Location of zeros of the partition function of the Ising model

Guus Regts

University of Amsterdam

Deterministic Counting, Probability, and Zeros of Partition Functions, Simons Institute Berkeley

$$
20 \text { March, } 2019
$$

Based on joint work with Han Peters, UvA

Partition function of the Ising model

For a graph $G=(V, E)$, and $\lambda, \beta \in \mathbb{C}$, the partition function of the Ising model is defined as

$$
Z_{G}(\lambda, \beta)=\sum_{U \subseteq V} \lambda^{|U|} \cdot \beta^{|\delta(U)|}
$$

Here $|\delta(U)|$ denotes the number of edges between U and $V \backslash U$.

Partition function of the Ising model

For a graph $G=(V, E)$, and $\lambda, \beta \in \mathbb{C}$, the partition function of the Ising model is defined as

$$
Z_{G}(\lambda, \beta)=\sum_{U \subseteq V} \lambda^{|U|} \cdot \beta^{|\delta(U)|}
$$

- Invented to study ferromagnetism in statistical physics.
- $Z_{G}(1, \beta)$ is generating functions of edge cuts in G.
- $Z_{G}(1, \beta)$ is the partition function of the 2-state Potts model.
- $Z_{G}(\lambda, \beta)$ for non-real β, λ relates to output probabilities for certain quantum circuits (Mann, Brenner 2018+)

The Lee-Yang theorem

Theorem (Lee and Yang, 1952)
Fix $\beta \in[-1,1]$. Then for any graph G, the zeros of the univariate polynomial, $Z_{G}(\lambda, \beta)$, lie on the unit circle in the complex plane.

The Lee-Yang theorem

Theorem (Lee and Yang, 1952)

Fix $\beta \in[-1,1]$. Then for any graph G, the zeros of the univariate polynomial, $Z_{G}(\lambda, \beta)$, lie on the unit circle in the complex plane.

A lot of follow up work by many many people

The Lee-Yang theorem

Theorem (Lee and Yang, 1952)
Fix $\beta \in[-1,1]$. Then for any graph G, the zeros of the univariate polynomial, $Z_{G}(\lambda, \beta)$, lie on the unit circle in the complex plane.

A lot of follow up work by many many people

- Today: where on the circle are these zeros?

The Lee-Yang theorem

Theorem (Lee and Yang, 1952)
Fix $\beta \in[-1,1]$. Then for any graph G, the zeros of the univariate polynomial, $Z_{G}(\lambda, \beta)$, lie on the unit circle in the complex plane.

A lot of follow up work by many many people

- Today: where on the circle are these zeros?
- If $\beta=1, Z_{G}=(1+\lambda)^{|V|}$, which has only one zero: -1 .
- For any other β, the roots of all graphs are in fact dense on the circle.
- We will consider the class of bounded degree graphs.

Overview of the rest of the talk

- Results for all bounded degree graphs
- Algorithmic consequences
- Ideas of proof (use of complex dynamics)
- Open problems and questions

Zeros for bounded degree graphs: Ferromagnetic case

\mathcal{G}_{d+1} is collection of all graphs of maximum degree at most $d+1$. Denote unit circle by $\partial \mathbb{D}$; identified with $[-\pi, \pi)$.

Zeros for bounded degree graphs: Ferromagnetic case

\mathcal{G}_{d+1} is collection of all graphs of maximum degree at most $d+1$. Denote unit circle by $\partial \mathbb{D}$; identified with $[-\pi, \pi)$.

Theorem (Peters, R. 18+)
Let $d \in \mathbb{N}_{\geq 2}$ and let $\beta \in\left(\frac{d-1}{d+1}, 1\right)$. Then there exists $\theta=\theta_{\beta} \in(-\pi, \pi)$ such that the following holds:
(i) for any $\lambda=e^{i \vartheta},|\vartheta|<\theta$ and any graph $G \in \mathcal{G}_{d+1}$ we have $Z_{G}(\lambda, \beta) \neq 0 ;$

Zeros for bounded degree graphs: Ferromagnetic case

\mathcal{G}_{d+1} is collection of all graphs of maximum degree at most $d+1$. Denote unit circle by $\partial \mathbb{D}$; identified with $[-\pi, \pi)$.

Theorem (Peters, R. 18+)
Let $d \in \mathbb{N}_{\geq 2}$ and let $\beta \in\left(\frac{d-1}{d+1}, 1\right)$. Then there exists $\theta=\theta_{\beta} \in(-\pi, \pi)$ such that the following holds:
(i) for any $\lambda=e^{i \vartheta},|\vartheta|<\theta$ and any graph $G \in \mathcal{G}_{d+1}$ we have $Z_{G}(\lambda, \beta) \neq 0 ;$
(ii) the set $\left\{\lambda \in \mathbb{C} \mid Z_{G}(\lambda, \beta)=0\right.$ for some $\left.G \in \mathcal{G}_{d+1}\right\}$ is dense in $\partial \mathbb{D} \backslash(-\theta, \theta)$.

- Part (ii) independently proved by Chio, He, Ji, and Roeder (2018+).
- Extends some results of Barata and Marchetti and Barata and Goldbaum for $d=2$ on Cayley trees.

Zeros for bounded degree graphs: Anti-Ferromagnetic case

\mathcal{G}_{d+1} is collection of all graphs of maximum degree at most $d+1$.
Theorem (Peters, R. 18+)
Let $d \in \mathbb{N}_{\geq 2}$ and let $\beta \in\left(1, \frac{d+1}{d-1}\right)$. Then there exists $\alpha=\alpha_{\beta} \in(-\pi, \pi)$ such that the following holds:
(i) for any $\lambda=e^{i \vartheta},|\vartheta|<\alpha$, any $r \geq 0$ and any graph $G \in \mathcal{G}_{d+1}$ we have $Z_{G}(r \cdot \lambda, \beta) \neq 0$;
(ii) the set $\left\{\lambda \in \mathbb{C} \mid Z_{G}(\lambda, \beta)=0\right.$ for some $\left.G \in \mathcal{G}_{d+1}\right\}$ accumulates on $e^{i \alpha}$ and $e^{-i \alpha}$.

Algorithmic consequences

Corollary

There exists an FPTAS for computing $Z_{G}(\lambda, \beta)$ for each fixed β and λ as above and $G \in \mathcal{G}_{d+1}$.

Algorithmic consequences

Corollary

There exists an FPTAS for computing $Z_{G}(\lambda, \beta)$ for each fixed β and λ as above and $G \in \mathcal{G}_{d+1}$.
(What is known about approximating Z_{G} when $G \in \mathcal{G}_{d+1}$)

- FPRAS on all graphs when $0<\beta<1$ and $\lambda>0$ (Jerrum and Sinclair 1993)
- FPTAS when $\lambda=1$ and $\beta \in\left(1, \frac{d+1}{d-1}\right)$ (Sinclair, P. Srivastava, and Thurley, 2014)
- FPTAS when $\lambda=1$ and $|\beta-1| \leq O(1 / d)$, (Barvinok and Soberón 2017 combined with Patel, R. 2017)
- FPTAS when $\beta \in[-1,1]$ and $|\lambda|<1$ (Liu, Sinclair, P. Srivastava, 2017)

High level idea of the proof

- Transform the problem to ratios of partition functions.
- Express the ratio as an iteration of a rational map and apply techniques/ideas from complex dynamics.
- Same structure/idea was used by Peters and R. to solve a conjecture of Sokal concerning the location of zeros for the independence polynomial.

Ratios of partition functions

$$
Z_{G}(\lambda, \beta)=\sum_{U \subseteq V} \lambda^{|U|} \cdot \beta^{|\delta(U)|}
$$

$$
Z_{G}=Z_{G, v, \text { in }}+Z_{G, v, \text { out }}
$$

Ratios of partition functions

$$
Z_{G}(\lambda, \beta)=\sum_{U \subseteq V} \lambda^{|U|} \cdot \beta^{|\delta(U)|} .
$$

$$
Z_{G}=Z_{G, v, \text { in }}+Z_{G, v, \text { out }}
$$

$$
R_{G, v}:=\frac{Z_{G, v, \text { in }}}{Z_{G, v, \text { out }}}
$$

Then ('ignoring' the situation that $Z_{G, v, \text { in }}=Z_{G, v, \text { out }}=0$),

$$
Z_{G} \neq 0 \Longleftrightarrow R_{G, v} \neq-1
$$

High level idea of proof II

- Step 1: Analyse the ratio on Cayley trees using complex dynamics. (This allows to prove parts (ii))
- Step 2: Extend results to all trees with boundary conditions.
- Step 3: Use Weitz' self avoiding walk tree to go from trees to all graphs.

A recurrence for ratios

Let $T_{k, d}$ be the rooted Cayley tree of down degree d with k layers, i.e. $T_{0, d}$ consists of a single vertex and $T_{k, d}$ consists of d copies of $T_{k-1, d}$ connected to the root.

Lemma

$$
R_{T_{k, d}}=\lambda\left(\frac{R_{T_{k-1}, d}+\beta}{\beta R_{T_{k-1}, d}+1}\right)^{d}
$$

Towards dynamical systems

Define

$$
f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \text { by } R \mapsto \lambda\left(\frac{R+\beta}{\beta R+1}\right)^{d} .
$$

Lemma

For Cayley trees $T_{k}=T_{k, d}$:

$$
Z_{T_{k}}(\beta, \lambda) \neq 0 \text { for all } k \Longleftrightarrow f^{\circ k}(1) \neq-1 \text { for all } k .
$$

Basic observations when $\beta \in(0,1)$

Let

$$
g(R)=\frac{R+\beta}{\beta R+1} \quad \text { then } f(R)=\lambda \cdot g(R)^{d}
$$

Basic observations when $\beta \in(0,1)$

Let

$$
g(R)=\frac{R+\beta}{\beta R+1} \quad \text { then } f(R)=\lambda \cdot g(R)^{d}
$$

- g is a Möbius transformation and preserves the circle, $\partial \mathbb{D}$, its interior and its exterior. (Implies Lee-Yang Thm. for trees.)

Basic observations when $\beta \in(0,1)$

Let

$$
g(R)=\frac{R+\beta}{\beta R+1} \quad \text { then } f(R)=\lambda \cdot g(R)^{d}
$$

- g is a Möbius transformation and preserves the circle, $\partial \mathbb{D}$, its interior and its exterior. (Implies Lee-Yang Thm. for trees.)
- f is an orientation preserving d-fold covering of $\partial \mathbb{D}$

Basic observations when $\beta \in(0,1)$

Let

$$
g(R)=\frac{R+\beta}{\beta R+1} \quad \text { then } f(R)=\lambda \cdot g(R)^{d}
$$

- g is a Möbius transformation and preserves the circle, $\partial \mathbb{D}$, its interior and its exterior. (Implies Lee-Yang Thm. for trees.)
- f is an orientation preserving d-fold covering of $\partial \mathbb{D}$

$$
f^{\prime}(R)=f(R) \frac{d\left(1-\beta^{2}\right)}{(R+\beta)(\beta R+1)}
$$

So $\left|f^{\prime}(R)\right|$ is minimal at $R=1$ and increasing with $|\operatorname{Arg}(R)|$.

Observations from complex dynamics

Definition (Informal)

The Fatou set F is the set of points for which nearby points behave similarly under iteration of the map f. The Julia set J is the complement of the Fatou set F.

Observations from complex dynamics

Definition (Informal)

The Fatou set F is the set of points for which nearby points behave similarly under iteration of the map f. The Julia set J is the complement of the Fatou set F. A fixed point $R(R$ is such that $f(R)=R)$ is called attracting if $\left|f^{\prime}(R)\right|<1$, parabolic if $f^{\prime}(R)=1$ and repelling if $f^{\prime}(R) \mid>1$.

Observations from complex dynamics

Definition (Informal)

The Fatou set F is the set of points for which nearby points behave similarly under iteration of the map f. The Julia set J is the complement of the Fatou set F. A fixed point $R(R$ is such that $f(R)=R)$ is called attracting if $\left|f^{\prime}(R)\right|<1$, parabolic if $f^{\prime}(R)=1$ and repelling if $f^{\prime}(R) \mid>1$.

- Montel's theorem implies that the Julia set is contained in the unit circle, $\partial \mathbb{D}$.
- Two options for the Julia set J:
- J is the entire circle (so no attracting fixed points on the circle).
- J is not the entire circle, in which case the Fatou set is a single component and contains a unique attracting or parabolic fixed point on $\partial \mathrm{D}$.

The derivative at 1

$$
f^{\prime}(R)=f(R) \frac{d\left(1-\beta^{2}\right)}{(R+\beta)(\beta R+1)} \quad \text { let } \beta_{c}=\frac{d-1}{d+1} .
$$

- if $\beta \in\left(0, \beta_{c}\right),\left|f^{\prime}(1)\right|>1$ (Julia set is $\left.\partial \mathbb{D}\right)$
- if $\beta=\beta_{c},\left|f^{\prime}(1)\right|=1$.
- if $\beta \in\left(\beta_{c}, 1\right),\left|f^{\prime}(1)\right|<1$.

The derivative at 1

$$
f^{\prime}(R)=f(R) \frac{d\left(1-\beta^{2}\right)}{(R+\beta)(\beta R+1)} \quad \text { let } \beta_{c}=\frac{d-1}{d+1} .
$$

- if $\beta \in\left(0, \beta_{c}\right),\left|f^{\prime}(1)\right|>1$ (Julia set is $\left.\partial \mathbb{D}\right)$
- if $\beta=\beta_{c},\left|f^{\prime}(1)\right|=1$.
- if $\beta \in\left(\beta_{c}, 1\right),\left|f^{\prime}(1)\right|<1$.

Lemma

If $\beta \in\left(0, \beta_{c}\right)$, then the collection of parameters λ for which -1 is contained in the orbit of the initial value $R_{0}=1$ is dense in $\partial \mathbb{D}$.

The derivative at 1

$$
f^{\prime}(R)=f(R) \frac{d\left(1-\beta^{2}\right)}{(R+\beta)(\beta R+1)} \quad \text { let } \beta_{c}=\frac{d-1}{d+1} .
$$

- if $\beta \in\left(0, \beta_{c}\right),\left|f^{\prime}(1)\right|>1$ (Julia set is $\left.\partial \mathbb{D}\right)$
- if $\beta=\beta_{c},\left|f^{\prime}(1)\right|=1$.
- if $\beta \in\left(\beta_{c}, 1\right),\left|f^{\prime}(1)\right|<1$.

Lemma

If $\beta \in\left(0, \beta_{c}\right)$, then the collection of parameters λ for which -1 is contained in the orbit of the initial value $R_{0}=1$ is dense in $\partial \mathrm{D}$.

Corollary

If $\beta \in\left(0, \beta_{c}\right)$, then the zeros of $Z_{T_{k, d}}(\lambda, \beta)$ are dense in $\partial \mathbb{D}$.

Analysis of parabolic fixed points

Fix $\beta \in\left(\beta_{c}, 1\right)$.

Lemma

There exists a unique $\theta \in(0, \pi)$ such that for the two parameters $\lambda=e^{ \pm i \theta}, f$ has a unique parabolic fixed point R. It satisfies the equation:

$$
R^{2}+\frac{d\left(\beta^{2}-1\right)+\left(1+\beta^{2}\right)}{\beta} R+1=0
$$

Analysis of parabolic fixed points

Fix $\beta \in\left(\beta_{c}, 1\right)$.

Lemma

There exists a unique $\theta \in(0, \pi)$ such that for the two parameters $\lambda=e^{ \pm i \theta}, f$ has a unique parabolic fixed point R. It satisfies the equation:

$$
R^{2}+\frac{d\left(\beta^{2}-1\right)+\left(1+\beta^{2}\right)}{\beta} R+1=0
$$

Lemma

The map f has a parabolic or attracting fixed point on $\partial \mathbb{D}$ if and only if $\lambda=e^{i \vartheta}$ with $|\vartheta| \leq \theta$.

Analysis of parabolic fixed points

Fix $\beta \in\left(\beta_{c}, 1\right)$.

Lemma

There exists a unique $\theta \in(0, \pi)$ such that for the two parameters $\lambda=e^{ \pm i \theta}, f$ has a unique parabolic fixed point R. It satisfies the equation:

$$
R^{2}+\frac{d\left(\beta^{2}-1\right)+\left(1+\beta^{2}\right)}{\beta} R+1=0
$$

Lemma

The map f has a parabolic or attracting fixed point on $\partial \mathbb{D}$ if and only if $\lambda=e^{i \vartheta}$ with $|\vartheta| \leq \theta$.

This can be used to prove our theorem for Cayley trees.

High level idea of proof part (i)

- Step 1: Analyse the ratio on Cayley trees using complex dynamics.
- Step 2: Extend results to all trees with boundary conditions.

High level idea of proof part (i)

- Step 1: Analyse the ratio on Cayley trees using complex dynamics.
- Step 2: Extend results to all trees with boundary conditions.
- The recurrence for general trees is given as

$$
\left(R_{1}, \ldots, R_{d}\right) \mapsto F\left(R_{1}, \ldots, R_{d}\right):=\lambda \prod_{i=1}^{d} \frac{R_{i}+\beta}{\beta R_{i}+1} .
$$

- Let I be the circular interval $[1, \hat{R}]$ (\hat{R} is the attracting fixed point.) Then for any $R \in I, f(R) \in I$.
- Let C be the cone through l. Then for any $R_{1}, \ldots, R_{d} \in C$, $F\left(R_{1}, \ldots, R_{d}\right) \in C$.

High level idea of proof part (i)

- Step 1: Analyse the ratio on Cayley trees using complex dynamics.
- Step 2: Extend results to all trees with boundary conditions.
- The recurrence for general trees is given as

$$
\left(R_{1}, \ldots, R_{d}\right) \mapsto F\left(R_{1}, \ldots, R_{d}\right):=\lambda \prod_{i=1}^{d} \frac{R_{i}+\beta}{\beta R_{i}+1} .
$$

- Let $/$ be the circular interval $[1, \hat{R}]$ (\hat{R} is the attracting fixed point.) Then for any $R \in I, f(R) \in I$.
- Let C be the cone through l. Then for any $R_{1}, \ldots, R_{d} \in C$, $F\left(R_{1}, \ldots, R_{d}\right) \in C$.
- Step 3: Use Weitz' self avoiding walk tree to go from trees to all graphs.

Questions/Open Problems I

Questions/Open Problems I

Theorem (Liu, Sinclair, Srivastava, 2018+) for each $d \geq 2$ there exists a region $B \subset \mathbb{C}$ containing the interval $\left(\frac{d-1}{d+1}, \frac{d+1}{d-1}\right)$ such that for all $\beta \in B$, and all graphs $G \in \mathcal{G}_{d+1}$, $Z_{G}(1, \beta) \neq 0$.

Question

What is the maximal domain B containing $\left(\frac{d-1}{d+1}, \frac{d+1}{d-1}\right)$ such that the above statement still holds?

Questions/Open Problems II

Definition

The partition function of the Potts model is defined for $\beta \in \mathbb{C}, k \in \mathbb{N}$ and a graph G by

$$
P_{G}(\beta, k)=\sum_{\phi: V \rightarrow[k]} \beta^{\#} \text { monochromatic edges } .
$$

Questions/Open Problems II

Definition

The partition function of the Potts model is defined for $\beta \in \mathbb{C}, k \in \mathbb{N}$ and a graph G by

$$
P_{G}(\beta, k)=\sum_{\phi: V \rightarrow[k]} \beta^{\# \text { monochromatic edges }}
$$

Note $Z_{G}(1, \beta)=\beta^{|E|} P_{G}(1 / \beta, 2)$.

Question

Let $k \in \mathbb{N}$. Is it true that there exists a region B containing the interval $\left(\frac{d+1-k}{d+1}, 1\right)$ such that for all $\beta \in B$ and graphs $G \in \mathcal{G}_{d+1}, P_{G}(\beta, k) \neq 0$?

Questions/Open Problems II

Definition

The partition function of the Potts model is defined for $\beta \in \mathbb{C}, k \in \mathbb{N}$ and a graph G by

$$
P_{G}(\beta, k)=\sum_{\phi: V \rightarrow[k]} \beta^{\# \text { monochromatic edges }}
$$

Note $Z_{G}(1, \beta)=\beta^{|E|} P_{G}(1 / \beta, 2)$.

Question

Let $k \in \mathbb{N}$. Is it true that there exists a region B containing the interval $\left(\frac{d+1-k}{d+1}, 1\right)$ such that for all $\beta \in B$ and graphs $G \in \mathcal{G}_{d+1}, P_{G}(\beta, k) \neq 0$?

With Bencs, Davies and Patel: can find a region that contains the interval

$$
\left[\frac{d+1-(k-1) / e}{d+1}, 1\right)
$$

Questions/Open Problems III

More antiferromagnetic $(\beta>1)$ zeros:
Theorem (Bencs, Buys, Guerini, Peters, 19+)
Let $d \in \mathbb{N}_{\geq 2}$ and let $\beta \in\left(1, \frac{d+1}{d-1}\right)$. Then there exists $\theta=\theta_{\beta}>\alpha_{\beta}$ such that the set $\left\{\lambda \mid Z_{G}(\lambda, \beta)=0\right\}$ for some $G \in \mathcal{G}_{d+1}$ is dense in the circular interval $(-\theta, \theta)$.

Questions/Open Problems III

More antiferromagnetic $(\beta>1)$ zeros:
Theorem (Bencs, Buys, Guerini, Peters, 19+)
Let $d \in \mathbb{N}_{\geq 2}$ and let $\beta \in\left(1, \frac{d+1}{d-1}\right)$. Then there exists $\theta=\theta_{\beta}>\alpha_{\beta}$ such that the set $\left\{\lambda \mid Z_{G}(\lambda, \beta)=0\right\}$ for some $G \in \mathcal{G}_{d+1}$ is dense in the circular interval $(-\theta, \theta)$.

Question

What happens in between θ and α ?
Preliminary work of Bencs, Buys, Guerini and Peters suggests that there is an interval $I \subset(\alpha, \theta)$ on which the roots accumulate.

Questions/Open Problems IV

Let $d \in \mathbb{N}_{\geq 2}$, let $\beta \in\left(\frac{d-1}{d+1}, 1\right)$ and let $\theta=\theta_{\beta}$.

Corollary

For any $\lambda=e^{i \vartheta},|\vartheta|<\theta$ there is an FPTAS for computing $Z_{G}(\lambda, \beta)$ for all graphs $G \in \mathcal{G}_{d+1}$.

Question

How hard is it to approximate $Z_{G}(\lambda, \beta)$ when $\lambda=e^{i \vartheta},|\vartheta|>\theta_{\beta}$?

Thank you for your attention!

