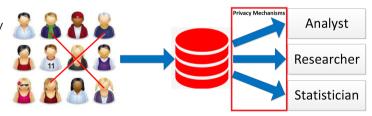
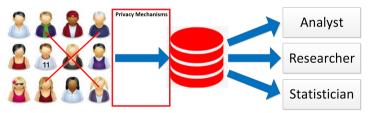
Viability of a Privacy-differentiated Market for Free Online Services

May 9, 2019 Joint work with Chong Huang (ASU)

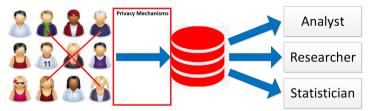
Privacy: the desire to prevent unwanted leakage of information when legitimate data sharing/analysis occurs



Privacy: the desire to prevent unwanted leakage of information when legitimate data sharing/analysis occurs Privacy problems appear in multiple settings:


Privacy: the desire to prevent unwanted leakage of information when legitimate data sharing/analysis occurs

- Privacy guaranteed data publishing (selling)
 - Differential privacy
 - Information-theoretic privacy


Privacy: the desire to prevent unwanted leakage of information when legitimate data sharing/analysis occurs

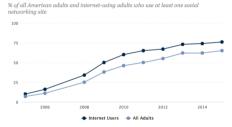
- Privacy guaranteed data publishing (selling)
 - Differential privacy
 - Information-theoretic privacy
- Statistical data collection

Privacy: the desire to prevent unwanted leakage of information when legitimate data sharing/analysis occurs

- Privacy guaranteed data publishing (selling)
 - Differential privacy
 - Information-theoretic privacy
- Statistical data collection
 - e.g., Google RAPPOR

Privacy: the desire to prevent unwanted leakage of information when legitimate data sharing/analysis occurs

- Privacy guaranteed data publishing (selling)
 - Differential privacy
 - Information-theoretic privacy
- Statistical data collection
 - e.g., Google RAPPOR
- Consumer-service provider interactions?


Privacy: the desire to prevent unwanted leakage of information when legitimate data sharing/analysis occurs

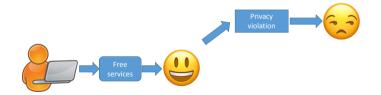
- Privacy guaranteed data publishing (selling)
 - Differential privacy
 - Information-theoretic privacy
- Statistical data collection
 - e.g., Google RAPPOR
- Consumer-service provider interactions?
 - Need models to study privacy-sensitive consumer-service provider interactions

Introduction

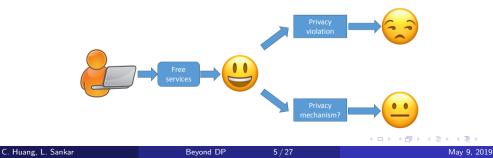
• Dramatic increase in online interactions between online service providers (SPs) and consumers

Source: Pew Research Center surveys, 2005-2006, 2008-2015. No data are available for 2007.

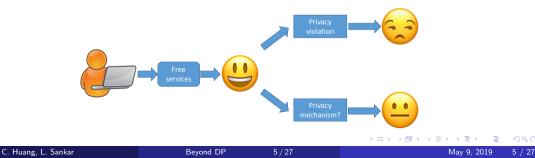
• Often times online services are offered for free



• Consumers enjoy free services



 Consumers enjoy free services until they begin encountering privacy violations on a daily/frequent basis



- Consumers enjoy free services until they begin encountering privacy violations on a daily/frequent basis
- Service providers beginning to acknowledge consumers' sensitivity to privacy violations (e.g., Google RAPPOR)

5 / 27

- Consumers enjoy free services until they begin encountering privacy violations on a daily/frequent basis
- Service providers beginning to acknowledge consumers' sensitivity to privacy violations (e.g., Google RAPPOR)
 - The details of these privacy preserve mechanisms are opaque

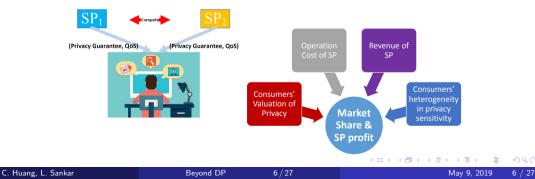
- Consumers enjoy free services until they begin encountering privacy violations on a daily/frequent basis
- Service providers beginning to acknowledge consumers' sensitivity to privacy violations (e.g., Google RAPPOR)
 - The details of these privacy preserve mechanisms are opaque
 - Consumers may not have a choice

Can privacy-differentiated services provide consumers with privacy choices?

Can privacy-differentiated services provide consumers with privacy choices?

• No free lunch – better privacy protection may result in lower quality of service (QoS)

Can privacy-differentiated services provide consumers with privacy choices?


• No free lunch – better privacy protection may result in lower quality of service (QoS)

Can privacy-differentiated services provide consumers with privacy choices?

• No free lunch – better privacy protection may result in lower quality of service (QoS)

Related Work

- Shy and Stenbacka, 2015
 - Effects of varying degrees of privacy protection on industry profits, consumer welfare and total welfare in competition
- Chellappa and Shivendu, 2010
 - Monopolistic model for free services targeting under privacy concern
- Jentzsch, Preibusch, and Harasser, 2012
 - Price-based competitions between two service providers considering consumer's privacy preference
- Lee, Ahn, and Bang, 2011
 - Influence of privacy protection on the segmentation of a duopoly for consumers with discrete privacy sensitivities

- Shy and Stenbacka, 2015
 - Effects of varying degrees of privacy protection on industry profits, consumer welfare and total welfare in competition
- Chellappa and Shivendu, 2010
 - Monopolistic model for free services targeting under privacy concern
- Jentzsch, Preibusch, and Harasser, 2012
 - Price-based competitions between two service providers considering consumer's privacy preference
- Lee, Ahn, and Bang, 2011
 - Influence of privacy protection on the segmentation of a duopoly for consumers with discrete privacy sensitivities

Market segmentation of free services allowing for a wide range of privacy sensitivities has not yet been studied

Our Approach

Model the interaction between SPs and consumers as a non-cooperative game

May 9, 2019 8 / 27

3

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model the interaction between SPs and consumers as a non-cooperative game

Model consumer privacy preference as a distribution over a range

Model the interaction between SPs and consumers as a non-cooperative game

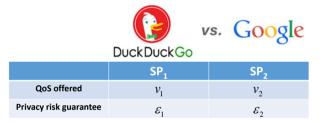
Model consumer privacy preference as a distribution over a range

Modify Hotelling model to analyze market segmentation

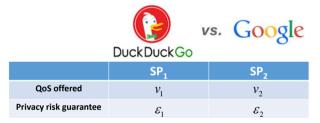
• SPs offer free services differentiated by QoS and privacy risks

- SPs offer free services differentiated by QoS and privacy risks
- Assumption of quantifiable privacy risks and QoS

- SPs offer free services differentiated by QoS and privacy risks
- Assumption of quantifiable privacy risks and QoS
- SPs can generate revenue by using the data obtained from their consumers



- SPs offer free services differentiated by QoS and privacy risks
- Assumption of quantifiable privacy risks and QoS
- SPs can generate revenue by using the data obtained from their consumers
- Consumers choose the SP that optimally satisfies their privacy and QoS choices


• Two rational (profit maximization) SPs: SP1 (e.g., Duckduckgo) and SP2 (e.g., Google)

メロト スポト メヨト メヨ

- Two rational (profit maximization) SPs: SP1 (e.g., Duckduckgo) and SP2 (e.g., Google)
- Both SPs: similar in service type (e.g., search engine) but differ in the QoS offered

- Two rational (profit maximization) SPs: SP1 (e.g., Duckduckgo) and SP2 (e.g., Google)
- Both SPs: similar in service type (e.g., search engine) but differ in the QoS offered

- Assume $\varepsilon_1 \leq \varepsilon_2$, $\implies v_2 \geq v_1$
 - Otherwise SP₂'s strategy is strictly dominated

Two-SP Model: Cost and Revenue

э

→ < Ξ → < Ξ</p>

< 口 > < 同

Total Cost to \mathbf{SP}_i	Cost of providing services with QoS	Cost of exploiting private data
$C(v_i, \varepsilon_i) = C_{\text{QoS}}(v_i) + C_P(\varepsilon_i)$	$C_{ ext{QoS}}(v_i)$	$C_{_P}(arepsilon_i)$

Total Revenue of ${ m SP}_i$	Revenue from using consumer's private information	Revenue independent of consumer's private information
$R(\varepsilon_i) = R_P(\varepsilon_i) + R_{\text{NP},i}$	$R_{P}(\boldsymbol{arepsilon}_{i})$	$R_{{ m NP},i}$

Total Revenue of ${ m SP}_i$	Revenue from using consumer's private information	Revenue independent of consumer's private information
$R(\varepsilon_i) = R_P(\varepsilon_i) + R_{\text{NP},i}$	$R_{P}(\boldsymbol{arepsilon}_{i})$	$R_{_{{ m NP}},i}$

How to model consumer-SP interaction?

С.,	Huang,	L.,	Sankar
<u> </u>	riuang,	<u>-</u> .	Sannai

Total Cost to
$$SP_i$$
Cost of providing
services with QoSCost of exploiting
private data $C(v_i, \varepsilon_i) = C_{QoS}(v_i) + C_P(\varepsilon_i)$ $C_{QoS}(v_i)$ $C_P(\varepsilon_i)$

Total Revenue of ${ m SP}_i$	Revenue from using consumer's private information	Revenue independent of consumer's private information
$R(\varepsilon_i) = R_P(\varepsilon_i) + R_{\text{NP},i}$	$R_{P}(\boldsymbol{arepsilon}_{i})$	$R_{{ m NP},i}$

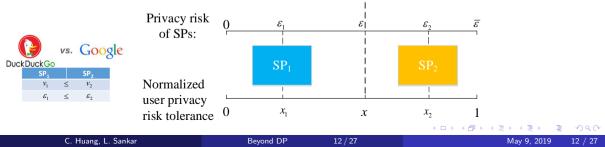
How to model consumer-SP interaction?

• Modified Hotelling model

C. Huang, L. Sankar

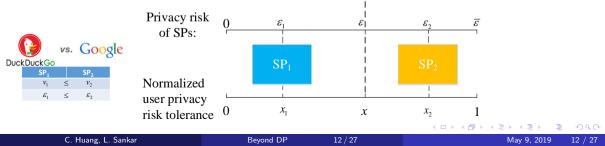
Modified Hotelling: Consumer Privacy Preferences and Retailers Risks

Hotelling model has been used to study market segmentation in a variety of contexts

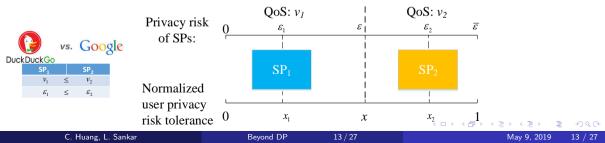


Modified Hotelling: Consumer Privacy Preferences and Retailers Risks

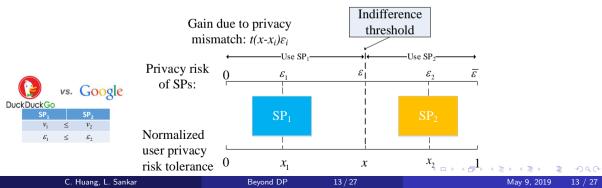
Hotelling model has been used to study market segmentation in a variety of contexts


• Map consumer privacy preference and SP risk offered from arbitrary range ($[0, \bar{c}]$) to [0, 1]

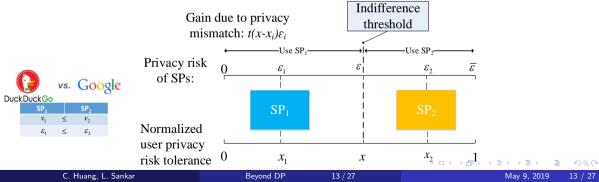
Modified Hotelling: Consumer Privacy Preferences and Retailers Risks


Hotelling model has been used to study market segmentation in a variety of contexts

- Map consumer privacy preference and SP risk offered from arbitrary range ([0, $ar{arepsilon}$]) to [0,1]
- Heterogeneous privacy preference of consumers: random variable $E \in [0, \overline{\varepsilon}]$ with CDF $F_E(\varepsilon)$


Modifying Hotelling Model For Consumer-Retailer Interaction

• Price captured by QoS


Modifying Hotelling Model For Consumer-Retailer Interaction

- Price captured by QoS
- Mismatch in preferences is no longer symmetric

Modifying Hotelling Model For Consumer-Retailer Interaction

- Price captured by QoS
- Mismatch in preferences is no longer symmetric
- Consumer perceived privacy gain: t(x x_i)ε_i (t: consumer's valuation of privacy; factor mapping privacy mismatch to QoS)
 - Offered privacy risk < consumer's preference \implies positive utility (extra privacy protection)
 - Offered privacy risk > consumer's preference \implies negative utility (privacy violation)

Utility of consumer located at x for choosing SP_i : $u_i(x) = v_i + t(x - x_i)\varepsilon_i$

Utility of consumer located at x for choosing SP_i : $u_i(x) = v_i + t(x - x_i)\varepsilon_i$

- For SP_i : $(v_{-i}, \varepsilon_{-i})$ is its competitor's strategy
- Fraction of consumers who choose SP_i : $n_i(v_i; \varepsilon_i; v_{-i}; \varepsilon_{-i})$

Utility of consumer located at x for choosing SP_i : $u_i(x) = v_i + t(x - x_i)\varepsilon_i$

- For SP_i : $(v_{-i}, \varepsilon_{-i})$ is its competitor's strategy
- Fraction of consumers who choose SP_i : $n_i(v_i; \varepsilon_i; v_{-i}; \varepsilon_{-i})$

Profit of *SP_i*: $\pi_i(v_i; \varepsilon_i; v_{-i}; \varepsilon_{-i}) = [R(\varepsilon_i) - C(v_i; \varepsilon_i)]n_i(v_i; \varepsilon_i; v_{-i}; \varepsilon_{-i})$

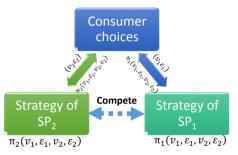
Utility of consumer located at x for choosing SP_i : $u_i(x) = v_i + t(x - x_i)\varepsilon_i$

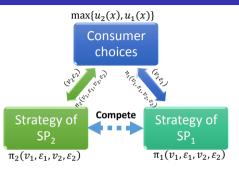
- For SP_i : $(v_{-i}, \varepsilon_{-i})$ is its competitor's strategy
- Fraction of consumers who choose SP_i : $n_i(v_i; \varepsilon_i; v_{-i}; \varepsilon_{-i})$

Profit of *SP_i*: $\pi_i(v_i; \varepsilon_i; v_{-i}; \varepsilon_{-i}) = [R(\varepsilon_i) - C(v_i; \varepsilon_i)]n_i(v_i; \varepsilon_i; v_{-i}; \varepsilon_{-i})$

- Assumption 1: The services provided by both SPs have non-negative QoS
- Assumption 2: The model parameters are chosen such that they ensure the market is completely covered by SP₁ and SP₂

• SPs market segmentation is a two player non-cooperative sequential game


• Actions of each SP: (QoS, Privacy risk)

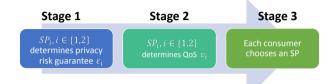


- Actions of each SP: (QoS, Privacy risk)
- Passive consumer response: choice of SP

- Actions of each SP: (QoS, Privacy risk)
- Passive consumer response: choice of SP
- Rewards for SP_i : profit $\pi_i(v_i; \varepsilon_i; v_{-i}; \varepsilon_{-i})$

- Actions of each SP: (QoS, Privacy risk)
- Passive consumer response: choice of SP
- Rewards for SP_i : profit $\pi_i(v_i; \varepsilon_i; v_{-i}; \varepsilon_{-i})$
- Rewards for consumer: $\max\{u_1(x), u_2(x)\}$

• SPs first advertise their privacy risk guarantees, and then determine their QoS

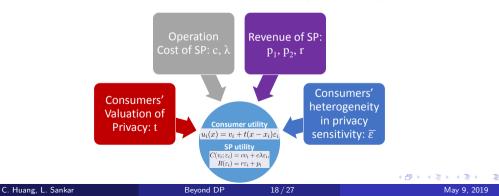

- SPs first advertise their privacy risk guarantees, and then determine their QoS
- We model the dynamics of this interaction as a three stage sequential game

- SPs first advertise their privacy risk guarantees, and then determine their QoS
- We model the dynamics of this interaction as a three stage sequential game
- A non-cooperative sequential game has one well-studied solution: the Subgame Perfect Nash Equilibrium (SPNE)
 - It is a solution that guarantees Nash equilibrium for each subgame (stage)

- SPs first advertise their privacy risk guarantees, and then determine their QoS
- We model the dynamics of this interaction as a three stage sequential game
- A non-cooperative sequential game has one well-studied solution: the Subgame Perfect Nash Equilibrium (SPNE)
 - It is a solution that guarantees Nash equilibrium for each subgame (stage)
- The SPNE of the above game can be solved using backward induction

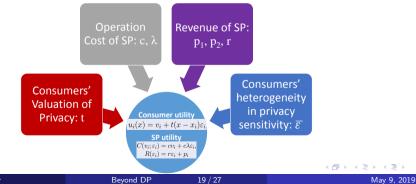
- SPs first advertise their privacy risk guarantees, and then determine their QoS
- We model the dynamics of this interaction as a three stage sequential game
- A non-cooperative sequential game has one well-studied solution: the Subgame Perfect Nash Equilibrium (SPNE)
 - It is a solution that guarantees Nash equilibrium for each subgame (stage)
- The SPNE of the above game can be solved using backward induction

Theorem 1


There is no SPNE in which both SPs offer the same privacy risk.

Two-SP Market With Linear Cost and Revenue Functions

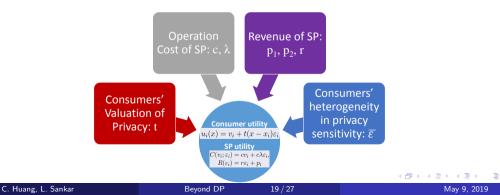
• Linear cost and revenue model for each SP_i , $i \in \{1, 2\}$:


```
C(\mathbf{v}_i;\varepsilon_i) = c\mathbf{v}_i + c\lambda\varepsilon_i,
R(\varepsilon_i) = r\varepsilon_i + p_i
```

• Utility of consumer located at x for choosing SP_i : $u_i(x) = v_i + t(x - x_i)\varepsilon_i$

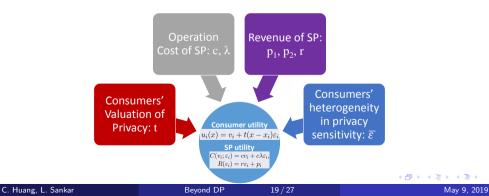
18 / 27

• Consumers uniformly distributed over $[0, \bar{\varepsilon}]$



C. Huang, L. Sankar

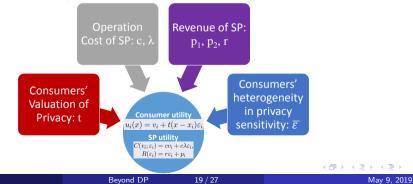
19 / 27


э

- \bullet Consumers uniformly distributed over $[0, \ensuremath{\bar{\epsilon}}]$
- Normalized privacy risk of each SP: $x_i = F_E(\varepsilon_i) = \frac{\varepsilon_i}{\overline{\varepsilon}}, i \in \{1, 2\}$

19 / 27

- \bullet Consumers uniformly distributed over $[0, \ensuremath{\bar{\epsilon}}]$
- Normalized privacy risk of each SP: $x_i = F_E(\varepsilon_i) = \frac{\varepsilon_i}{\varepsilon}, i \in \{1, 2\}$
- The profit to cost ratio of using consumers' private data : $\alpha = \frac{r}{c} \lambda$


19 / 27

э

 \bullet Consumers uniformly distributed over $[0, \ensuremath{\bar{\epsilon}}]$

C. Huang, L. Sankar

- Normalized privacy risk of each SP: $x_i = F_E(\varepsilon_i) = \frac{\varepsilon_i}{\varepsilon}, i \in \{1, 2\}$
- The profit to cost ratio of using consumers' private data : $\alpha = \frac{r}{c} \lambda$
- The cost of providing non-zero utility to the consumer with a maximal mismatch of privacy risk (relative to SP): $\tilde{C} = c t \bar{c}$

э

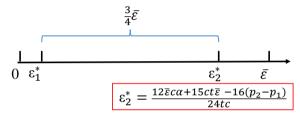
19 / 27

- Consumers uniformly distributed over $[0, \overline{\varepsilon}]$
- Normalized privacy risk of each SP: $x_i = F_E(\varepsilon_i) = \frac{\varepsilon_i}{\varepsilon}, i \in \{1, 2\}$
- The profit to cost ratio of using consumers' private data : $\alpha = \frac{r}{c} \lambda$

Theorem 2

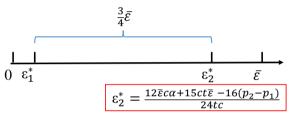
There exists an SPNE for the two-SP non-cooperative game if the model parameters $\{c, \alpha, t, \overline{c}, p_1, p_2\}$ facilitate a competitive market.

- \bullet Consumers uniformly distributed over $[0, \ensuremath{\bar{\epsilon}}]$
- Normalized privacy risk of each SP: $x_i = F_E(\varepsilon_i) = \frac{\varepsilon_i}{\varepsilon}, i \in \{1, 2\}$
- The profit to cost ratio of using consumers' private data : $\alpha = \frac{r}{c} \lambda$

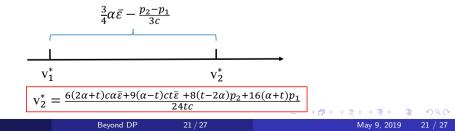

Theorem 2

There exists an SPNE for the two-SP non-cooperative game if the model parameters $\{c, \alpha, t, \overline{c}, p_1, p_2\}$ facilitate a competitive market.

$$-1 \leq rac{16(p_2-p_1)}{9ctar{arepsilon}} \leq 1, \ rac{4lpha-3t}{3t} \leq rac{16(p_2-p_1)}{9ctar{arepsilon}} \leq rac{4lpha-t}{3t}, \ (12clphaar{arepsilon})^2 - (15ctar{arepsilon})^2 + 288ctar{arepsilon}(p_2+p_1) \geq [16(p_2-p_1)]$$


Closed Form Solution of the SPNE

• Equilibrium privacy risk strategies:


Closed Form Solution of the SPNE

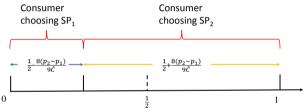
• Equilibrium privacy risk strategies:

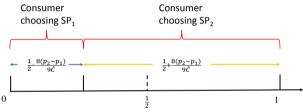
• Equilibrium QoS strategies:

C. Huang, L. Sankar

• p_i: SP_i's revenue independent of consumers' private data

С	Operation cost factor in units of cost/QoS
p_i	Revenue of SP _i independent of consumers' private data
t	Consumer's valuation of privacy
$\overline{\mathcal{E}}$	Consumer's heterogeneity in privacy sensitivity


С	Operation cost factor in units of cost/QoS
p_i	Revenue of SP _i independent of consumers' private data
t	Consumer's valuation of privacy
$\overline{\mathcal{E}}$	Consumer's heterogeneity in privacy sensitivity


• p_i : SP_i 's revenue independent of consumers' private data • $\tilde{C} = ct\bar{\varepsilon}$

• As $\frac{p_2-p_1}{\tilde{C}}$ increases, the market share of SP_1 decreases while SP_2 s market share increases

• p_i : SP_i 's revenue independent of consumers' private data • $\tilde{C} = ct\bar{\varepsilon}$

• As $\frac{P_2-P_1}{\tilde{C}}$ increases, the market share of SP_1 decreases while SP_2 s market share increases • The SP with a larger non-private revenue gains more market share P_2 ws. Google

V2

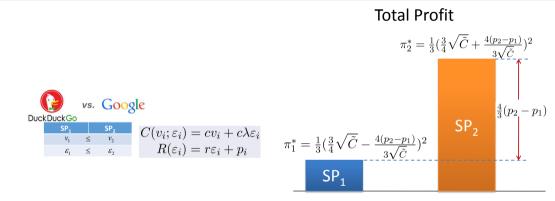
ε.

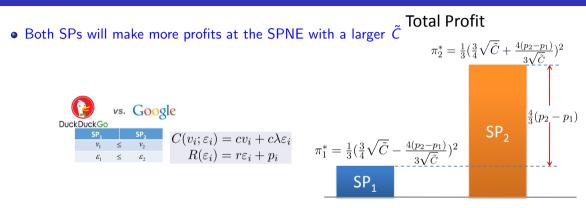
DuckDuckGo

ε.

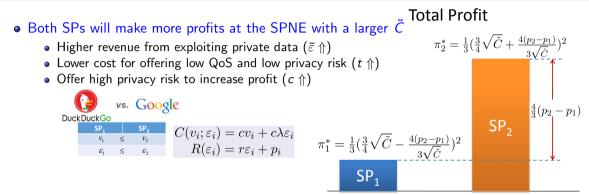
- As $\frac{p_2-p_1}{\tilde{C}}$ increases, the market share of SP_1 decreases while SP_2 s market share increases
- The SP with a larger non-private revenue gains more market share
- Market share difference between SPs \Downarrow (competition softens) when
 - Consumers' heterogeneity in privacy sensitivity $\bar{\varepsilon} \Uparrow$

- As $\frac{p_2-p_1}{\tilde{C}}$ increases, the market share of SP_1 decreases while SP_2 s market share increases
- The SP with a larger non-private revenue gains more market share
- Market share difference between SPs \Downarrow (competition softens) when
 - Consumers' heterogeneity in privacy sensitivity $\bar{\varepsilon} \Uparrow$
 - Consumers' valuation of privacy $t \Uparrow$

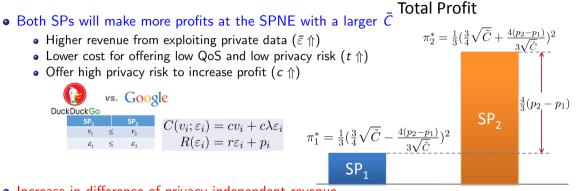




- As $\frac{p_2-p_1}{\tilde{C}}$ increases, the market share of SP_1 decreases while SP_2 s market share increases
- The SP with a larger non-private revenue gains more market share
- Market share difference between SPs \Downarrow (competition softens) when
 - Consumers' heterogeneity in privacy sensitivity $\bar{\varepsilon} \Uparrow$
 - Consumers' valuation of privacy $t \Uparrow$
 - Cost of offering per unit QoS $c \Uparrow$

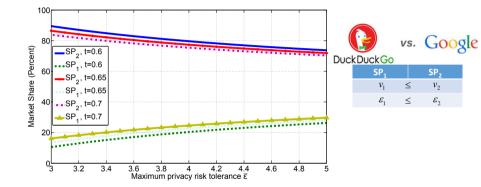


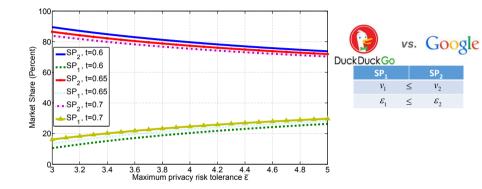
Profit for Each SP



Profit for Each SP

Profit for Each SP


- Increase in difference of privacy independent revenue
 - \implies increases in difference of profit between two SPs



Parameter	С	λ	r	p_1	<i>p</i> ₂
Value	0.5	0.75	0.7	0.4	0.8

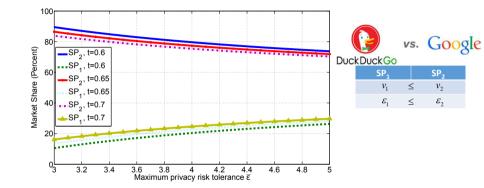
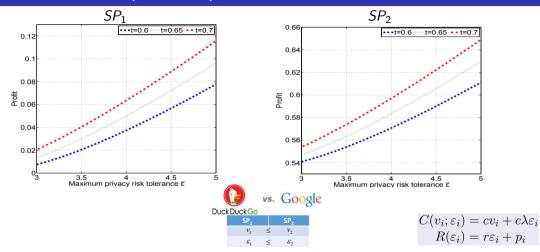


Image: A math and A


• Higher valuation of privacy by consumer (larger t) \implies lower market share for SP_2

• Higher valuation of privacy by consumer (larger t) \implies lower market share for SP_2

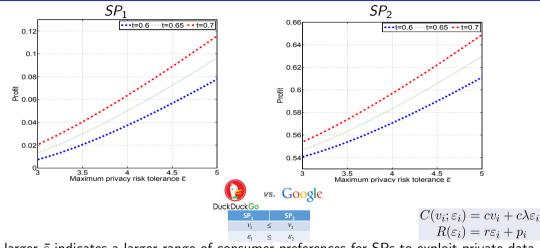
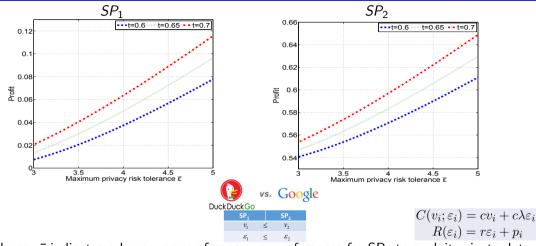

• As $\bar{\varepsilon}$ decreases, SP₂ offers high QoS and high privacy risk, thus its market share increases

Illustration of Results (SP Profit)

・ロト ・ 同ト ・ 回ト ・ 回


Illustration of Results (SP Profit)

• A larger $\bar{\varepsilon}$ indicates a larger range of consumer preferences for SPs to exploit private data

С. Hı	iang, L.	Sankar
-------	----------	--------

Illustration of Results (SP Profit)

A larger *ɛ* indicates a larger range of consumer preferences for SPs to exploit private data
 Increasing *t*: SPs offer lower risk & lower QoS (Cost reduction more than revenue reduction) ⇒ higher profit for SPs
 C. Huang L. Sankar
 Beyond DP
 25/27
 May 9, 2019
 25/27

Concluding Remarks

• Market segmentation for privacy differentiated "free" services is studied

• Market segmentation for privacy differentiated "free" services is studied

- Investigated influences of consumers' valuation and heterogeneity in privacy preference on market share and SP profit
 - High valuation of privacy by consumers "softens" competition
 - Offering privacy aware services can still be profitable

Thank you!

Э

イロト イポト イヨト イヨト

990