Approximation power of deep networks

Matus Telgarsky <mjt@illinois.edu> (with help from many friends!)

replace $f : \mathbb{R}^d \to \mathbb{R}$ with neural network $g : \mathbb{R}^d \to \mathbb{R}$.

replace $f : \mathbb{R}^d \to \mathbb{R}$ with neural network $g : \mathbb{R}^d \to \mathbb{R}$.

Primary setting: statistical learning theory, thus

$$\int \ell(f(x), y) \, \mathrm{d}P(x, y)$$
 vs. $\int \ell(g(x), y) \, \mathrm{d}P(x, y)$.

replace $f : \mathbb{R}^d \to \mathbb{R}$ with neural network $g : \mathbb{R}^d \to \mathbb{R}$.

Primary setting: statistical learning theory, thus

$$\int \ell(f(x), y) \, \mathrm{d}P(x, y) \qquad \text{vs.} \qquad \int \ell(g(x), y) \, \mathrm{d}P(x, y).$$

▶ **Upper bounds:** If $\ell(\cdot, y)$ is 1-Lipschitz,

$$\int \left[\ell(g(x), y) - \ell(f(x), y)\right] \mathrm{d}P(x, y) \leq \left|g(x) - f(x)\right| \mathrm{d}P(x, y);$$

we make this small everywhere (universal/uniform/ $L_{\infty}(P)$ apx), or in $L_1(P)$.

replace $f : \mathbb{R}^d \to \mathbb{R}$ with neural network $g : \mathbb{R}^d \to \mathbb{R}$.

Primary setting: statistical learning theory, thus

$$\int \ell(f(x), y) \, \mathrm{d}P(x, y) \qquad \text{vs.} \qquad \int \ell(g(x), y) \, \mathrm{d}P(x, y).$$

▶ **Upper bounds:** If $\ell(\cdot, y)$ is 1-Lipschitz,

 $\int \left[\ell(g(x), y) - \ell(f(x), y)\right] \mathrm{d}P(x, y) \le \left|g(x) - f(x)\right| \mathrm{d}P(x, y);$

we make this small everywhere (universal/uniform/ $L_{\infty}(P)$ apx), or in $L_1(P)$.

▶ Lower bounds: we want large error on a large set; as a surrogate, |g - f| large in $L_1(P)$ or $L_1(Unif)$. By deep networks we mostly mean

$$x \mapsto A_L \sigma_{L-1} \left(\cdots \sigma_1 (A_1 x + b_1) \cdots \right) + b_L,$$

where nonlinearity/activation/transfer σ_i is applied coordinate-wise.

By deep networks we mostly mean

$$x \mapsto A_L \sigma_{L-1} \left(\cdots \sigma_1 (A_1 x + b_1) \cdots \right) + b_L,$$

where nonlinearity/activation/transfer σ_i is applied coordinate-wise.

There are many conventions; we will briefly discuss others.

By deep networks we mostly mean

$$x \mapsto A_L \sigma_{L-1} \left(\cdots \sigma_1 (A_1 x + b_1) \cdots \right) + b_L,$$

where nonlinearity/activation/transfer σ_i is applied coordinate-wise.

There are many conventions; we will briefly discuss others.

We'll mostly stick to the ReLU $z \mapsto \max\{0, z\}$ (Fukushima '80); it's easy to convert.

 $x\mapsto 2\cdot 1\!\!1[x\!-\!3\geq 0]\!+\!1[x\!-\!5\geq 0]\!+\!2\cdot 1\!\!1[x\!-\!7\geq 0]\!-\!1\!\!1[x\!-\!13\geq 0]\cdots$

$x\mapsto 2\cdot 1\!\!1[x\!-\!3\geq 0]\!+\!1[x\!-\!5\geq 0]\!+\!2\cdot 1\!\!1[x\!-\!7\geq 0]\!-\!1[x\!-\!13\geq 0]\cdots$

Remark. By contrast, polynomials struggle with flat regions.

Approach #1: subdivide range, Lip/ϵ steps.

Approach #1: subdivide range, Lip/ϵ steps. Approach #2: by FTC, for $x \ge 0$,

$$f(x) = f(0) + \int_0^x f'(b) \, \mathrm{d}b = f(0) + \int_0^\infty \mathbb{1}[x - b \ge 0] f'(b) \, \mathrm{d}b.$$

This is a density over infinitely many steps/nodes! Sample $\operatorname{avg Lip}_{\epsilon^2}$ steps.

Approach #1: subdivide range, Lip/ϵ steps. **Approach #2:** by FTC, for $x \ge 0$,

$$f(x) = f(0) + \int_0^x f'(b) \, \mathrm{d}b = f(0) + \int_0^\infty \mathbb{1}[x - b \ge 0] f'(b) \, \mathrm{d}b.$$

This is a density over infinitely many steps/nodes! Sample $avg Lip/\epsilon^2$ steps.

Remarks.

- ► Infinite width network!
- ▶ Refined average-case estimate! (Captures flat regions.)

Include ReLU $z \mapsto \max\{0, z\}$ with change of slope.

How about smooth functions?

Include ReLU $z \mapsto \max\{0, z\}$ with change of slope.

How about smooth functions? For $x \ge 0$,

$$f(x) = f(0) + \sigma_{\mathbf{r}}(x)f'(0) + \int_0^\infty \sigma_{\mathbf{r}}(x-b)f''(b) \,\mathrm{d}(b).$$

Need to sample $\frac{\text{avg smooth}}{\epsilon^2}$ ReLU!

Include ReLU $z \mapsto \max\{0, z\}$ with change of slope.

How about smooth functions? For $x \ge 0$,

$$f(x) = f(0) + \sigma_{\mathbf{r}}(x)f'(0) + \int_0^\infty \sigma_{\mathbf{r}}(x-b)f''(b) \,\mathrm{d}(b).$$

Need to sample $\frac{\text{avg smooth}}{\epsilon^2}$ ReLU!

(In some sense optimal (Savarese-Evron-Soudry-Srebro '19).)

With probability 1, a random line has unique projections. We've reduced to the univariate case.

With probability 1, a random line has unique projections. We've reduced to the univariate case.

Caveats:

- ▶ Representation size may have blown up.
- ▶ Not our original goal.

Supporting hyperplanes!

Supporting hyperplanes!

Supporting hyperplanes! ... oops.

Supporting hyperplanes! ... oops.

Fix #1: product halfspaces together! (we'll return to this...)

Supporting hyperplanes! ... oops.

Fix #1: product halfspaces together! (we'll return to this...)
Fix #2: add a layer, thresholding at 3.5!

Supporting hyperplanes! ... oops.

Fix #1: product halfspaces together! (we'll return to this...)Fix #2: add a layer, thresholding at 3.5!...how about one ReLU/hidden layer?

Fix #3: add all the hyperplanes!

Fix #3: add all the hyperplanes!
Approximate a multivariate ball.

Fix #3: add all the hyperplanes! Resulting radial function is constant within ball, attenuates away from it. Approximate a multivariate ball.

Fix #3: add all the hyperplanes! Resulting radial function is constant within ball, attenuates away from it.

Bad news: good apx seems to require 2^d nodes... (We'll come back to this.)

Combinations of radial bumps.

Normalize bumps/RBFs into density p; convolve with f.

Combinations of radial bumps.

Normalize bumps/RBFs into density p; convolve with f.

$$\left| f(x) - \int f(z)p(x-z) \, \mathrm{d}z \right| = \left| f(x) - \int f(x-z)p(z) \, \mathrm{d}z \right|$$
$$= \left| \int f(x)p(z) \, \mathrm{d}z - \int f(x-z)p(z) \, \mathrm{d}z \right| \le \int \left| f(x) - f(x-z) \right| p(z) \, \mathrm{d}z,$$

which is small if $p(z) \approx 0$ for large ||z||.

Combinations of radial bumps.

Normalize bumps/RBFs into density p; convolve with f.

$$\left| f(x) - \int f(z)p(x-z) \, \mathrm{d}z \right| = \left| f(x) - \int f(x-z)p(z) \, \mathrm{d}z \right|$$
$$= \left| \int f(x)p(z) \, \mathrm{d}z - \int f(x-z)p(z) \, \mathrm{d}z \right| \le \int \left| f(x) - f(x-z) \right| p(z) \, \mathrm{d}z,$$

which is small if $p(z) \approx 0$ for large ||z||. Size estimate: $(d \cdot \text{Lip}/\epsilon)^{\mathcal{O}(d)}$. (Mhaskar-Michelli '92, BJTX '19.)

So far:

- ► Easy univariate constructions.
- ▶ 3-layer box constructions over \mathbb{R}^d : size $(\text{Lip}/\epsilon)^{\mathcal{O}(d)}$.
- ▶ 2-layer RBF convolutions over \mathbb{R}^d : size $\left(\frac{d \cdot \operatorname{Lip}}{\ell}\right)^{\mathcal{O}(d)}$.

Remarks.

- ▶ Impractical constructions! Bad Lipschitz constants.
- ▶ Contrast with polynomials: flat pieces.
- ▶ Usefuleness of infinite width! Note also:

$$\mathbb{E}\sigma_{\mathbf{r}}(a^{\mathsf{T}}x) = \frac{1}{2}\mathbb{E}|a^{\mathsf{T}}x| = \frac{\|x\|}{\sqrt{2\pi}}.$$

Poor complexity measures outside univariate!

Interlude: three questions

- 1. Are fixed DN architectures closed under addition?
- 2. Can RNNs model Turing Machines?

3. Given continuous $g : \mathbb{R}^d \to \mathbb{R}$, can we construct custom univariate activations so that

$$g(x) \stackrel{!}{=} \sum_{i=0}^{2d} f_i\left(\sum_{j=1}^d h_{i,j}(x_j)\right)?$$

Univariate bump: $\cos(x)^p$ for large p.

Univariate bump: $\cos(x)^p$ for large p. Multivariate bump:

$$\mathbb{1}\left[\|x\|_{\infty} \le 1\right] = \prod_{i=1}^{d} \mathbb{1}\left[|x_i| \le 1\right] \quad \text{and} \quad \prod_{i=1}^{d} \cos(x_i)^p.$$

Univariate bump: $\cos(x)^p$ for large p. Multivariate bump:

$$\mathbb{1}[\|x\|_{\infty} \le 1] = \prod_{i=1}^{d} \mathbb{1}[|x_i| \le 1]$$
 and $\prod_{i=1}^{d} \cos(x_i)^p$.

To remove the product:

$$\cos(x)\cos(x) = \frac{1}{2}\left(\cos(2x) + 1\right),$$

$$2\cos(x_1)\cos(x_2) = \cos(x_1 + x_2) + \cos(x_1 - x_2).$$

Weierstrass approximation theorem

Theorem (Weierstrass, 1885). Polynomials can uniformly approximate continuous functions over compact sets.

Weierstrass approximation theorem

Theorem (Weierstrass, 1885). Polynomials can uniformly approximate continuous functions over compact sets.

Remarks.

- Not a consequence of interpolation: must control behavior between interpolants.
- ▶ Proofs are interesting; e.g., Bernstein (Bernstein polynomials and tail bounds), Weierstrass (Gaussian smoothing gives analytic functions). ...
- ▶ Stone-Weierstrass theorem: Polynomial-like function families (e.g., closed under multiplication) also approximate continuous function.

$$\lim_{z \to -\infty} \sigma(z) = 0, \qquad \lim_{z \to +\infty} \sigma(z) = 1,$$

and define $\mathcal{H}_{\sigma} := \left\{ x \mapsto \sigma(a^{\mathsf{T}}x - b) : (a, b) \in \mathbb{R}^{d+1} \right\}$. Then span (\mathcal{H}_{σ}) uniformly approximates continuous functions on compact sets.

$$\lim_{z \to -\infty} \sigma(z) = 0, \qquad \lim_{z \to +\infty} \sigma(z) = 1,$$

and define $\mathcal{H}_{\sigma} := \left\{ x \mapsto \sigma(a^{\mathsf{T}}x - b) : (a, b) \in \mathbb{R}^{d+1} \right\}$. Then $\operatorname{span}(\mathcal{H}_{\sigma})$ uniformly approximates continuous functions on compact sets.

Proof #1. \mathcal{H}_{cos} is closed under products since

$$2\cos(a)\cos(b) = \cos(a+b) + \cos(a-b).$$

Now uniformly approximate fixed \mathcal{H}_{cos} with span (\mathcal{H}_{σ}) . (Univariate fitting.)

Proof #2. \mathcal{H}_{exp} is closed under products since $e^a e^b = e^{a+b}$. Now uniformly approximate fixed \mathcal{H}_{exp} with $\operatorname{span}(\mathcal{H}_{\sigma})$. (Univariate fitting.)

$$\lim_{z \to -\infty} \sigma(z) = 0, \qquad \lim_{z \to +\infty} \sigma(z) = 1,$$

and define $\mathcal{H}_{\sigma} := \left\{ x \mapsto \sigma(a^{\mathsf{T}}x - b) : (a, b) \in \mathbb{R}^{d+1} \right\}$. Then span (\mathcal{H}_{σ}) uniformly approximates continuous functions on compact sets.

$$\lim_{z \to -\infty} \sigma(z) = 0, \qquad \lim_{z \to +\infty} \sigma(z) = 1,$$

and define $\mathcal{H}_{\sigma} := \left\{ x \mapsto \sigma(a^{\mathsf{T}}x - b) : (a, b) \in \mathbb{R}^{d+1} \right\}$. Then span (\mathcal{H}_{σ}) uniformly approximates continuous functions on compact sets.

Remarks.

- ► ReLU is fine: use $\sigma(z) := \sigma_{r}(z) \sigma_{r}(z-1)$.
- Size estimate: expanding terms, seem to get $(Lip/\epsilon)^{\Omega(d)}$.
- ▶ Best conditions on σ (Leshno-Lin-Pinkus-Schocken '93): theorem holds iff σ not a polynomial.
- Inner hint about DN: no need for explicit multiplication?

Other proofs.

▶ (Cybenko '89.) Assume contradictorily you miss some functions. By duality, $0 = \int \sigma(a^{\mathsf{T}}x - b) \,\mathrm{d}\mu(x)$ for some signed measure μ , all (a, b). Using Fourier, can show this implies $\mu = 0...$ ▶ (Leshno-Lin-Pinkus-Schocken '93.) If σ a polynomial, ...; else can (roughly) get derivatives of all orders, polynomials of all orders. ▶ (Barron '93.) Consider activation $x \mapsto \exp(ia^{\mathsf{T}}x)$, infinite width form $\int \exp(ia^{\mathsf{T}}x)\widetilde{f}(a) \,\mathrm{d}a.$ Take real part and sample (Maurey) to get $g \in \text{span}(\mathcal{H}_{\cos})$; convert to span(\mathcal{H}_{σ}) as before. (Funahashi '89.) Also Fourier, measure-theoretic.

"Universal approximation"

(Uniform approximation of cont. functions on compact sets).

- ▶ Elementary proof: RBF (Mhaskar-Michelli '92; BJTX '19).
- ▶ Slick proof: Stone-Weierstrass and \mathcal{H}_{cos} or \mathcal{H}_{exp} (Hornik-Stinchcombe-White, '89).
- ▶ Proof with size estimates beating (Lip/ε)^d, indeed norm of Fourier transform of gradient, related to "sampling measure": (Barron '93).

Remarks.

- Exhibits nothing special about DN; indeed, same proofs work for boosting, RBF SVM, ...
- ► Size estimates huge (soon we'll see $d^{\Omega(d)}$).
- Proofs use nice representation "tricks"; (e.g., Leshno et al "iff not polynomial").

Radial functions are easy with two ReLU layers

Consider $f(||x||^2)$ with Lipschitz constant Lip. \blacktriangleright Pick $h(x) \approx_{\epsilon} ||x||_2^2 = \sum_i x_i^2$ with $d \cdot \text{Lip}/\epsilon$ ReLU.

Radial functions are easy with two ReLU layers

Consider $f(||x||^2)$ with Lipschitz constant Lip.

- ▶ Pick $h(x) \approx_{\epsilon} ||x||_2^2 = \sum_i x_i^2$ with $d \cdot \text{Lip}/\epsilon$ ReLU.
- ▶ Pick $g \approx_{\epsilon} f$ with Lip/ ϵ ReLU; then

$$\begin{aligned} \left| f(\|x\|^2) - g(h(x)) \right| &\leq \left| f(\|x\|^2) - f(h(x)) \right| + \left| f(h(x)) - g(h(x)) \right| \\ &\leq \operatorname{Lip} \left| \|x\|^2 - h(x) \right| + \epsilon \leq 2\epsilon. \end{aligned}$$

Radial functions are easy with two ReLU layers

Consider $f(||x||^2)$ with Lipschitz constant Lip.

- ▶ Pick $h(x) \approx_{\epsilon} ||x||_2^2 = \sum_i x_i^2$ with $d \cdot \text{Lip}/\epsilon$ ReLU.
- ▶ Pick $g \approx_{\epsilon} f$ with Lip/ ϵ ReLU; then

$$\begin{aligned} \left| f(\|x\|^2) - g(h(x)) \right| &\leq \left| f(\|x\|^2) - f(h(x)) \right| + \left| f(h(x)) - g(h(x)) \right| \\ &\leq \operatorname{Lip} \left| \|x\|^2 - h(x) \right| + \epsilon \leq 2\epsilon. \end{aligned}$$

Remarks.

- ► Final size of $g \circ h$ is poly(Lip, $d, 1/\epsilon$).
- Proof style is "typical"/lazy; (problematically) pays with Lipschitz constant.
- ▶ That was easy/intuitive; how about the 2 layer case?...

Radial functions are *not* easy with only one ReLU layer (I)

Theorem (Eldan-Shamir, 2015).

There exists a radial function f,

expressible with two ReLU layers of width poly(d),

and a probability measure ${\cal P}$

so that every g with a single ReLU layer of width $2^{\mathcal{O}(d)}$ satisfies

$$\int (f(x) - g(x))^2 \,\mathrm{d}P(x) \ge \Omega(1).$$

Radial functions are *not* easy with only one ReLU layer (I)

Theorem (Eldan-Shamir, 2015).

There exists a radial function f,

expressible with two ReLU layers of width poly(d),

and a probability measure ${\cal P}$

so that every g with a single ReLU layer of width $2^{\mathcal{O}(d)}$ satisfies

$$\int (f(x) - g(x))^2 \, \mathrm{d}P(x) \ge \Omega(1).$$

Proof hints.

Apply Fourier isometry and consider the transforms. Transform of g is supported on a small set of tubes; transform of f has large mass they can't reach.

Theorem (Daniely, 2017).

Let $(x, x') \sim P$ be uniform on two sphere surfaces, define $h(x, x') = \sin(\pi d^3 x^{\mathsf{T}} x')$. For any g with a single ReLU layer of width $d^{\mathcal{O}(d)}$ and weight magnitude $\mathcal{O}(2^d)$,

$$\int \left(h(x,x') - g(x,x')\right)^2 \mathrm{d}P(x,x') \ge \Omega(1),$$

and h can be approximated to accuracy ϵ

by f with two ReLU layers of size $poly(d, 1/\epsilon)$.

Theorem (Daniely, 2017).

Let $(x, x') \sim P$ be uniform on two sphere surfaces, define $h(x, x') = \sin(\pi d^3 x^{\mathsf{T}} x')$. For any g with a single ReLU layer of width $d^{\mathcal{O}(d)}$ and weight magnitude $\mathcal{O}(2^d)$,

$$\int \left(h(x,x') - g(x,x')\right)^2 \mathrm{d}P(x,x') \ge \Omega(1),$$

and h can be approximated to accuracy ϵ by f with two ReLU layers of size $poly(d, 1/\epsilon)$.

Proof hints.

Spherical harmonics reduce this to a univariate problem; apply region counting.

Approximation of high-dimensional radial functions

(A radial function contour plot.)

If we can approximate each shell, we can approximate the overall function.

Approximation of high-dimensional radial shell

Let's approximate a single shell; consider

$$x\mapsto \mathbb{1}\left[\|x\|\in [1-{}^{1}\!/\!d\ ,\ 1]\right],$$

which has a constant fraction of sphere volume.

Approximation of high-dimensional radial shell

Let's approximate a single shell; consider

$$x\mapsto \mathbb{1}\left[\|x\|\in [1-{}^{1}\!/\!d\ ,\ 1]\right],$$

which has a constant fraction of sphere volume.

Can't cut too deeply; get bad error on inner zero part...

Approximation of high-dimensional radial shell

Let's approximate a single shell; consider

$$x\mapsto \mathbb{1}\left[\|x\|\in [1-{}^{1}\!/\!d\ ,\ 1]\right],$$

which has a constant fraction of sphere volume.

Can't cut too deeply; get bad error on inner zero part...

... but then we need to cover exponentially many caps.

Let's go back to the drawing board; what do shallow representations do exceptionally badly? Let's go back to the drawing board; what do shallow representations do exceptionally badly?

One weakness: their complexity scales with #bumps.

Consider the tent map \mathbf{t}

$$\Delta(x) := \sigma_{\mathbf{r}}(2x) - \sigma_{\mathbf{r}}(4x - 2) = \begin{cases} 2x & x \in [0, 1/2), \\ 2(1-x) & x \in [1/2, 1]. \end{cases}$$

Consider the tent map

$$\Delta(x) := \sigma_{\mathbf{r}}(2x) - \sigma_{\mathbf{r}}(4x - 2) = \begin{cases} 2x & x \in [0, 1/2), \\ 2(1 - x) & x \in [1/2, 1]. \end{cases}$$

What is the effect of composition?

 $f(\Delta(x)) = \begin{cases} x \in [0, \frac{1}{2}) \implies f(2x) = f \text{ squeezed into } [0, \frac{1}{2}], \\ x \in [\frac{1}{2}, 1] \implies f\left(2(1-x)\right) = f \text{ reversed, squeezed.} \end{cases}$
Consider the **tent map**

What is the effect of composition?

 $f(\Delta(x)) = \begin{cases} x \in [0, \frac{1}{2}) \implies f(2x) = f \text{ squeezed into } [0, \frac{1}{2}], \\ x \in [\frac{1}{2}, 1] \implies f\left(2(1-x)\right) = f \text{ reversed, squeezed.} \end{cases}$

Consider the **tent map**

What is the effect of composition?

 $f(\Delta(x)) = \begin{cases} x \in [0, \frac{1}{2}) \implies f(2x) = f \text{ squeezed into } [0, \frac{1}{2}], \\ x \in [\frac{1}{2}, 1] \implies f\left(2(1-x)\right) = f \text{ reversed, squeezed.} \end{cases}$

Consider the **tent map**

What is the effect of composition?

 $f(\Delta(x)) = \begin{cases} x \in [0, \frac{1}{2}) \implies f(2x) = f \text{ squeezed into } [0, \frac{1}{2}], \\ x \in [\frac{1}{2}, 1] \implies f\left(2(1-x)\right) = f \text{ reversed, squeezed.} \end{cases}$

 Δ^k uses $\mathcal{O}(k)$ layers & nodes, but has $\mathcal{O}(2^k)$ bumps.

Theorem (T '15). Let #layers $k \ge 1$ be given.

Theorem (T '15). Let #layers $k \ge 1$ be given. Exists ReLU network $f : [0,1] \rightarrow [0,1]$ with 4 distinct parameters, $3k^2 + 9$ nodes, $2k^2 + 6$ layers, **Theorem (T '15).** Let #layers $k \ge 1$ be given. Exists ReLU network $f : [0,1] \to [0,1]$ with 4 distinct parameters, $3k^2 + 9$ nodes, $2k^2 + 6$ layers, such that every ReLU network $g : \mathbb{R}^d \to \mathbb{R}$ with $\le k$ layers, $\le 2^k$ nodes

Theorem (T '15).

Let #layers $k \ge 1$ be given.

Exists ReLU network $f: [0,1] \rightarrow [0,1]$

with 4 distinct parameters, $3k^2 + 9$ nodes, $2k^2 + 6$ layers, such that every ReLU network $g : \mathbb{R}^d \to \mathbb{R}$

with $\leq k$ layers, $\leq 2^k$ nodes satisfies

$$\int_{[0,1]} |f(x) - g(x)| \, \mathrm{d}x \ge \frac{1}{32}.$$

Theorem (T '15). Let #layers $k \ge 1$ be given. Exists ReLU network $f : [0,1] \to [0,1]$ with 4 distinct parameters, $3k^2 + 9$ nodes, $2k^2 + 6$ layers, such that every ReLU network $g : \mathbb{R}^d \to \mathbb{R}$ with $\le k$ layers, $\le 2^k$ nodes satisfies $\int_{[0,1]} |f(x) - g(x)| \, \mathrm{d}x \ge \frac{1}{32}.$

Proof.

- 1. g with few oscillations can't apx oscillatory regular f.
- 2. There exists a regular, oscillatory f. $(f = \Delta^{k^2+3})$.
- 3. Width m depth $L \implies$ few $(\mathcal{O}(m^L))$ oscillations. Rediscovered many times; (T '15) gives elementary univariate argument;

multivariate arguments in (Warren '68), (Arnold ?), (Montufar, Pascanu, Cho, Bengio, '14), (BT '18), ...

g with few oscillations; f highly oscillatory, regular

$$\implies \qquad \int_{[0,1]} |\boldsymbol{g} - \boldsymbol{f}| \text{ large }.$$

$$\Rightarrow \qquad \int_{[0,1]} |g-f| \, ext{large} \; .$$

$$\Rightarrow \int_{[0,1]} |g - f| \text{ large }.$$

$$\Rightarrow \int_{[0,1]} |g - f| \text{ large }.$$

g with few oscillations; f highly oscillatory, regular

$$\implies \qquad \int_{[0,1]} |\boldsymbol{g} - \boldsymbol{f}| \text{ large }.$$

Story from *benefits of depth*:

- Certain radial functions have polynomial width 2 ReLU layer representation, exponential width 1 ReLU layer representation.
- Δ^{k^2+3} can be written with $\mathcal{O}(k^2)$ depth and $\mathcal{O}(1)$ width, requires width $\Omega(2^k)$ if depth $\mathcal{O}(k)$.

Story from *benefits of depth*:

- Certain radial functions have polynomial width 2 ReLU layer representation, exponential width 1 ReLU layer representation.
- Δ^{k^2+3} can be written with $\mathcal{O}(k^2)$ depth and $\mathcal{O}(1)$ width, requires width $\Omega(2^k)$ if depth $\mathcal{O}(k)$.

- Δ^k is 2^k -Lipschitz; possibly nonsensical, unrealistic.
- These results have stood a few years now; many "technical" questions, also "realistic" questions.

 $h_k :=$ piecewise-affine interpolation of x^2 at $\{0, \frac{1}{2^k}, \frac{2}{2^k}, \dots, \frac{2^k}{2^k}\}$.

$$h_1 - h_2$$
.

Thus
$$h_k(x) = x - \sum_{i \le k} \Delta^i(x)/4^i$$
.

Thus
$$h_k(x) = x - \sum_{i \le k} \Delta^i(x) / 4^i$$
.

- ▶ h_k needs $k = \mathcal{O}(\ln(1/\epsilon))$ to ϵ -apx $x \mapsto x^2$ (Yarotsky, '16), with matching lower bounds.
- Squaring implies **multiplication** via polarization: $x^{\mathsf{T}}y = \frac{1}{2} \left(\|x + y\|^2 - \|x\|^2 - \|y\|^2 \right).$

Thus
$$h_k(x) = x - \sum_{i \le k} \Delta^i(x) / 4^i$$
.

- ▶ h_k needs $k = \mathcal{O}(\ln(1/\epsilon))$ to ϵ -apx $x \mapsto x^2$ (Yarotsky, '16), with matching lower bounds.
- Squaring implies **multiplication** via polarization: $x^{\mathsf{T}}y = \frac{1}{2} \left(\|x + y\|^2 - \|x\|^2 - \|y\|^2 \right).$
- This implies efficient approximation of polynomials; can we do more?

Let dimension d and smoothness order r be given. Given $f:[0,1]^d\to\mathbb{R}$, all rth order derivatives bounded by 1, exists a network g

with $C_{d,r} \ln(e/\epsilon)$ layers and $C_{d,r} \epsilon^{-d/r} \ln(e/\epsilon)$ nodes so that

$$\sup_{x \in [0,1]^d} |f(x) - g(x)| \le \epsilon.$$

Let dimension d and smoothness order r be given. Given $f:[0,1]^d \to \mathbb{R}$, all rth order derivatives bounded by 1, exists a network g

with $C_{d,r} \ln(e/\epsilon)$ layers and $C_{d,r} \epsilon^{-d/r} \ln(e/\epsilon)$ nodes so that

$$\sup_{x \in [0,1]^d} |f(x) - g(x)| \le \epsilon.$$

Proof.

Conditions imply accurate local Taylor expansions. Therefore can write f as a linear combination of this basis: polynomials multiplied by local bumps.

Let dimension d and smoothness order r be given. Given $f:[0,1]^d\to\mathbb{R}$, all rth order derivatives bounded by 1, exists a network g

with $C_{d,r} \ln(e/\epsilon)$ layers and $C_{d,r} \epsilon^{-d/r} \ln(e/\epsilon)$ nodes so that

$$\sup_{x \in [0,1]^d} |f(x) - g(x)| \le \epsilon.$$

Let dimension d and smoothness order r be given. Given $f:[0,1]^d \to \mathbb{R}$, all rth order derivatives bounded by 1, exists a network g

with $C_{d,r} \ln(e/\epsilon)$ layers and $C_{d,r} \epsilon^{-d/r} \ln(e/\epsilon)$ nodes so that

$$\sup_{x \in [0,1]^d} |f(x) - g(x)| \le \epsilon.$$

- There is depth, but it is function independent: only the basis coefficients use f.
- This is a shallow representation: only the basis coefficients
- ▶ Lipschitz constant is possibly bad: Δ^{1/ε} is ¹/ε-Lipschitz, the bumps are ¹/ε^{d/r}-Lipschitz.

Let dimension d and smoothness order r be given. Given $f:[0,1]^d \to \mathbb{R}$, all rth order derivatives bounded by 1, exists a network g

with $C_{d,r} \ln(e/\epsilon)$ layers and $C_{d,r} \epsilon^{-d/r} \ln(e/\epsilon)$ nodes so that

$$\sup_{x \in [0,1]^d} |f(x) - g(x)| \le \epsilon.$$

Let dimension d and smoothness order r be given. Given $f:[0,1]^d \to \mathbb{R}$, all rth order derivatives bounded by 1, exists a network g

with $C_{d,r} \ln(e/\epsilon)$ layers and $C_{d,r} \epsilon^{-d/r} \ln(e/\epsilon)$ nodes so that

$$\sup_{x \in [0,1]^d} |f(x) - g(x)| \le \epsilon.$$

Remarks.

- There is parallel and subsequent work with similar proof ideas and Lipschitz constants: (Safran-Shamir '16), (Petersen-Voigtlaender '17), (Schmidt-Hieber '17).
- Another appearance of polynomials in DN: Sum-product networks.

These were the first to have depth separation (Delalleau-Bengio '11).

Let dimension d and smoothness order r be given. Given $f:[0,1]^d \to \mathbb{R}$, all rth order derivatives bounded by 1, exists a network g

with $C_{d,r} \ln(e/\epsilon)$ layers and $C_{d,r} \epsilon^{-d/r} \ln(e/\epsilon)$ nodes so that

$$\sup_{x \in [0,1]^d} |f(x) - g(x)| \le \epsilon.$$

Let dimension d and smoothness order r be given. Given $f:[0,1]^d \to \mathbb{R}$, all rth order derivatives bounded by 1, exists a network g

with $C_{d,r} \ln(e/\epsilon)$ layers and $C_{d,r} \epsilon^{-d/r} \ln(e/\epsilon)$ nodes so that

$$\sup_{x \in [0,1]^d} |f(x) - g(x)| \le \epsilon.$$

- DN can approximate polynomials efficiently, but the reverse is false: a single ReLU requires degree ¹/ε.
- Polynomials can not handle flat regions well; this is used above, and in approximated rational functions (T '17).
Theorem (Yarotsky '16).

Let dimension d and smoothness order r be given. Given $f:[0,1]^d \to \mathbb{R}$, all rth order derivatives bounded by 1, exists a network g

with $C_{d,r} \ln(e/\epsilon)$ layers and $C_{d,r} \epsilon^{-d/r} \ln(e/\epsilon)$ nodes so that

$$\sup_{x \in [0,1]^d} |f(x) - g(x)| \le \epsilon.$$

Remarks.

Theorem (Yarotsky '16).

Let dimension d and smoothness order r be given. Given $f:[0,1]^d \to \mathbb{R}$, all rth order derivatives bounded by 1, exists a network g

with $C_{d,r} \ln(e/\epsilon)$ layers and $C_{d,r} \epsilon^{-d/r} \ln(e/\epsilon)$ nodes so that

$$\sup_{x \in [0,1]^d} |f(x) - g(x)| \le \epsilon.$$

Remarks.

▶ Corresponding lower bounds indicate depth is needed.

Interlude: three questions

- 1. Are fixed DN architectures closed under addition? No, add together perturbed copies of Δ^k .
- 2. Can RNNs model Turing Machines?

- **Hint.** ReLU networks can do exact Boolean formulae. Set f to state transition table, encode tape on s.
- 3. Given continuous $g : \mathbb{R}^d \to \mathbb{R}$, can we construct custom univariate activations so that

$$g(x) \stackrel{!}{=} \sum_{i=0}^{2d} f_i\left(\sum_{j=1}^d h_{i,j}(x_j)\right)?$$

Hint? Contradicts a Hilbert problem?

Typical setup: pushforward measure $g#\mu$, meaning

sample $x \sim \mu$, output g(x).

Many easy constructions have bad/ ∞ Lipschitz constants! E.g., mapping uniform into [0, 1/2], (3/2, 2].

Some literature: (Arora-Ge-Liang-Ma-Zhang '17, BT '18, Bai-Ma-Risteski '19, Elchanan's talk this week!) Randomly *initialized* networks

Approximation fact in recent optimization papers: a small perturbation of random initialization gives any function you want!(Du-Lee-Li-Wang-Zhai '18, AllenZhu-Li-Song '18).

There is residual error from the noise approximating high-Lipschitz functions is problematic! (BJTX '19.) Randomly *sampled* networks

Theorem. With probability $\geq 1 - \frac{1}{e}$,

$$\begin{split} \sup_{\|x\|_2 \le 1} \left| \int \sigma_{\mathbf{r}}(a^{\mathsf{T}}x - b) \, \mathrm{d}\mu(a, b) - \frac{\|\mu\|_1}{N} \sum_{i=1}^N \sigma_{\mathbf{r}}(a_i^{\mathsf{T}}x - b_i) \right| \\ \le \mathcal{O}\left(\frac{B\|\mu\|_1}{\sqrt{N}}\right), \end{split}$$

where support of μ has $||(a, b)|| \leq B$.

Randomly *sampled* networks

Theorem. With probability $\geq 1 - \frac{1}{e}$,

$$\begin{split} \sup_{\|x\|_2 \le 1} \left| \int \sigma_{\mathbf{r}}(a^{\mathsf{T}}x - b) \, \mathrm{d}\mu(a, b) - \frac{\|\mu\|_1}{N} \sum_{i=1}^N \sigma_{\mathbf{r}}(a_i^{\mathsf{T}}x - b_i) \right| \\ \le \mathcal{O}\left(\frac{B\|\mu\|_1}{\sqrt{N}}\right), \end{split}$$

where support of μ has $||(a, b)|| \leq B$.

Proof. Invoke Rademacher complexity, but swap inputs and parameters.

(Koiran-Gurvits '97, Sun-Gilbert-Tewari '18, BJTX '19.) Also Maurey's Lemma (Barron '93). Adversarial stability

Adversarial examples lower bound the Lipschitz constant...

Adversarial stability

Adversarial examples lower bound the Lipschitz constant...

... but a bad Lipschitz constant can be good for adversarial examples! Adversarial stability

Adversarial examples lower bound the Lipschitz constant...

... but a bad Lipschitz constant can be good for adversarial examples!

Given the existence of adversarial examples, uniform approximation too stringent?

Turing machines and RNNs

Make f the TM state transition table, s the tape. Turing machines and RNNs

- Make f the TM state transition table, s the tape.
- ▶ $x \mapsto \mathbb{1}[x \ge 0]$ is **not computable**; bits need a special encoding within *s*.

Turing machines and RNNs

- Make f the TM state transition table, s the tape.
- ▶ $x \mapsto \mathbb{1}[x \ge 0]$ is **not computable**; bits need a special encoding within *s*.
- ► Use a robust "cantor-like" encoding.

(Siegelmann-Sontag '94.)

There exist continuous $((h_{i,j})_{i=0}^{2d})_{j=1}^d : \mathbb{R} \to \mathbb{R}$, so that for any continuous $g : \mathbb{R}^d \to \mathbb{R}$, there exist continuous $(f_i)_{i=0}^{2d} : \mathbb{R} \to \mathbb{R}$ with

$$g(x) = \sum_{i=0}^{2d} f_i \Big(\sum_{j=1}^d h_{i,j}(x_j) \Big).$$

There exist continuous $((h_{i,j})_{i=0}^{2d})_{j=1}^d : \mathbb{R} \to \mathbb{R}$, so that for any continuous $g : \mathbb{R}^d \to \mathbb{R}$, there exist continuous $(f_i)_{i=0}^{2d} : \mathbb{R} \to \mathbb{R}$ with

$$g(x) = \sum_{i=0}^{2d} f_i \Big(\sum_{j=1}^d h_{i,j}(x_j) \Big).$$

Step 1. Fix target accuracy $\epsilon > 0$.

There exist continuous $((h_{i,j})_{i=0}^{2d})_{j=1}^d : \mathbb{R} \to \mathbb{R}$, so that for any continuous $g : \mathbb{R}^d \to \mathbb{R}$, there exist continuous $(f_i)_{i=0}^{2d} : \mathbb{R} \to \mathbb{R}$ with

$$g(x) = \sum_{i=0}^{2d} f_i \Big(\sum_{j=1}^d h_{i,j}(x_j) \Big).$$

Step 2. Choose $f : \mathbb{R} \to \mathbb{R}$, nearly injective $Q : \mathbb{R}^d \to \mathbb{R}$, $g \approx f(Q(x))$

There exist continuous $((h_{i,j})_{i=0}^{2d})_{j=1}^d : \mathbb{R} \to \mathbb{R}$, so that for any continuous $g : \mathbb{R}^d \to \mathbb{R}$, there exist continuous $(f_i)_{i=0}^{2d} : \mathbb{R} \to \mathbb{R}$ with

$$g(x) = \sum_{i=0}^{2d} f_i \Big(\sum_{j=1}^d h_{i,j}(x_j) \Big).$$

Step 3.

Replace near-injection $Q : \mathbb{R}^d \to \mathbb{R}$ with $\sum_j h_j(x_j)$.

There exist continuous $((h_{i,j})_{i=0}^{2d})_{j=1}^d : \mathbb{R} \to \mathbb{R}$, so that for any continuous $g : \mathbb{R}^d \to \mathbb{R}$, there exist continuous $(f_i)_{i=0}^{2d} : \mathbb{R} \to \mathbb{R}$ with

$$g(x) = \sum_{i=0}^{2d} f_i \Big(\sum_{j=1}^d h_{i,j}(x_j) \Big).$$

Step 4. Replace $f(\sum_j h_j(x_j))$ with staggered versions $\sum_i f_i(\sum_j h_{i,j}(x_j))$; for any $x \in [0, 1]^d$, \geq half are correct.

There exist continuous $((h_{i,j})_{i=0}^{2d})_{j=1}^d : \mathbb{R} \to \mathbb{R}$, so that for any continuous $g : \mathbb{R}^d \to \mathbb{R}$, there exist continuous $(f_i)_{i=0}^{2d} : \mathbb{R} \to \mathbb{R}$ with

$$g(x) = \sum_{i=0}^{2d} f_i \Big(\sum_{j=1}^d h_{i,j}(x_j) \Big).$$

Step 5. Embed the solutions for infinitely many ϵ into one.

Main story.

- ► Can fit continuous functions in various ways; the size is bad $((d \cdot \text{Lip}/\epsilon)^{\mathcal{O}(d)})$.
- Composition and depth bring some concrete benefits; exponential reductions in width!
- Polynomials may be efficiently approximated, but also some non-polynomials (Sobolov balls, rational functions, flat regions, ...).

Remarks.

- Refined depth separations (e.g., a single new layer) and practical depth separations are still elusive.
- ▶ Refined, average-case complexity measures are elusive.

