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Problem of False Discoveries

Modern Scientific Analysis = Lots of Hypothesis Tests

Example: A typical microarray experiment might result in performing
10, 000 separate hypothesis tests.
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Problem of False Discoveries

Question: How to control the number of spurious discoveries?
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A Tale of Prefixes

About 25 years ago: False Discovery Rate Control (BH95)

About 10 years ago: Online False Discovery Rate Control (FS08)
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A Tale of Prefixes

About 25 years ago: False Discovery Rate Control (BH95)

About 10 years ago: Online False Discovery Rate Control (FS08)

This work: Contextual Online False Discovery Rate Control
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Offline Multiple Testing

Setting: n hypotheses H1, . . . ,Hn with p-values P = (P1, . . . ,Pn)

A multiple testing procedure R is of form

R : P 7→ R(P) ⊂ [n]

taking the p-values P and returning a subset of [n] := 1, . . . , n
representing the null hypotheses to be rejects.
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Possible Outcomes

Accept null Reject null Total
Null true U V n0

Alternative true T S n1
W R n

Table: Outcomes from n hypothesis tests
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False Discovery Rate (FDR)

Accept null Reject null Total
Null true U V n0

Alternative true T S n1
W R n

Given a multiple hypothesis procedure R, the false discovery rate is
defined as the expected fraction of mistaken rejections (BH95)

fdr(R) = E[fdp(R)], and fdp(R) :=
V

R ∨ 1 .

FDR is expected proportion of Type I error of a test procedure

In the offline setting, Benjamini-Hochberg (BH) procedure is a
popular way to control FDR
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Other Side: Statistical Power

Accept null Reject null Total
Null true U V n0

Alternative true T S n1
W R n

True discovery proportion and rate (power) are defined as

tdr(R) = E[tdp(R)], and tdp(R) :=
S
n1
.
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Real World is Online
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Online Multiple Testing
In real world, hypotheses are not all available, but come over time

Take an example of a company performing A/B testing:

Stream of Hypotheses

time

!":
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Online Multiple Testing
In real world, hypotheses are not all available, but come over time

Take an example of a company performing A/B testing:

Stream of Hypotheses

time

.

.

.

!":
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Online Multiple Testing

Offline ⇒ Online (FS08)

Setting: A sequence of ordered, possibly infinite hypotheses H1,H2, . . . ,
arriving in a stream with corresponding p-values P1,P2, . . .

At each step, an investigator must decide whether to reject the
current null hypothesis, without having access to the number of
hypotheses or the future p-values

Goal: Control False Discovery Rate
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Online Multiple Testing
An online testing procedure provides a sequence of significance levels
αt, with decision rule:

Rt =

{
1 Pt ≤ αt, reject Ht,

0 otherwise, accept Ht.

Significance levels are the functions of prior outcomes:
αt = αt(R1, . . . ,Rt−1)

Let R(t) be number of rejections made by the algorithm till time t
Let V(t) be the number of false rejections till time t

fdr(t) = E[fdp(t)], fdp(t) := V(t)
R(t)∨1

Goal: supT∈N fdr(T) ≤ α

Similarly, we can define tdr(T) in an online setting
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Prior Work: Online Multiple Testing

Generalized Alpha Investing (GAI) Rules (AR14):
Example: Levels based On Recent Discovery (LORD) (JM18)

Example: Improved Levels based On Recent Discovery (LORD++)(RYWJ17)

Slightly Different: SAFFRON (RZWJ18):
Adaptively estimates the proportion of true nulls like in Storey’s procedure (Sto02)
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Using Contextual Information

Typically, in addition to the p-value, each hypothesis can also have
a set of features which encode contextual (side) information related
to the tested hypothesis, which is also referred as contextual infor-
mation.

Think of contextual information
as containing some indirect in-
formation about the likelihood of
a hypothesis being false, but the
relationship is not known ahead
of time
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Some Examples

Problem Example “Context” Info.
A/B testing of webpage Size of the banner ad,

content of text on each page
Gene association with a trait Location of each gene,

counts of each gene
Disease prediction Biographical information of each patient

Long line of work in the offline setting in utilizing contextual infor-
mation with testing (IKZH16; GRW06; LB16; RBWJ17; XZZT17;
LF18)...

Shiva Kasiviswanathan Contextual Online False Discovery Rate Control



Contextual Online Multiple Testing

Setting: A sequence of ordered hypotheses H1,H2, . . . arrives
in a stream. Each hypothesis Hi is associated with a p-value
Pi ∈ (0, 1) and a vector of contextual features Xi ∈ X , thus
can be represented by a tuple (Hi,Pi,Xi)

At each step i, decide whether to reject Hi having only access
to previous decisions and contextual information so far

Overall Goal: Control online FDR under a given level α and
improve the number of useful discoveries by using contextual
information
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Contextual Online Multiple Testing

In online testing with contextual information, the significance levels
can be functions of prior results and the contextual features seen so
far:

αt = αt(R1, . . . ,Rt−1,X1, . . . ,Xt).

Rt =

{
1 Pt ≤ αt = αt(R1, . . . ,Rt−1,X1, . . . ,Xt) reject Ht,

0 otherwise accept Ht.
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Reminder of this Talk: Our Results

1 Online FDR Control with Contextual Information
2 Power Analysis with Contextual Features

Increase in Statistical Power
3 Experimental Results
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1 Online FDR Control with Contextual Information

2 Power Analysis with Contextual Features
Increase in Statistical Power

3 Experimental Results
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Contextual Generalized Alpha-investing Rules

Starting Point: Generalized Alpha Investing (GAI) Rules (AR14)

We propose a new class of online testing rules called Contex-
tual Generalized Alpha-investing Rules by modifying General-
ized Alpha-investing Rules (AR14; RYWJ17)

So what are “Generalized Alpha-investing Rules”?
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Generalized Alpha-investing Rules in Pictures
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Generalized Alpha-investing Rules in Pictures
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Generalized Alpha-investing Rules Mathematically

1 Penalty function: ϕt
2 Reward function: ψt
3 Significance level: αt

Generalized Alpha-investing Rules:

Initial Wealth: W(0) = w0,with 0 < w0 < α,

Wealth Update: W(t) = W(t − 1)− ϕt + Rt · ψt,

Non-negativity: ϕt ≤ W(t − 1),
Upper Bound on Reward: ψt ≤ min{ϕt + bt,

ϕt
αt

+ bt − 1},
where bt = α− w01{ρ1 > t − 1}(ρ1 is time of first discovery)

where αt, ϕt, ψt ∈ σ(R1, . . . ,Rt−1).
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How to Incorporate Contextual Information?

1 Penalty function: ϕt
2 Reward function: ψt
3 Significance level: αt

Contextual Generalized Alpha-investing Rules:

Initial Wealth: W(0) = w0,with 0 < w0 < α,

Wealth Update: W(t) = W(t − 1)− ϕt + Rt · ψt,

Non-negativity: ϕt ≤ W(t − 1),
Upper Bound on Reward: ψt ≤ min{ϕt + bt,

ϕt
αt

+ bt − 1},
where bt = α− w01{ρ1 > t − 1}(ρ1 is time of first discovery)

where αt, ϕt, ψt ∈��������:σ(σ(R1,...,Rt−1)∪σ(X1,...,Xt))

σ(R1, . . . ,Rt−1).
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Monotone Contextual Generalized Alpha-investing Rules

A Contextual Generalized Alpha-investing rule is monotone if we
have R̃i ≤ Ri for all i ≤ t − 1 , then we have

αt(R̃1, . . . , R̃t−1,X1, . . . ,Xt) ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt),

for any fixed Xt = (X1, . . . ,Xt)

“Significance level is higher with more rejections”
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Our FDR Result

Theorem
If for all timesteps t, the p-values Pt’s are independent, and Pt’s
and Xt’s are independent under the null, then for any Monotone
Contextual Generalized Alpha-investing rule, we have

sup
T∈N

fdr(T) ≤ α.

Note that Pt’s could be related to Xt’s (via some unknown function)
under alternate

Additional Results:
Results on modified FDR (FS08) control under weaker assump-
tion on p-values
Results for dependent p-values
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Proof Idea

Let H0 denote the indices of true nulls
Number of false discoveries: V(T) =

∑T
t=1 Rt1{t ∈ H0}

Wealth: W(T) = w0 +
∑T

t=1(−ϕt + Rtψt)

fdr(T) := E
[ V(T)

R(T) ∨ 1

]
≤ E

[V(T) + W(T)

R(T) ∨ 1

]

=
T∑

t=1
E
[Rt1{t ∈ H0}+ w0

T − ϕt + Rtψt

R(T) ∨ 1

]

=
T∑

t=1
E
[ w0

T + Rt(ψt + 1{t ∈ H0})− ϕt

R(T) ∨ 1

]

=
T∑

t=1
E
[
E
[ w0

T + Rt(ψt + 1{t ∈ H0})− ϕt

R(T) ∨ 1

∣∣∣σ(σ(R1, . . . ,Rt−1) ∪ σ(X1, . . . ,Xt))
]]

Two cases (use the reward bounds):
1 t ∈ H0: We use ψt ≤ ϕt

αt
+ bt − 1

2 t /∈ H0: We use ψt ≤ ϕt + bt
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Increase in Statistical Power
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Question: Can contextual information help
with increasing the statistical power?

Answer: Yes⋆
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Increase in Statistical Power in Online Setting
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Increase in Statistical Power in Online Setting

Our Idea: Use current context to weigh the significance level

Set: αt = αt(R1, . . . ,Rt−1)ω(Xt)

Rt =

{
1 Pt ≤ αt = αt(R1, . . . ,Rt−1)ω(Xt) reject Ht,

0 otherwise accept Ht.
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Increase in Statistical Power in Online Setting
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First Piece: Online FDR Rules

LORD (JM18): A popular subclass of Generalized Alpha-investing
rules

Any sequence of nonnegative numbers γ = (γt)∞t=1, which is mono-
tonically non-increasing with

∑∞
t=1 γt = 1.

W(0) = α

2 ,

Penalty: ϕt = αt = γt−τt
α

2 ,

Reward: ψt =
α

2 ,

where τt is the last time a discovery was made before t.
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Second Piece: Mixture Model

Let Ht = 0 (denote null) and Ht = 1 (denote alternate)

For any t ∈ N, let

H1, . . . ,Ht
i.i.d.∼ Bernoulli(π1),
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Second Piece: Mixture Model

Let Ht = 0 (denote null) and Ht = 1 (denote alternate)

For any t ∈ N, let

H1, . . . ,Ht
i.i.d.∼ Bernoulli(π1),

Xt | Ht = 0 ∼ L0(X ), Xt | Ht = 1 ∼ L1(X ),

Under Null: Pt | Ht = 0,Xt ∼ Uniform(0, 1),
Under Alternate: Pt | Ht = 1,Xt ∼ F1(p | Xt).

where 0 < π1 < 1 and where L0(X ), L1(X ) are two probability
distribution on the contextual feature space X
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Mixture Model: An Example

Let Ht = 0 (denote null) and Ht = 1 (denote alternate)

For any t ∈ N, let

H1, . . . ,Ht
i.i.d.∼ Bernoulli(π1),

Xt | Ht = 0 ∼ L0(X ), Xt | Ht = 1 ∼ L1(X ),

Under Null: Pt | Ht = 0,Xt ∼ Uniform(0, 1),
Under Alternate: Pt | Ht = 1,Xt ∼ F1(p | Xt).

Normal Means Model

For any t ∈ N, let

H1, . . . ,Ht
i.i.d.∼ Bernoulli(π1),

Xt | Ht = 0 ∼ L0(X ), Xt | Ht = 1 ∼ L1(X ),

Null: µt = 0, Alternate: µt = µ(Xt),

Test Statistic: Zt = N (µt, 1),
Pt = 2Φ(−|Zt|).
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Third Piece: Conditions

Assume for any t ∈ N,
1 ωt = ω(Xt) is a random variable with different distributions

under null and alternate
2 Weighting is informative1, in that the weights under

alternate is more likely to be larger than that under the null

1Similar notion used by (GRW06) for studying weighted Benjamini-Hochberg procedure in the offline setting.
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Statistical Power Increase with Weighting

Unweighted Case
Given a sequence of p-values (P1,P2, . . . ) from the mixture model,
apply LORD procedure on this sequence.

Theorem (JM18): Tight bound on average power

Weighted Case
Given a sequence of p-values (P1,P2, . . . ) from the mixture model,
and a sequence of informative weights (ω1, ω2, . . . ) (based on
contextual features), apply LORD procedure on the sequence
(P1/ω1,P2/ω2, . . . ).

Theorem: Lower bound on average power

Comparing the above power bounds gives a necessary condition
under which a separation in power holds
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Under some reasonable assumptions, contextual fea-
tures could help with increasing the power of the on-
line testing rules (without affecting the FDR control)
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1 Online FDR Control with Contextual Information

2 Power Analysis with Contextual Features
Increase in Statistical Power

3 Experimental Results
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Modeling the Weight Function

Input: Sequence of p-values, contextual features pairs: (P1,X1), (P2,X2), . . .

Decision Rule:

Rt =

{
1, Pt ≤ αt = αt(R1, . . . ,Rt−1)ω(Xt) reject Ht,

0, otherwise accept Ht.

Question: How do we define the weight function ω(·)?

Answer: We use a neural network to model ω(·).
ω(Xt) = ω(Xt; θ) where θ are parameters of a neural network
Training of the network to maximize the number of empirical
discoveries, subject to FDR control
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Training the Network

Training Procedure: Learn parameters in an online fashion to maxi-
mize empirical discoveries subject to FDR control
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Experiments on Synthetic Data
Normal Means Model:

H1, . . . ,Ht
i.i.d.∼ Bernoulli(π1),

Null: µt = 0, Alternate: µt = ⟨β,Xt⟩,
Test Statistic: Zt = N (µt, 1),

Pt = 2Φ(−|Zt|).
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Overlays
Diabetes Detection Dataset: Kaggle Dataset. Biographical infor-
mation used as contextual information

Online Testing Class FDR (α = 0.2) Power
LORD++ 0.147 0.384

Ours (CwLORD++) 0.176 0.580

Airway RNA-Seq Dataset: log count for each gene used as contex-
tual information
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Concluding Remarks

Introduced the problem of contextual online FDR control
Proposed a new class of online FDR control rules
Theoretical analysis: FDR control, Power Improvement (under
informative weighting)
Better empirical performance

Open Questions
Can we check for informative weighting in practice?
Theoretical properties of the neural network based online
testing procedure?
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Third Piece: Conditions

Let ω : X → R be a weight function.
Define weight distributions Q0 and Q1 as:

Q0 = ω(X) with X ∼ L0

Q1 = ω(X) with X ∼ L1

For any t ∈ N, we assume ω(Xt) is drawn from either of these
distributions

ω(Xt) = ωt ∼ Q0 | Ht = 0
ω(Xt) = ωt ∼ Q1 | Ht = 1

Informative: u0 = E[Q0], u1 = E[Q1], and u0 < 1 and u1 > 1
(weight under alternative is more likely to be larger than that under
the null)
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Theorem
Define D(t) = Pr[P/ω ≤ t]. Then, the average power of contextual
weighted LORD rule is almost surely bounded as follows:

lim inf
T→∞

TDR(T) ≥ (
∞∑

m=1

m∏
j=1

(1 − D(b0γj)))
−1
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