} = \{ x | \eta(x) \ge 1/2,$$
$$\eta(B(x,r)) \ge 1/2 + \Delta,$$
for all  $r \le r_p(x) \}$ 

Similarly Negative Interior

 $(p, \Delta)$  -Interior:  $\mathcal{X}_{p,\Delta}^+ \cup \mathcal{X}_{p,\Delta}^-$ 

## **Effective Interiors and Boundaries**



**Positive Interior:** 

$$\mathcal{X}_{p,\Delta}^{+} = \{ x | \eta(x) \ge 1/2,$$
$$\eta(B(x,r)) \ge 1/2 + \Delta,$$
for all  $r \le r_p(x) \}$ 

Similarly Negative Interior

 $(p, \Delta)$ -Interior:  $\mathcal{X}_{p,\Delta}^+ \cup \mathcal{X}_{p,\Delta}^ (p, \Delta)$ -Boundary:  $\partial_{p,\Delta} = X \setminus (\mathcal{X}_{p,\Delta}^+ \cup \mathcal{X}_{p,\Delta}^-)$ 

# **Convergence Rate Theorem**

Risk  $R_{n,k}$  of the k-NN classifier based on n training examples is:

 $R_{n,k} \leq R^* + \delta + \mu(\partial_{p,\Delta})$ Decision
Boundar p  $\partial_{p,\Delta}$   $(p, \Delta)$ Interior

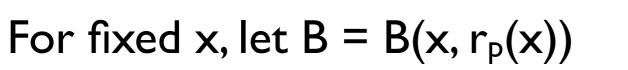
## **Convergence Rate Theorem**

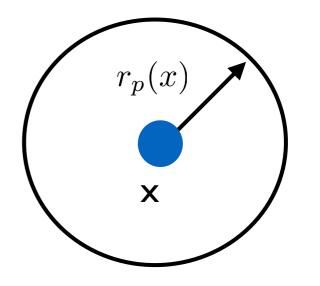
Risk  $R_{n,k}$  of the k-NN classifier based on n training examples is:

$$R_{n,k} \leq R^* + \delta + \mu(\partial_{p,\Delta})$$
  
for:  
$$p = \frac{k}{n} \cdot \frac{1}{1 - \sqrt{(4/k)\log(2/\delta)}}$$
$$\Delta = \min\left(\frac{1}{2}, \sqrt{\frac{\log(2/\delta)}{k}}\right)$$

## **Proof Intuition I**

 $B(x, r_p(x))$ 



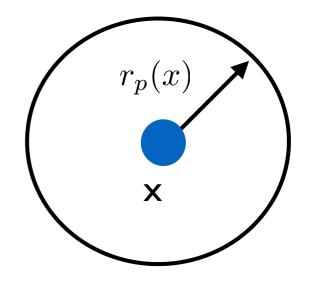


If  $h_{n,k}(x) \neq h(x)$  then:

## **Proof Intuition I**

 $B(x, r_p(x))$ 





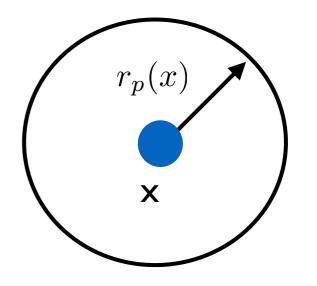
If  $h_{n,k}(x) \neq h(x)$  then:

1.  $x \in \partial_{p,\Delta}$ 

## **Proof Intuition |**

 $B(x, r_p(x))$ 



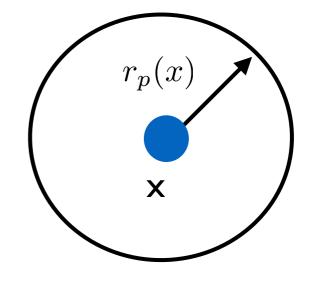


If  $h_{n,k}(x) \neq h(x)$  then:

- 1.  $x \in \partial_{p,\Delta}$
- 2.  $d(x, X^{(k)}(x)) > r_p(x)$

## **Proof Intuition I**

 $B(x, r_p(x))$ 



For fixed x, let  $B = B(x, r_P(x))$ 

If  $h_{n,k}(x) \neq h(x)$  then:

1. 
$$x \in \partial_{p,\Delta}$$
  
2.  $d(x, X^{(k)}(x)) > r_p(x)$   
3.  $\left| \frac{1}{|B|} \sum_i Y_i \cdot 1(X_i \in B) - \eta(B) \right| \ge \Delta$ 

## **Proof Intuition I**

 $B(x, r_p(x))$ 

For fixed x, let  $B = B(x, r_P(x))$ 

If  $h_{n,k}(x) \neq h(x)$  then:

1.  $x \in \partial_{p,\Delta}$ 2.  $d(x, X^{(k)}(x)) > r_p(x)$ 3.  $\left| \frac{1}{|B|} \sum_i Y_i \cdot 1(X_i \in B) - \eta(B) \right| \ge \Delta$  If (1) does not hold, say  $\eta(x) \geq 1/2$  Then  $\eta(B) \geq 1/2 + \Delta$ 

 $r_p(x)$ 

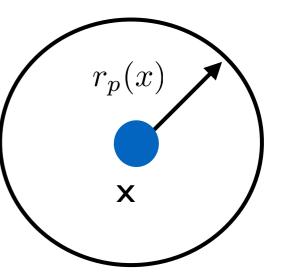
# **Proof Intuition |**

 $B(x, r_p(x))$ 

For fixed x, let  $B = B(x, r_p(x))$ 

If  $h_{n,k}(x) \neq h(x)$  then:

1. 
$$x \in \partial_{p,\Delta}$$
  
2.  $d(x, X^{(k)}(x)) > r_p(x)$   
3.  $\left| \frac{1}{|B|} \sum_i Y_i \cdot 1(X_i \in B) - \eta(B) \right| \ge \Delta$ 



If (1) does not hold, say  $\eta(x) \ge 1/2$ Then  $\eta(B) \ge 1/2 + \Delta$ Either k-th NN of x lies outside B or (3) holds

# **Proof Intuition 2** $B(x, r_p(x))$ $r_p(x)$ For fixed x, let $B = B(x, r_p(x))$ If $h_{n,k}(x) \neq h(x)$ then: $p = \frac{k}{n} \cdot \frac{1}{1 - \sqrt{(4/k)\log(2/\delta)}}$ 1. $x \in \partial_{p,\Delta}$ 2. $d(x, X^{(k)}(x)) > r_p(x)$ then, the probability 3. $\left| \frac{1}{|B|} \sum_{i} Y_i \cdot 1(X_i \in B) - \eta(B) \right| \ge \Delta$ of (2) is at most $\delta/2$ (Chernoff bounds)

## **Proof Intuition 3**

 $B(x, r_p(x))$ 

For fixed x, let  $B = B(x, r_p(x))$ 

If  $h_{n,k}(x) \neq h(x)$  then:

1.  $x \in \partial_{p,\Delta}$ 2.  $d(x, X^{(k)}(x)) > r_p(x)$ 3.  $\left|\frac{1}{|B|}\sum_{i}Y_{i}\cdot 1(X_{i}\in B)-\eta(B)\right|\geq \Delta$  of (3) is at most  $\delta/2$  (Chernoff bounds)



then, the probability (Chernoff bounds)

Risk  $R_{n,k}$  of the k-NN classifier based on n training examples is:

 $R_{n,k} \leq \Pr(h(x) \neq y) + \Pr(x \in \partial_{p,\Delta}) + \Pr(2.) + \Pr(3.)$ 

Risk  $R_{n,k}$  of the k-NN classifier based on n training examples is:

 $R_{n,k} \le \Pr(h(x) \neq y) + \Pr(x \in \partial_{p,\Delta}) + \Pr(2.) + \Pr(3.)$ 

 $\Pr(h(x) \neq y) = R^*$  (By definition)

Risk  $R_{n,k}$  of the k-NN classifier based on n training examples is:

 $R_{n,k} \le \Pr(h(x) \neq y) + \Pr(x \in \partial_{p,\Delta}) + \Pr(2.) + \Pr(3.)$ 

 $Pr(h(x) \neq y) = R^*$  (By definition)  $Pr(x \in \partial_{p,\Delta}) = \mu(\partial_{p,\Delta})$ 

Risk  $R_{n,k}$  of the k-NN classifier based on n training examples is:

 $R_{n,k} \le \Pr(h(x) \neq y) + \Pr(x \in \partial_{p,\Delta}) + \Pr(2.) + \Pr(3.)$ 

$$\begin{split} &\Pr(h(x) \neq y) = R^* \qquad \text{(By definition)} \\ &\Pr(x \in \partial_{p,\Delta}) = \mu(\partial_{p,\Delta}) \\ &\text{If} \quad p = \frac{k}{n} \cdot \frac{1}{1 - \sqrt{(4/k)\log(2/\delta)}} \quad \text{and} \quad \Delta = \min\left(\frac{1}{2}, \sqrt{\frac{\log(2/\delta)}{k}}\right) \\ &\text{then} \quad \Pr(2.) + \Pr(3.) \leq \delta \end{split}$$

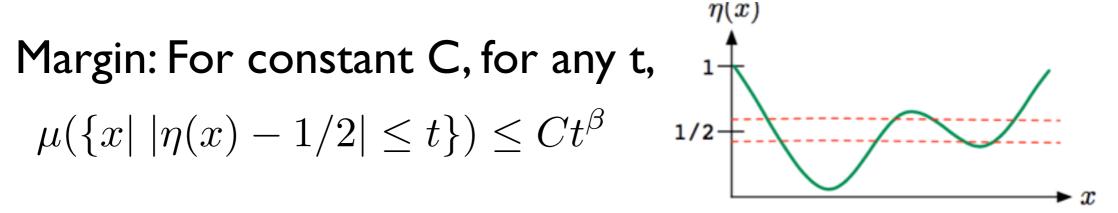
## **Convergence Rate Theorem**

Risk  $R_{n,k}$  of the k-NN classifier based on n training examples is:

$$R_{n,k} \leq R^* + \delta + \mu(\partial_{p,\Delta})$$
  
for:  
$$p = \frac{k}{n} \cdot \frac{1}{1 - \sqrt{(4/k)\log(2/\delta)}}$$
$$\Delta = \min\left(\frac{1}{2}, \sqrt{\frac{\log(2/\delta)}{k}}\right)$$

#### Smoothness

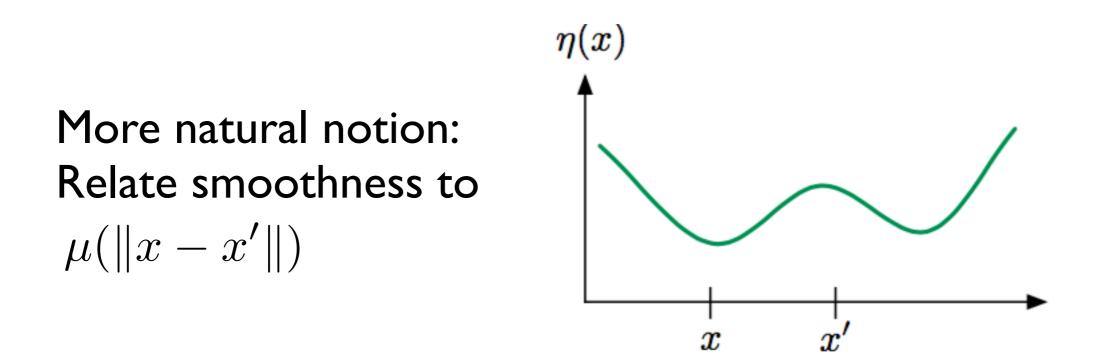
 $\eta \; \text{ is } \; \alpha \text{-Holder continuous if for constant L, all x, x',} \; |\eta(x) - \eta(x')| \leq L \|x - x'\|^{\alpha}$ 



The above two conditions plus  $\mu$  is supported on a regular set with  $\mu_{\min} \leq \mu \leq \mu_{\max}$ Then E[R] - R\* is  $\Theta(n^{-\alpha(\beta+1)/(2\alpha+d)})$ 

Also achieved by k-NN for suitable k

#### A Better Smoothness Condition



 $\eta$  is  $\alpha$ -smooth if for some constant L, for all x, r > 0,  $|\eta(x) - \eta(B(x,r))| \le L\mu(B(x,r))^{\alpha}$ 

#### **Smoothness Bounds**

Suppose  $\eta$  is  $\alpha$ -smooth. Then for any n, k, With probability  $\geq 1 - \delta$ ,  $\Pr(h_{n,k}(X) \neq h(X)) \leq \delta + \mu \left( \{x \mid |\eta(x) - 1/2| \leq C_1 \sqrt{\frac{1}{k} \log \frac{1}{\delta}} \right)$ For  $k \propto n^{2\alpha/(2\alpha+1)}$ 

Lower Bounds: With constant probability,  $\Pr(h_{n,k}(X) \neq h(X)) \ge C_2 \mu\left(\{x \mid |\eta(x) - 1/2| \le C_3 \sqrt{\frac{1}{k}}\}\right)$ 

# Implications

I. Recovers previous bounds on smooth functions with margin conditions

- 2. Faster rates for special cases
  - Zero Bayes Risk: I-NN has the best rates
  - $\Delta$  Bounded away from 0: Exponential convergence

## Conclusion

- k<sub>n</sub>-NN is always universally consistent provided k grows a certain way with n
- 2. k-NN regression suffers from curse of dimensionality
- 3. k-NN classification also does, but can do better

#### Acknowledgements

Thanks to Sanjoy Dasgupta and Samory Kpotufe A chunk of this talk is based on a tutorial from ICML 2018 by Sanjoy and Samory