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Talk Outline

• Part I: k-Nearest neighbors:  Regression and 
Classification

• Part II: k-Nearest neighbors (and other non-
parametrics):  Adversarial examples



k Nearest Neighbors

Given: training data (x1, y1), …, (xn, yn) in X x {0, 1}

Predict y for x from the k closest neighbors of x among xi

query point x

Example:

k-NN classification: predict majority 
label of k closest neighbors

k-NN regression: predict average label 
of k closest neighbors



The Metric Space

Data points lie in metric space with distance function d

Examples: 

X = RD, d = Euclidean distance 
X = RD, d = lp distance
Metric based on user preferences

d(x, x’)

x

x’



Notation

X(i)(x)  = i-th nearest neighbor of x

Y(i)(x)  = label of X(i)(x)
x

X(2)(x)
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Universality

k-NN Regressor: f̂k(x) =
1

k

kX

i=1

Y

(i)(x)

Input:  Training data (x1, y1), …, (xn, yn)

where yi = f(xi) + noise

What f can k-NN regression represent?

Answer:  Any f, provided k grows suitably with n

[Devroye, Gyorfi, Kryzak, Lugosi, 94]



More Formally…

kn NN Regression: when k grows with n

Theorem: If                and if                 , then for any f, kn ! 1 kn/n ! 0

EX⇠µ[|f(X)� f̂kn(X)|] ! 0
as n ! 1

kn NN Regression is universally consistent
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Intuition: Universal Consistency

As n grows,  X(i)(x) move 
closer to x (continuous    )µ

If kn is constant or grows slowly
                 then (kn/n ! 0) X

(i)(x) ! x, i  kn

If f is continuous, then f(X(i)(x)) ! f(x), 1  i  kn

1

kn

knX

i=1

(f(X

(i)
(x)) + noise) ! f(x)If               , then kn ! 1

Any f can be approximated arbitrarily well by continuous f

x
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Convergence Rates

Definition:  f is L-Lipschitz if for all x and x’,

|f(x)� f(x0)|  L · d(x, x0)

Theorem:  If f is L-Lipschitz then for                             ,                 kn = ⇥(n2/(2+D))

there exists a constant C such that

E
x⇠µ

[kf̂
k

(x)� f(x)k2]  Cn

�2/(2+D)

Better bounds for low intrinsic dimension [Kpotufe11]

                             is the optimal value of knkn = ⇥(n2/(2+D))

(D = data dim)



How fast is convergence?

- How small are k-NN distances?

- From distances to convergence rates



k-NN Distances

Given  i.i.d. x1, . . . , xn ⇠ µ

Define:
rk(x) = d(x,X(k)(x))

x

X(2)(x)

How small is rk(x)?
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k-NN Distances

Given  i.i.d. x1, . . . , xn ⇠ µ

Define: rk(x) = d(x,X(k)(x))

Let Bx = Ball(x, rk(x))

x

X(k)(x)

Bx

(whp for large k, n)µ̂(B
x

) = k/n ⇡ µ(B
x

)

rk(x) ⇡
✓

1

µ(x)
· k
n

◆1/D
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Z
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k-NN Distances

x

X(k)(x)

Bx
Given  i.i.d. x1, . . . , xn ⇠ µ

Define: rk(x) = d(x,X(k)(x))

rk(x) ⇡
✓

1

µ(x)
· k
n

◆1/D (Curse of
dimensionality)

Better for data with low intrinsic dimension

[Kpotufe, 2011], [Samworth 12], [Costa and Hero 04]



From Distances to Rates

1.  Bias-Variance Decomposition

2.  Bound Bias and Variance in terms of distances

3. Integrate over the space 



Bias-Variance Decomposition

For a fixed x, and {xi}, define:

f̃k(x) =
1

k

kX

i=1

E[Y (i)(x)|{xi}]

Then:

E[kfk(x)� f(x)k2] = E[kf̃k(x)� f(x)k2] + E[kfk(x)� f̃k(x)k2]

Bias Variance
{ {
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k
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k
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Bounding Bias and Variance

Bounding variance: 

E[kfk(x)� f̃k(x)k2] = E
✓
1

k

(Y (i)(x)� E[Y (i)(x)])2
◆

=
�

2
Y

k

Bounding bias:  For any x, 

kf̃k(x)� f(x)k2 
 
1

k

kX

i=1

|f(x)� f(X(i)(x)|
!2

 (L · d(x,X(k)(x)))2 (by Lipschitzness)

 ⇥

✓
k

n

◆2/D

(from distances)



Integrating across the space
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Integrating across the space

E[kfk(x)� f(x)k2] = E[kf̃k(x)� f(x)k2] + E[kfk(x)� f̃k(x)k2]

Bias Variance
{ {

/ 1

k
+

✓
k

n

◆2/D

Optimizing for k: kn = ⇥(n2/(2+D))

Which leads to: E[kfk(x)� f(x)k2]  n

�2/(2+D)

Bound is optimal, better for low intrinsic dimension
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Nearest Neighbor Classification

Given: training data (x1, y1), …, (xn, yn) in X x {0, 1}

Predict majority label of the k closest points closest to x

query point x

hn,k = k-NN classifier on n points

hn,k(x) = 0,  if 
1

k

kX

i=1

Y

(i)(x)  1

2

= 1,  otherwise



The Statistical Learning Framework

Metric space (X, d)

Underlying measure     on X from which points are drawnµ

Label of x is a coin flip with bias ⌘(x) = Pr(y = 1|x)

Risk or error of a classifier h: R(h) = Pr(h(X) 6= Y )

Goal: Find h that minimizes risk or maximizes accuracy

Accuracy(h) = 1 - R(h)



The Bayes Optimal Classifier

Risk(h) = EX [min(⌘(X), 1� ⌘(X))] = R*

The Bayes Optimal Classifier minimizes risk

h(x) = 
0,   if

1,   otherwise

⌘(x)  1/2{
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Consistency

Does R(hn,k) converge to R* as n 
goes to infinity?



Consistency of 1-NN

Assume: 

Continous 
Absolutely continuous 

⌘

µx



Consistency of 1-NN

Assume: 

Continous 
Absolutely continuous 

⌘

µ

R(hn,1) ! EX [2⌘(X)(1� ⌘(X))] 6= R⇤

x



Consistency of 1-NN

Assume: 

Continous 
Absolutely continuous 

⌘

µ

R(hn,1) ! EX [2⌘(X)(1� ⌘(X))] 6= R⇤

x

1-NN is inconsistent

k-NN for constant k is also inconsistent

[Cover and Hart, 67]
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⌘

µx
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Proof Intuition

Assume: 

For any x,  X(1)(x) converges to x

Continous 
Absolutely continuous 

By continuity, ⌘(X(1)(x)) ! ⌘(x)

Pr(Y (1)(x) 6= y) = ⌘(x)(1� ⌘(X(1)(x)) + ⌘(X(1)(x))(1� ⌘(x))

! 2⌘(x)(1� ⌘(x))

⌘

µ

Thus: R(hn,1) ! EX [2⌘(X)(1� ⌘(X))] 6= R⇤

x



Consistency under Continuity

Theorem: If                and if                 , thenkn ! 1 kn/n ! 0

Assume     is continuous⌘

R(hn,kn) ! R⇤ as n ! 1

[Fix and Hodges’51,  Stone’77,  Cover and Hart 65,67,68]
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Proof Intuition

Theorem: If                and if                 , thenkn ! 1 kn/n ! 0

Assume     is continuous⌘

R(hn,kn) ! R⇤ as n ! 1

X

(1)(x), . . . , X(kn)(x) ! x

By continuity, ⌘(X(1)(x)), . . . , ⌘(X(kn)(x)) ! ⌘(x)

As kn grows, 1

kn

knX

i=1

Y

(i)(x) ! ⌘(x)

X(1)(x), …, X(kn)(x) lie inProof:
a ball of prob. mass ⇡ kn/n
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Universal Consistency in Metric Spaces

For any bounded measurable f,

Let (X, d,    ) be a separable metric measure space Theorem:

where the Lebesgue differentiation property holds:

µ

lim
r#0

1

µ(B(x, r))

Z

B(x,r)
fdµ = f(x)

If             and                 then                           in probabilitykn ! 1 kn/n ! 0 R(hn,kn) ! R⇤

If in addition                     then                          almost surely R(hn,kn) ! R⇤kn/ log n ! 0

for almost all     -a.e x in Xµ

[Chaudhuri and Dasgupta, 14]
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Universal Consistency in Metric Spaces

Since kn/n ! 0 ,X(1)(x), . . . , X(kn)(x) ! x

Earlier continuity argument:  ⌘(X(1)(x)), . . . , ⌘(X(kn)(x)) ! ⌘(x)

It suffices that avg(⌘(X(1)(x)), . . . , ⌘(X(kn)(x))) ! ⌘(x)

X(1)(x), .., X(kn)(x) lie in some ball B(x, r). For suitable r, 

they are random draws from    restricted to B(x, r)µ
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Universal Consistency in Metric Spaces

lim
r#0

1

µ(B(x, r))

Z

B(x,r)
⌘dµ = ⌘(x)

Since kn/n ! 0 ,X(1)(x), . . . , X(kn)(x) ! x

Earlier continuity argument:  ⌘(X(1)(x)), . . . , ⌘(X(kn)(x)) ! ⌘(x)

It suffices that avg(⌘(X(1)(x)), . . . , ⌘(X(kn)(x))) ! ⌘(x)

X(1)(x), .., X(kn)(x) lie in some ball B(x, r). For suitable r, 

they are random draws from    restricted to B(x, r)µ

avg(⌘(X(1)(x)), . . . , ⌘(X(kn)(x))) is close to avg    in B(x, r) ⌘

As n grows, this ball shrinks. Thus it is enough that
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Main Idea in Prior Analysis

Smoothness of       µ Small rk(x)

Lipschitzness of ⌘ ⌘(X(k)(x)) ⇡ ⌘(x)

Neither smoothness nor Lipschitzness matter!

[Chaudhuri and Dasgupta’14]



A Motivating Example

Property of interest:

Balls of probability mass approx.  k/n around x

where x is close to the decision boundary



Some Notation

Probability-radius rp(x):

rp(x) = inf{r|µ(B(x, r)) � p}

Conditional probability for a set:

⌘(A) =
1

µ(A)

Z

A
⌘dµ

x

rp(x)

µ(B(x, rp(x))) � p

B(x, rp(x))



Effective Interiors and Boundaries
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Effective Interiors and Boundaries

p

(p,�)
Interior

Decision
Boundary

Positive Interior:

X+
p,� = {x|⌘(x) � 1/2,

⌘(B(x, r)) � 1/2 +�,

for all r  rp(x)}

Similarly Negative Interior

-Interior:(p,�) X+
p,� [ X�

p,�

-Boundary:(p,�) @p,� = X \ (X+
p,� [ X�

p,�)

@p,�



Convergence Rate Theorem

Risk Rn,k of the k-NN classifier based on n training 
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Convergence Rate Theorem

Risk Rn,k of the k-NN classifier based on n training 
examples is:

Rn,k  R⇤ + � + µ(@p,�)

for:

p =

k

n
· 1

1�
p

(4/k) log(2/�)

� = min

 
1

2

,

r
log(2/�)

k

!

p

(p,�)
Interior

Decision
Boundary
@p,�
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For fixed x, let B = B(x, rp(x))
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1. x 2 @p,�

2. d(x,X(k)(x)) > rp(x)

3.

�����
1

|B|
X

i

Yi · 1(Xi 2 B)� ⌘(B)

����� � �

If (1) does not hold, say

Then ⌘(B) � 1/2 +�

⌘(x) � 1/2
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If (1) does not hold, say

Then ⌘(B) � 1/2 +�

Either k-th NN of x lies

outside B or (3) holds

⌘(x) � 1/2



Proof Intuition 2
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Proof Intuition 3
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(Chernoff bounds)
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Putting it all together…

Risk Rn,k of the k-NN classifier based on n training 
examples is:

Rn,k  Pr(h(x) 6= y) + Pr(x 2 @p,�) + Pr(2.) + Pr(3.)

p =

k

n
· 1

1�
p

(4/k) log(2/�)
� = min

 
1

2

,

r
log(2/�)

k

!

If and

Pr(2.) + Pr(3.)  �then

Pr(h(x) 6= y) = R

⇤ (By definition)

Pr(x 2 @p,�) = µ(@p,�)



Convergence Rate Theorem

Risk Rn,k of the k-NN classifier based on n training 
examples is:

Rn,k  R⇤ + � + µ(@p,�)

for:

p =

k

n
· 1

1�
p

(4/k) log(2/�)

� = min

 
1
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,

r
log(2/�)
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!
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Smoothness

is    -Holder continuous if for constant L, all x, x’,⌘ ↵

|⌘(x)� ⌘(x0)|  Lkx� x

0k↵

Margin: For constant C, for any t, 

µ({x| |⌘(x)� 1/2|  t})  Ct

�

The above two conditions plus     is supported on 
a regular set with

µ
µ
min

 µ  µ
max

Then  E[R] - R* is ⇥(n�↵(�+1)/(2↵+d))

Also achieved by k-NN for suitable k



A Better Smoothness Condition

More natural notion:
Relate smoothness to
µ(kx� x

0k)

     is     -smooth if for some constant L, for all x, r > 0,

|⌘(x)� ⌘(B(x, r))|  Lµ(B(x, r))↵

⌘ ↵



Smoothness Bounds

⌘Suppose     is     -smooth. Then for any n, k, 

Pr(hn,k(X) 6= h(X))  � + µ

 
{x| |⌘(x)� 1/2|  C1

r
1

k

log

1

�

!With probability            , � 1� �

↵

For k / n2↵/(2↵+1)

Lower Bounds:  With constant probability,

Pr(hn,k(X) 6= h(X)) � C2µ

 
{x| |⌘(x)� 1/2|  C3

r
1

k

}
!



Implications

1.  Recovers previous bounds on smooth functions with 
margin conditions

2. Faster rates for special cases

- Zero Bayes Risk:   1-NN has the best rates

-      Bounded away from 0:  Exponential convergence�



Conclusion

1. kn-NN is always universally consistent provided k 
grows a certain way with n

2.   k-NN regression suffers from curse of dimensionality

3.   k-NN classification also does, but can do better
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