Location of zeros of the partition function of the Ising model

Guus Regts

University of Amsterdam

Deterministic Counting, Probability, and Zeros of Partition Functions, Simons Institute Berkeley

20 March, 2019

Based on joint work with Han Peters, UvA

For a graph G = (V, E), and $\lambda, \beta \in \mathbb{C}$, the partition function of the Ising model is defined as

$$Z_G(\lambda,\beta) = \sum_{U \subseteq V} \lambda^{|U|} \cdot \beta^{|\delta(U)|}.$$

Here $|\delta(U)|$ denotes the number of edges between U and $V \setminus U$.

For a graph G = (V, E), and $\lambda, \beta \in \mathbb{C}$, the partition function of the Ising model is defined as

$$Z_G(\lambda,\beta) = \sum_{U\subseteq V} \lambda^{|U|} \cdot \beta^{|\delta(U)|}.$$

- Invented to study ferromagnetism in statistical physics.
- $Z_G(1,\beta)$ is generating functions of edge cuts in G.
- $Z_G(1,\beta)$ is the partition function of the 2-state Potts model.
- $Z_G(\lambda, \beta)$ for non-real β, λ relates to output probabilities for certain quantum circuits (Mann, Brenner 2018+)

Fix $\beta \in [-1,1]$. Then for any graph G, the zeros of the univariate polynomial, $Z_G(\lambda, \beta)$, lie on the unit circle in the complex plane.

Fix $\beta \in [-1,1]$. Then for any graph G, the zeros of the univariate polynomial, $Z_G(\lambda, \beta)$, lie on the unit circle in the complex plane.

A lot of follow up work by many many people

Fix $\beta \in [-1,1]$. Then for any graph G, the zeros of the univariate polynomial, $Z_G(\lambda, \beta)$, lie on the unit circle in the complex plane.

A lot of follow up work by many many people

• Today: where on the circle are these zeros?

Fix $\beta \in [-1,1]$. Then for any graph G, the zeros of the univariate polynomial, $Z_G(\lambda, \beta)$, lie on the unit circle in the complex plane.

A lot of follow up work by many many people

- Today: where on the circle are these zeros?
- If $\beta = 1$, $Z_G = (1 + \lambda)^{|V|}$, which has only one zero: -1.
- For any other β , the roots of all graphs are in fact dense on the circle.
- We will consider the class of bounded degree graphs.

- Results for all bounded degree graphs
- Algorithmic consequences
- Ideas of proof (use of complex dynamics)
- Open problems and questions

Zeros for bounded degree graphs: Ferromagnetic case

 \mathcal{G}_{d+1} is collection of all graphs of maximum degree at most d+1. Denote unit circle by $\partial \mathbb{D}$; identified with $[-\pi, \pi)$.

Zeros for bounded degree graphs: Ferromagnetic case

 \mathcal{G}_{d+1} is collection of all graphs of maximum degree at most d+1. Denote unit circle by $\partial \mathbb{D}$; identified with $[-\pi, \pi)$.

Theorem (Peters, R. 18+)

Let $d \in \mathbb{N}_{\geq 2}$ and let $\beta \in (\frac{d-1}{d+1}, 1)$. Then there exists $\theta = \theta_{\beta} \in (-\pi, \pi)$ such that the following holds:

(i) for any $\lambda = e^{i\theta}$, $|\vartheta| < \theta$ and any graph $G \in \mathcal{G}_{d+1}$ we have $Z_G(\lambda, \beta) \neq 0$;

Zeros for bounded degree graphs: Ferromagnetic case

 \mathcal{G}_{d+1} is collection of all graphs of maximum degree at most d+1. Denote unit circle by $\partial \mathbb{D}$; identified with $[-\pi, \pi)$.

Theorem (Peters, R. 18+)

Let $d \in \mathbb{N}_{\geq 2}$ and let $\beta \in (\frac{d-1}{d+1}, 1)$. Then there exists $\theta = \theta_{\beta} \in (-\pi, \pi)$ such that the following holds:

- (i) for any λ = e^{iθ}, |θ| < θ and any graph G ∈ G_{d+1} we have Z_G(λ, β) ≠ 0;
 (ii) the set {λ ∈ C | Z_G(λ, β) = 0 for some G ∈ G_{d+1}} is dense in ∂D \ (-θ, θ).
 - Part (ii) independently proved by Chio, He, Ji, and Roeder (2018+).
 - Extends some results of Barata and Marchetti and Barata and Goldbaum for d = 2 on Cayley trees.

・ロッ ・聞 > ・ ヨ > ・ ヨ > ・

 \mathcal{G}_{d+1} is collection of all graphs of maximum degree at most d+1.

Theorem (Peters, R. 18+)

Let $d \in \mathbb{N}_{\geq 2}$ and let $\beta \in (1, \frac{d+1}{d-1})$. Then there exists $\alpha = \alpha_{\beta} \in (-\pi, \pi)$ such that the following holds:

- (i) for any $\lambda = e^{i\vartheta}$, $|\vartheta| < \alpha$, any $r \ge 0$ and any graph $G \in \mathcal{G}_{d+1}$ we have $Z_G(r \cdot \lambda, \beta) \ne 0$;
- (ii) the set $\{\lambda \in \mathbb{C} \mid Z_G(\lambda, \beta) = 0 \text{ for some } G \in \mathcal{G}_{d+1}\}$ accumulates on $e^{i\alpha}$ and $e^{-i\alpha}$.

Corollary

There exists an FPTAS for computing $Z_G(\lambda, \beta)$ for each fixed β and λ as above and $G \in \mathcal{G}_{d+1}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Corollary

There exists an FPTAS for computing $Z_G(\lambda, \beta)$ for each fixed β and λ as above and $G \in \mathcal{G}_{d+1}$.

(What is known about approximating Z_G when $G \in \mathcal{G}_{d+1}$)

- FPRAS on all graphs when $0 < \beta < 1$ and $\lambda > 0$ (Jerrum and Sinclair 1993)
- FPTAS when $\lambda = 1$ and $\beta \in (1, \frac{d+1}{d-1})$ (Sinclair, P. Srivastava, and Thurley, 2014)
- FPTAS when $\lambda = 1$ and $|\beta 1| \le O(1/d)$, (Barvinok and Soberón 2017 combined with Patel, R. 2017)
- FPTAS when $eta \in [-1,1]$ and $|\lambda| < 1$ (Liu, Sinclair, P. Srivastava, 2017)

(日) (同) (日) (日) (日)

- Transform the problem to ratios of partition functions.
- Express the ratio as an iteration of a rational map and apply techniques/ideas from complex dynamics.
- Same structure/idea was used by Peters and R. to solve a conjecture of Sokal concerning the location of zeros for the independence polynomial.

Ratios of partition functions

$$Z_G(\lambda,\beta) = \sum_{U \subseteq V} \lambda^{|U|} \cdot \beta^{|\delta(U)|}$$

$$Z_G = Z_{G,v,in} + Z_{G,v,out}$$

(日) (同) (三) (三)

Ratios of partition functions

$$Z_G(\lambda,\beta) = \sum_{U \subseteq V} \lambda^{|U|} \cdot \beta^{|\delta(U)|}.$$

$$Z_G = Z_{G,v,in} + Z_{G,v,out}$$

$$R_{G,v} := \frac{Z_{G,v,\text{in}}}{Z_{G,v,\text{out}}}$$

Then ('ignoring' the situation that $Z_{G,v,in} = Z_{G,v,out} = 0$),

$$Z_G \neq 0 \iff R_{G,v} \neq -1.$$

- 4 同 ト - 4 三 ト

- Step 1: Analyse the ratio on Cayley trees using complex dynamics. (This allows to prove parts (ii))
- Step 2: Extend results to all trees with boundary conditions.
- Step 3: Use Weitz' self avoiding walk tree to go from trees to all graphs.

Let $T_{k,d}$ be the rooted Cayley tree of down degree d with k layers, i.e. $T_{0,d}$ consists of a single vertex and $T_{k,d}$ consists of d copies of $T_{k-1,d}$ connected to the root.

Lemma

$$R_{\mathcal{T}_{k,d}} = \lambda \left(rac{R_{\mathcal{T}_{k-1},d} + eta}{eta R_{\mathcal{T}_{k-1},d} + 1}
ight)^d.$$

Define

$$f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$$
 by $R \mapsto \lambda \left(rac{R+eta}{eta R+1}
ight)^d$.

Lemma

For Cayley trees $T_k = T_{k,d}$:

$$Z_{\mathcal{T}_k}(eta,\lambda)
eq 0$$
 for all $k\iff f^{\circ k}(1)
eq -1$ for all k

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$g(R) = \frac{R+\beta}{\beta R+1}$$

then
$$f(R) = \lambda \cdot g(R)^d$$

(日) (同) (三) (三)

$$g(R) = rac{R+eta}{eta R+1}$$
 then $f(R) = \lambda \cdot g(R)^d$

• g is a Möbius transformation and preserves the circle, ∂D, its interior and its exterior. (Implies Lee-Yang Thm. for trees.)

$$g(R) = rac{R+eta}{eta R+1}$$
 then $f(R) = \lambda \cdot g(R)^d$

- g is a Möbius transformation and preserves the circle, ∂D, its interior and its exterior. (Implies Lee-Yang Thm. for trees.)
- f is an orientation preserving d-fold covering of $\partial \mathbb{D}$

٥

$$g(R) = rac{R+eta}{eta R+1}$$
 then $f(R) = \lambda \cdot g(R)^d$

- g is a Möbius transformation and preserves the circle, ∂D, its interior and its exterior. (Implies Lee-Yang Thm. for trees.)
- f is an orientation preserving d-fold covering of $\partial \mathbb{D}$

$$f'(R) = f(R) \frac{d(1-\beta^2)}{(R+\beta)(\beta R+1)}.$$

So |f'(R)| is minimal at R = 1 and increasing with |Arg(R)|.

Definition (Informal)

The Fatou set F is the set of points for which nearby points behave similarly under iteration of the map f. The Julia set J is the complement of the Fatou set F.

Definition (Informal)

The Fatou set F is the set of points for which nearby points behave similarly under iteration of the map f. The Julia set J is the complement of the Fatou set F. A fixed point R (R is such that f(R) = R) is called attracting if |f'(R)| < 1, parabolic if f'(R) = 1 and repelling if f'(R)| > 1.

Definition (Informal)

The Fatou set F is the set of points for which nearby points behave similarly under iteration of the map f. The Julia set J is the complement of the Fatou set F. A fixed point R (R is such that f(R) = R) is called attracting if |f'(R)| < 1, parabolic if f'(R) = 1 and repelling if f'(R)| > 1.

- Montel's theorem implies that the Julia set is contained in the unit circle, ∂D.
- Two options for the Julia set J:
 - J is the entire circle (so no attracting fixed points on the circle).
 - J is not the entire circle, in which case the Fatou set is a single component and contains a <u>unique</u> attracting or parabolic fixed point on ∂D.

- 4 同 ト 4 ヨ ト 4 ヨ ト

The derivative at 1

$$f'(R) = f(R) \frac{d(1-\beta^2)}{(R+\beta)(\beta R+1)}$$
 let $\beta_c = \frac{d-1}{d+1}$.

E

イロン イヨン イヨン イヨン

The derivative at 1

$$f'(R) = f(R) \frac{d(1-\beta^2)}{(R+\beta)(\beta R+1)}$$
 let $\beta_c = \frac{d-1}{d+1}$.

• if
$$\beta \in (\beta_c, 1)$$
, $|f'(1)| < 1$.

Lemma

If $\beta \in (0, \beta_c)$, then the collection of parameters λ for which -1 is contained in the orbit of the initial value $R_0 = 1$ is dense in $\partial \mathbb{D}$.

The derivative at 1

$$f'(R) = f(R) \frac{d(1-\beta^2)}{(R+\beta)(\beta R+1)}$$
 let $\beta_c = \frac{d-1}{d+1}$.

• if
$$\beta \in (\beta_c, 1)$$
, $|f'(1)| < 1$.

Lemma

If $\beta \in (0, \beta_c)$, then the collection of parameters λ for which -1 is contained in the orbit of the initial value $R_0 = 1$ is dense in $\partial \mathbb{D}$.

Corollary

If
$$\beta \in (0, \beta_c)$$
, then the zeros of $Z_{\mathcal{T}_{k,d}}(\lambda, \beta)$ are dense in $\partial \mathbb{D}$.

Analysis of parabolic fixed points

Fix $\beta \in (\beta_c, 1)$.

Lemma

There exists a unique $\theta \in (0, \pi)$ such that for the two parameters $\lambda = e^{\pm i\theta}$, f has a unique parabolic fixed point R. It satisfies the equation:

$$R^{2} + \frac{d(\beta^{2} - 1) + (1 + \beta^{2})}{\beta}R + 1 = 0.$$

Analysis of parabolic fixed points

Fix $\beta \in (\beta_c, 1)$.

Lemma

There exists a unique $\theta \in (0, \pi)$ such that for the two parameters $\lambda = e^{\pm i\theta}$, f has a unique parabolic fixed point R. It satisfies the equation:

$$R^{2} + \frac{d(\beta^{2} - 1) + (1 + \beta^{2})}{\beta}R + 1 = 0.$$

Lemma

The map f has a parabolic or attracting fixed point on $\partial \mathbb{D}$ if and only if $\lambda = e^{i\vartheta}$ with $|\vartheta| \le \theta$.

Analysis of parabolic fixed points

Fix $\beta \in (\beta_c, 1)$.

Lemma

There exists a unique $\theta \in (0, \pi)$ such that for the two parameters $\lambda = e^{\pm i\theta}$, f has a unique parabolic fixed point R. It satisfies the equation:

$$R^{2} + \frac{d(\beta^{2} - 1) + (1 + \beta^{2})}{\beta}R + 1 = 0.$$

Lemma

The map f has a parabolic or attracting fixed point on $\partial \mathbb{D}$ if and only if $\lambda = e^{i\vartheta}$ with $|\vartheta| \le \theta$.

This can be used to prove our theorem for Cayley trees.

- Step 1: Analyse the ratio on Cayley trees using complex dynamics.
- Step 2: Extend results to all trees with boundary conditions.

- Step 1: Analyse the ratio on Cayley trees using complex dynamics.
- Step 2: Extend results to all trees with boundary conditions.
 - The recurrence for general trees is given as

$$(R_1,\ldots,R_d)\mapsto F(R_1,\ldots,R_d):=\lambda\prod_{i=1}^d \frac{R_i+\beta}{\beta R_i+1}.$$

- Let I be the circular interval $[1, \hat{R}]$ (\hat{R} is the attracting fixed point.) Then for any $R \in I$, $f(R) \in I$.
- Let C be the cone through I. Then for any $R_1, \ldots, R_d \in C$, $F(R_1, \ldots, R_d) \in C$.

- Step 1: Analyse the ratio on Cayley trees using complex dynamics.
- Step 2: Extend results to all trees with boundary conditions.
 - The recurrence for general trees is given as

$$(R_1,\ldots,R_d)\mapsto F(R_1,\ldots,R_d):=\lambda\prod_{i=1}^d \frac{R_i+\beta}{\beta R_i+1}.$$

- Let I be the circular interval $[1, \hat{R}]$ (\hat{R} is the attracting fixed point.) Then for any $R \in I$, $f(R) \in I$.
- Let C be the cone through I. Then for any $R_1, \ldots, R_d \in C$, $F(R_1, \ldots, R_d) \in C$.
- Step 3: Use Weitz' self avoiding walk tree to go from trees to all graphs.

Questions/Open Problems I

Guus Regts (University of Amsterdam) Location of zeros of the partition function of

э

<ロト <回 > < 回 > < 回 > < 回 >

Theorem (Liu, Sinclair, Srivastava, 2018+)

for each $d \geq 2$ there exists a region $B \subset \mathbb{C}$ containing the interval $(\frac{d-1}{d+1}, \frac{d+1}{d-1})$ such that for all $\beta \in B$, and all graphs $G \in \mathcal{G}_{d+1}$, $Z_G(1, \beta) \neq 0$.

Question

What is the maximal domain *B* containing $(\frac{d-1}{d+1}, \frac{d+1}{d-1})$ such that the above statement still holds?

Questions/Open Problems II

Definition

The partition function of the Potts model is defined for $\beta \in \mathbb{C}$, $k \in \mathbb{N}$ and a graph G by

$${\sf P}_{{\sf G}}(eta,k) = \sum_{\phi: {\sf V} o [k]} eta^{\# ext{ monochromatic edges}}$$

Questions/Open Problems II

Definition

The partition function of the Potts model is defined for $\beta \in \mathbb{C}$, $k \in \mathbb{N}$ and a graph G by

$${{P}_{G}}(eta,k) = \sum\limits_{\phi: V
ightarrow [k]} {eta}^{\# ext{ monochromatic edges}}$$

Note $Z_G(1, \beta) = \beta^{|E|} P_G(1/\beta, 2)$.

Question

Let $k \in \mathbb{N}$. Is it true that there exists a region B containing the interval $(\frac{d+1-k}{d+1}, 1)$ such that for all $\beta \in B$ and graphs $G \in \mathcal{G}_{d+1}$, $P_G(\beta, k) \neq 0$?

Questions/Open Problems II

Definition

The partition function of the Potts model is defined for $\beta \in \mathbb{C}$, $k \in \mathbb{N}$ and a graph G by

$${{P_{\mathcal{G}}}(eta,k)} = \sum\limits_{\phi: \mathcal{V}
ightarrow [k]} {{eta}^{\# \ ext{monochromatic edges}}}$$

Note $Z_G(1, \beta) = \beta^{|E|} P_G(1/\beta, 2)$.

Question

Let $k \in \mathbb{N}$. Is it true that there exists a region B containing the interval $(\frac{d+1-k}{d+1}, 1)$ such that for all $\beta \in B$ and graphs $G \in \mathcal{G}_{d+1}$, $P_G(\beta, k) \neq 0$?

With Bencs, Davies and Patel: can find a region that contains the interval

$$\left[\frac{d+1-(k-1)/e}{d+1},1\right)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

More antiferromagnetic $(\beta > 1)$ zeros:

Theorem (Bencs, Buys, Guerini, Peters, 19+)

Let $d \in \mathbb{N}_{\geq 2}$ and let $\beta \in (1, \frac{d+1}{d-1})$. Then there exists $\theta = \theta_{\beta} > \alpha_{\beta}$ such that the set $\{\lambda \mid Z_G(\lambda, \beta) = 0\}$ for some $G \in \mathcal{G}_{d+1}$ is dense in the circular interval $(-\theta, \theta)$.

More antiferromagnetic $(\beta > 1)$ zeros:

Theorem (Bencs, Buys, Guerini, Peters, 19+)

Let $d \in \mathbb{N}_{\geq 2}$ and let $\beta \in (1, \frac{d+1}{d-1})$. Then there exists $\theta = \theta_{\beta} > \alpha_{\beta}$ such that the set $\{\lambda \mid Z_G(\lambda, \beta) = 0\}$ for some $G \in \mathcal{G}_{d+1}$ is dense in the circular interval $(-\theta, \theta)$.

Question

What happens in between θ and α ?

Preliminary work of Bencs, Buys, Guerini and Peters suggests that there is an interval $I \subset (\alpha, \theta)$ on which the roots accumulate.

(4回) (4回) (日)

Let
$$d \in \mathbb{N}_{\geq 2}$$
, let $\beta \in (\frac{d-1}{d+1}, 1)$ and let $\theta = \theta_{\beta}$.

Corollary

For any $\lambda = e^{i\theta}$, $|\theta| < \theta$ there is an FPTAS for computing $Z_G(\lambda, \beta)$ for all graphs $G \in \mathcal{G}_{d+1}$.

Question

How hard is it to approximate $Z_G(\lambda, \beta)$ when $\lambda = e^{i\theta}$, $|\theta| > \theta_{\beta}$?

E

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >