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Goal: in some prediction problem,

replace f: R? 5 R with neural network ¢ : RY — R.

Primary setting: statistical learning theory, thus

/E y)dP(z,y) VS. /E y)dP(x,y).
If 4(-,y) is 1-Lipschitz,

/ [E(g(x), 9) — 6f (x), 9)] APz, ) <|g(x) — f(z)] dP(, y);

we make this small everywhere
(universal /uniform/L.,(P) apx), or in Li(P).

> we want large error on a large set;
as a surrogate, |g — f| large in L;(P) or L;(Unif).
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By deep networks we mostly mean
T — ALJL_l (---Ul(Al.%'-i-bl)"') +bL,

where nonlinearity /activation/transfer o;
is applied coordinate-wise.

There are many conventions;
we will briefly discuss others.

We'll mostly stick to the ReLU z — max{0, z} (Fukushima ’80);
it’s easy to convert.



Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

Sobolev spaces.

Odds & ends.
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Univariate functions via step activations ‘

— 11 ll

z s 21[z—3 > 0]+ 1[z—5 > 0]+2-1[z—7 > 0] —L[z—13 > 0] - --

Remark. By contrast, polynomials struggle with flat regions.
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Smooth univariate functions via step activations

subdivide range, Lip/e steps.
by FTC, for x > 0,
X o0
fl@) = £0)+ [ fera =50+ [ 1l —b=0rwa
This is a density over infinitely many steps/nodes!
Sample avg Lip/e2 steps.
Remarks.
> Infinite width network!
» Refined average-case estimate! (Captures flat regions.)
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Univariate functions via ReLU activations

Include ReLU z — max{0, z} with

How about smooth functions? For xz > 0,

£(£) = F(0) + ov(2) £(0) + /0 " oule — b)£(b) ).

Need to sample avg smooth/e2 Re,U!

(In some sense optimal (Savarese-Evron-Soudry-Srebro '19).)
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With probability 1, a random line has unique projections.
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Multivariate, but finitely many points

With probability 1, a random line has unique projections.
We’ve reduced to the univariate case.

Caveats:
> Representation size may have blown up.

» Not our original goal.
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Approximate a multivariate box.

0p 040

Supporting hyperplanes! ... oops.

Fix #1: product halfspaces together! (we’ll return to this...)
Fix #2: add a layer, thresholding at 3.5!
...how about one ReLU/hidden layer?
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Approximate a multivariate ball. ‘

Fix #3: add all the hyperplanes!
Resulting radial function is constant within ball,
attenuates away from it.

Bad news: good apx seems to require 2¢ nodes. ..

(We’ll come back to this.)
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Combinations of radial bumps. ‘

Normalize bumps/RBFs into density p; convolve with f.

@)= [ Fmta = 2)0e] =| @) - [ 1= 2z as

:‘/f(x) dz—/fm—z z)dz /}f flz—2)|p(2) dz,

which is small if p(z) ~ 0 for large ||z|.

Size estimate: (d Llp/e)o(
(Mhaskar-Michelli '92, BJTX ’19.)



So far:

» Easy univariate constructions.
. d. . . O(d)
> 3-layer box constructions over R?: size (Lip/c) ™.

» 2-layer RBF convolutions over R?: size (d-Lip/e)O(d).

Remarks.
» Impractical constructions! Bad Lipschitz constants.
» Contrast with polynomials: flat pieces.

» Usefuleness of infinite width! Note also:

[kl
V2T

» Poor complexity measures outside univariate!

1
Eoy(a'z) = §E|aTx| =



‘ Interlude: three questions

. Are fixed DN architectures closed under addition?

Can RNNs model Turing Machines?

Given continuous ¢ : R — R,
can we construct custom univariate activations so that

d

2d
"”);Zfi Z i.d (25)
=0



Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

Sobolev spaces.

Odds & ends.




Bumps via multiplication

1.0 -

0.8 -

0.6 -

0.4 -

0.2-

0.0 -

~1.5 ~1.0 =0.5 0.0 0.5 1.0 1.5



Bumps via multiplication

1.5 1.0 0.5 0.0 0.5 1.0 15

Univariate bump: cos(z)? for large p.



Bumps via multiplication

Univariate bump: cos(z)? for large p. Multivariate bump:
d d
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Bumps via multiplication

Univariate bump: cos(z)? for large p. Multivariate bump:

d
1|zl <1] = H]l |zi| < 1] and Hcos(mi)p
=1 ;
To remove the product:

cos(z) cos(x) = % (cos(2z) + 1),

2 cos(xy) cos(xz) = cos(x1 + x2) + cos(z1 — x2).
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Weierstrass approximation theorem

Theorem (Weierstrass, 1885). Polynomials can uniformly
approximate continuous functions over compact sets.

Remarks.

> Not a consequence of interpolation:
must control behavior between interpolants.

» Proofs are interesting; e.g., Bernstein (Bernstein
polynomials and tail bounds), Weierstrass (Gaussian
smoothing gives analytic functions). ...

> Stone-Weierstrass theorem: Polynomial-like function

families (e.g., closed under multiplication) also approximate
continuous function.
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Let 0 : R — R be given with
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Theorem (Hornik-Stinchcombe-White ’89).
Let 0 : R — R be given with

ZEIEIOOU(Z) =0 zgrllooo—(z) =1

and define H, := {x —o(a"z —b): (a,b) € Rd+1}.
Then span(#H,) uniformly approximates
continuous functions on compact sets.

Proof #1. Hcos is closed under products since

2 cos(a) cos(b) = cos(a + b) + cos(a — b).

Now uniformly approximate fixed Hcos with span(H,).
(Univariate fitting.)

Proof #2. Heyp is closed under products since eteb = et
Now uniformly approximate fixed Hexp with span(H,).
(Univariate fitting.)
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Theorem (Hornik-Stinchcombe-White ’89).
Let 0 : R — R be given with

lim o(z) =0, lim o(z) =1,
Z—>—00 Z—>+00
and define H, := {a: —o(a"z —b):(a,b) € Rd+1}.
Then span(#H,) uniformly approximates
continuous functions on compact sets.

Remarks.
» ReLU is fine: use o(z) := 0y(2) — or(z — 1).
> Size estimate: expanding terms, seem to get (Lip/e)ﬂ(d).
» Best conditions on o (Leshno-Lin-Pinkus-Schocken '93):
theorem holds iff ¢ not a polynomial.

» Inner hint about DN:
no need for explicit multiplication?



Other proofs. ‘

» (Cybenko ’89.)
Assume contradictorily you miss some functions.
By duality, 0 = [o(a"z — b) du(x)
for some signed measure p, all (a,b).
Using Fourier, can show this implies = 0...

» (Leshno-Lin-Pinkus-Schocken "93.)
If o a polynomial, ...;
else can (roughly) get derivatives of all orders,
polynomials of all orders.

» (Barron '93.)
Consider activation x — exp(ia'x),

infinite width form /exp(iaTx)f(a) da.

Take real part and sample (Maurey) to get g € span(Heos);
convert to span(H,) as before.

» (Funahashi '89.) Also Fourier, measure-theoretic.



“Universal approximation”
(Uniform approximation of cont. functions on compact sets).

» Elementary proof: RBF (Mhaskar-Michelli ’92; BJTX ’19).
» Slick proof: Stone-Weierstrass and Hcos or Hexp
(Hornik-Stinchcombe-White, '89).

» Proof with size estimates beating (Lip/e)d,
indeed norm of Fourier transform of gradient,
related to “sampling measure”: (Barron '93).

Remarks.

> Exhibits nothing special about DN;
indeed, same proofs work for boosting, RBF SVM, ...

> Size estimates huge (soon we'll see d*(9).

» Proofs use nice representation “tricks”;
(e.g., Leshno et al “iff not polynomial”).



Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

Sobolev spaces.

Odds & ends.




Radial functions are easy with two ReLU layers

Consider f(||z|?) with Lipschitz constant Lip.
> Pick h(z) =~ ||z]|3 = Y, 27 with dLip/e ReLU.



Radial functions are easy with two ReLU layers

Consider f(||z|?) with Lipschitz constant Lip.
> Pick h(z) =~ ||z]|3 = Y, 27 with dLip/e ReLU.
> Pick g ~. f with Lip/c ReLU; then

Fl2l?) = g(h@)| <[ £(al?) = £ ()| +]£(n)) = g(h())

< Lip||Jz||? - h(x)‘ te< 2.




Radial functions are easy with two ReLU layers

Consider f(||z|?) with Lipschitz constant Lip.
> Pick h(z) =~ ||z]|3 = Y, 27 with dLip/e ReLU.
> Pick g ~. f with Lip/c ReLU; then
F12l?) = 9| < |£(12l) = £(h())| +] (e

< Lip

Remarks.
» Final size of g o h is poly(Lip, d, 1/¢).

» Proof style is “typical” /lazy;
(problematically) pays with Lipschitz constant.

» That was easy/intuitive; how about the 2 layer case?...

]2 — (x)‘ te< 2.

— g(h(2))|



Radial functions are not easy with only one ReLU layer (I)

Theorem (Eldan-Shamir, 2015).
There exists a radial function f,
expressible with two ReLU layers of width poly(d),
and a probability measure P
so that every g with a single ReLU layer of width 2°(® satisfies

/ (F(x) — g(x))? dP(z) > Q(1).



Radial functions are not easy with only one ReLU layer (I)

Theorem (Eldan-Shamir, 2015).
There exists a radial function f,
expressible with two ReLU layers of width poly(d),
and a probability measure P
so that every g with a single ReLU layer of width 2°(® satisfies

/ (F(x) — g(x))? dP(z) > Q(1).

Proof hints.

Apply Fourier isometry and consider the transforms.
Transform of g is supported on a small set of tubes;
transform of f has large mass they can’t reach.



Radial functions are not easy with only one ReLU layer (II)

Theorem (Daniely, 2017).

Let (z,2) ~ P be uniform on two sphere surfaces,
define h(x,z’) = sin(rd3z7a’).

For any g with a single ReLLU layer
of width d°@ and weight magnitude O(2¢),

/ (h(m,x’) — g(:):,w’))2 dP(z,2") > Q(1),

and h can be approximated to accuracy €
by f with two ReLU layers of size poly(d, 1/¢).



Radial functions are not easy with only one ReLU layer (II)

Theorem (Daniely, 2017).

Let (z,2) ~ P be uniform on two sphere surfaces,
define h(x,z’) = sin(rd3z7a’).

For any g with a single ReLLU layer
of width d°@ and weight magnitude O(2¢),

/ (h(m,x’) — g(:):,w’))2 dP(z,2") > Q(1),

and h can be approximated to accuracy €
by f with two ReLU layers of size poly(d, 1/¢).

Proof hints.
Spherical harmonics reduce this to a univariate problem;
apply region counting.



Approximation of high-dimensional radial functions

(A radial function contour plot.)

If we can approximate each shell,
we can approximate the overall function.
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Approximation of high-dimensional radial shell

Let’s approximate a single shell; consider
x> L||z]| € [L = Ya, 1]],

which has a constant fraction of sphere volume.
Can’t cut too deeply; get bad error on inner zero part. ..

... but then we need to cover exponentially many caps.



Let’s go back to the drawing board;
what do shallow representations do exceptionally badly?



Let’s go back to the drawing board;
what do shallow representations do exceptionally badly?

One weakness: their complexity scales with #bumps.
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Consider the tent map

2z x €10,1/2),

A(z) = 0v(22) — oy (da — 2) = {2(1 —a) we[l/21].

A.
What is the effect of composition?

x€0,1/2) = f(2z) = f squeezed into [0,1/2],
xze[l)2,1] = f (2(1 - ;r)) = f reversed, squeezed.

f(A(z)) =



Consider the tent map

2z x €10,1/2),

Af@) = 0r(22) — (o — 2) = {2(1 ) wel/2)
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A. A? =AoA.
What is the effect of composition?

x€0,1/2) = f(2z) = f squeezed into [0,1/2],
xze[l)2,1] = f (2(1 - ;r)) = f reversed, squeezed.

f(A(z)) =



Consider the tent map

2z x €10,1/2),

Alw) = 0:(2) — ov(42 — 2) = {zu —2) zell/21]

1 11

I I
0 1 0 1 0 1

A. A2 =AoA. AF.
What is the effect of composition?

x€0,1/2) = f(2z) = f squeezed into [0,1/2],
xe€[l)2,1] = f (2(1 - T)) = f reversed, squeezed.

f(A(z)) =



Consider the tent map

B ) o 2 x €[0,1/2),
A(z) = 0r(22) — or(dw — 2) = {2(1 —z) z€(l/2,1].

11 11

I I
0 1 0 1 0 1

A. A2 =AoA. AF.
What is the effect of composition?

F(A@) = x€0,1/2) = f(2z) = f squeezed into [0,1/2],
= zelf2,1] = f(2(1—=x)) = f reversed, squeezed.

‘ AF uses O(k) layers & nodes, but has O(2F) bumps. ‘




Theorem (T ’15).
Let #layers k > 1 be given.



Theorem (T ’15).
Let #layers k > 1 be given.
Exists ReLU network f : [0, 1] — [0, 1]
with 4 distinct parameters, 3k + 9 nodes, 2k* + 6 layers,



Theorem (T ’15).
Let #layers k > 1 be given.
Exists ReLU network f : [0, 1] — [0, 1]
with 4 distinct parameters, 3k + 9 nodes, 2k* + 6 layers,
such that every ReLU network ¢ : R — R
with < & layers, < 2* nodes



Theorem (T ’15).
Let #layers k > 1 be given.
Exists ReLU network f : [0, 1] — [0, 1]
with 4 distinct parameters, 3k + 9 nodes, 2k* + 6 layers,
such that every ReLU network ¢ : R — R
with < & layers, < 2* nodes
satisfies

1
[, 1@ —a@lde 2 g



Theorem (T ’15).
Let #layers k > 1 be given.
Exists ReLU network f : [0, 1] — [0, 1]
with 4 distinct parameters, 3k + 9 nodes, 2k* + 6 layers,
such that every ReLU network ¢ : R — R
with < k layers, < 2k nodes
satisfies

1
[, 1@ —a@lde 2 g

Proof.
1. g with few oscillations can’t apx oscillatory regular f.
2. There exists a regular, oscillatory f. (f = Ak2+3.)
3. Width m depth L. = few (O(m’)) oscillations.
Rediscovered many times;
(T ’15) gives elementary univariate argument;

multivariate arguments in (Warren ’68), (Arnold 7),
(Montufar, Pascanu, Cho, Bengio, '14), (BT ’18), ...



with few oscillations;
g /[ g — f| large .

f highly oscillatory

)



with few oscillations;
g /[ g — f| large .

f highly oscillatory

)



lg — [ large .

g with few oscillations; ?
f highly oscillatory [

)




lg — [ large .

g with few oscillations;
f highly oscillatory, reqular [

)

Let’s use f = AF+3,



with few oscillations;
g /[ g — f| large .

f highly oscillatory, reqular

)

Let’s use f = AF+3,



with few oscillations;
g /[ g — f| large .

f highly oscillatory, reqular

ATAL

)

Let’s use f = AF+3,



with few oscillations;
g /[ g — f| large .

f highly oscillatory, reqular

ATA )

)

Let’s use f = AF+3,



with few oscillations;
g /[ g — f| large .

f highly oscillatory, reqular

Let’s use f = AF+3,



Story from benefits of depth:

> Certain radial functions have
polynomial width 2 ReLU layer representation,
exponential width 1 ReLU layer representation.

> A3 can be written with O(k2) depth and O(1) width,
requires width Q(2%) if depth O(k).



Story from benefits of depth:
> Certain radial functions have
polynomial width 2 ReLU layer representation,
exponential width 1 ReLU layer representation.
> A3 can be written with O(k2) depth and O(1) width,
requires width Q(2%) if depth O(k).

Remarks.
> AF is 25 Lipschitz;
possibly nonsensical, unrealistic.
» These results have stood a few years now;
many “technical” questions,
also “realistic” questions.



Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

Sobolev spaces.

Odds & ends.
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hy := piecewise-affine in i 2 L2 2
p terpolation of ¥ at {0, 5z, 5+ - -5 5% }-

ha. ha.
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hj = piecewise-affine interpolation of 22 at {0, 2%, 2%, e g—k}

hl. h2-

Thus hy(z) =z — ), M@/
> hy needs k = O(In(1/¢)) to e-apx z — 2% (Yarotsky, '16),
with matching lower bounds.

> Squaring implies multiplication via polarization:
T 1 2 2 2
"y =5 (o + 92 = all? = 1wl?).



1 2 2ty

hj = piecewise-affine interpolation of 22 at {0, SEs 5 R )

hi. ha.

Thus hy(z) =z — >, A'@)/41.

> hy needs k = O(In(1/¢)) to e-apx z — 2% (Yarotsky, '16),
with matching lower bounds.

> Squaring implies multiplication via polarization:

T 1 2 2 2

"y =5 (o + 92 = all? = 1wl?).

» This implies efficient approximation of polynomials;
can we do more?



Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f:[0,1]* = R, all 7th order derivatives bounded by 1,
exists a network g

with Cy, In(e/e€) layers and Cy e~ %" In(e/€) nodes
so that

sup |f(z) —g(@)| < e
z€[0,1]¢



Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f:[0,1]* = R, all 7th order derivatives bounded by 1,
exists a network g

with Cy, In(e/e€) layers and Cy e~ %" In(e/€) nodes
so that

sup |f(z) —g(@)| < e
z€[0,1]¢

Proof.

Conditions imply accurate local Taylor expansions.

Therefore can write f as a linear combination of this basis:
polynomials multiplied by local bumps.
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Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f:[0,1]* = R, all 7th order derivatives bounded by 1,
exists a network g

with Cy, In(e/e€) layers and Cy e~ %" In(e/€) nodes
so that

sup |f(z) —g(@)| < e
z€[0,1]¢

» There is depth, but it is function independent:
only the basis coefficients use f.
» This is a shallow representation:
only the basis coefficients
» Lipschitz constant is possibly bad:
A€ is 1/e-Lipschitz,
the bumps are 1/e?/m-Lipschitz.
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Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f:[0,1]* = R, all 7th order derivatives bounded by 1,
exists a network g

with Cy,, In(e/e€) layers and Cy,.e~%" In(e/e) nodes
so that

sup |f(z) —g(@)| < e
z€[0,1]¢

» There is parallel and subsequent work with similar proof
ideas and Lipschitz constants:
(Safran-Shamir '16), (Petersen-Voigtlaender ’17),
(Schmidt-Hieber '17).

» Another appearance of polynomials in DN:
Sum-product networks.
These were the first to have depth separation
(Delalleau-Bengio ’11).
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Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f:[0,1]* = R, all 7th order derivatives bounded by 1,
exists a network g

with Cy,, In(e/e€) layers and Cy,.e~%" In(e/e) nodes
so that

sup |f(z) —g(@)| < e
z€[0,1]¢

» DN can approximate polynomials efficiently,
but the reverse is false:
a single ReLU requires degree 1/e.

» Polynomials can not handle flat regions well;

this is used above,
and in approximated rational functions (T ’17).
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Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f:[0,1]* = R, all 7th order derivatives bounded by 1,
exists a network g

with Cy, In(e/e€) layers and Cy e~ %" In(e/€) nodes
so that

sup |f(z) —g(@)| < e
z€[0,1]¢

» Corresponding lower bounds indicate depth is needed.



w

‘ Interlude: three questions

. Are fixed DN architectures closed under addition?

No, add together perturbed copies of AF.

. Can RNNs model Turing Machines?

Hint. ReLU networks can do exact Boolean formulae.
Set f to state transition table,

encode tape on s.

Given continuous g : R — R,

can we construct custom univariate activations so that

’ 2d d
g(@)=>  fi | D hijlxs) |?
i=0 j=1

Hint? Contradicts a Hilbert problem?



Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

Sobolev spaces.

Odds & ends.




Generative modeling ‘

Typical setup: pushforward measure g# 1, meaning

sample x ~ L, output g(x).

Many easy constructions have bad/oco Lipschitz constants!
E.g., mapping uniform into [0,1/2], (3/2,2].

Some literature:
(Arora-Ge-Liang-Ma-Zhang ’17, BT ’18, Bai-Ma-Risteski '19,
Elchanan’s talk this week!)



Randomly initialized networks

Approximation fact in recent optimization papers:
a small perturbation of random initialization
gives any function you want!

(Du-Lee-Li-Wang-Zhai "18, AllenZhu-Li-Song 18).

There is residual error from the noise
approximating high-Lipschitz functions is problematic!
(BJTX ’19.)



Randomly sampled networks ‘

Theorem. With probability > 1 — 1/e,

sup /O‘r( —b)du(a,b) — H'u”l Zar a;x — b;)

[|lz[l2<1

so(28h).
N N

where support of p has ||(a,b)| < B.



Randomly sampled networks ‘

Theorem. With probability > 1 — 1/e,

sup /O’r( —b)du(a,b) — H'UHI Zar a;x — b;)

[|lz[l2<1

so(28h).
N N

where support of p has ||(a,b)| < B.

Proof. Invoke Rademacher complexity,
but swap inputs and parameters.

(Koiran-Gurvits ’97, Sun-Gilbert-Tewari '18, BJTX ’19.)
Also Maurey’s Lemma (Barron "93).
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Adversarial stability

v

Adversarial examples lower bound the Lipschitz constant. . .

...but a bad Lipschitz constant
can be good for adversarial examples!

Given the existence of adversarial examples,
uniform approximation too stringent?
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> Make f the TM state transition table,
s the tape.



Turing machines and RNNs ‘

> Make f the TM state transition table,
s the tape.

» z+— L[z > 0] is not computable;
bits need a special encoding within s.



Turing machines and RNNs ‘

> Make f the TM state transition table,
s the tape.

» z+— L[z > 0] is not computable;
bits need a special encoding within s.

> Use a robust “cantor-like” encoding.

(Siegelmann-Sontag ’94.)



Kolmogorov-Arnold ’56 |

There exist continuous ((hi,j)?io);l:l 'R — R,
so that for any continuous ¢ : R — R,

there exist continuous (f;)?%, : R — R

with o .
9@) = 3" (3 hile)-
j=1

=0



Kolmogorov-Arnold ’56 |

There exist continuous ((hi,j)%io);l:l 'R — R,
so that for any continuous g : R¢ — R,

there exist continuous (fz-)fio R—-R

with
2d d
9@) = 3" (3 hile)-
i=0  j=1
Step 1.

Fix target accuracy € > 0.



Kolmogorov-Arnold ’56 |

R — R,

so that for any continuous g : R¢ — R,
there exist continuous (f;)?%, : R — R

with o 4
g(x) = fi ( > hz;j(%‘)) :
=0 =1

There exist continuous ((hi,j)%io);l:l :

1=

Step 2.
Choose f: R — R,
nearly injective Q : R4 — R,

g~ f(Q(x))




Kolmogorov-Arnold ’56 |

There exist continuous ((hi,j)%io);l:l 'R — R,
so that for any continuous g : R¢ — R,
there exist continuous (fz-)fio R—-R

with

2d d
o@) = 3 5o histen)

=0

Step 3.
Replace near-injection @ : R4 — R
with Zj hj(ﬂ?j).




Kolmogorov-Arnold ’56 |

There exist continuous ((hi,j)%io);l:l 'R — R,
so that for any continuous g : R¢ — R,

there exist continuous (f;)?%, : R — R

with o 4
g(x) = fi ( > hz‘,j(wj)> :
=0 =1

1=

Step 4.

Replace f(3_; hj(z;))

with staggered versions >, fi(>_; hij(z5));
for any z € [0, 1]¢,

> half are correct.




Kolmogorov-Arnold ’56 |

There exist continuous ((hi,j)?io);l:l 'R — R,
so that for any continuous g : R¢ — R,

there exist continuous (f,,;)fio R—-R

with o 4
9@) = D fi( D higla)-
i=0 j=1
Step 5.

Embed the solutions for infinitely many €
into one.




Main story.
» Can fit continuous functions in various ways;
the size is bad ((dLip/e)O(d)).
» Composition and depth bring some concrete benefits;
exponential reductions in width!

» Polynomials may be efficiently approximated,
but also some non-polynomials
(Sobolov balls, rational functions, flat regions, ... ).

» Refined depth separations (e.g., a single new layer)
and practical depth separations
are still elusive.

> Refined, average-case complexity measures are elusive.
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Elementary universal approximation.

Classical universal approximation.

Thanks. .. any questions?

Sobolev spaces.

Odds & ends.




