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Partition function of the Ising model

For a graph G = (V ,E ), and λ, β ∈ C, the partition function of the Ising
model is defined as

ZG (λ, β) = ∑
U⊆V

λ|U | · β|δ(U)|.

Here |δ(U)| denotes the number of edges between U and V \ U.
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Partition function of the Ising model

For a graph G = (V ,E ), and λ, β ∈ C, the partition function of the Ising
model is defined as

ZG (λ, β) = ∑
U⊆V

λ|U | · β|δ(U)|.

Invented to study ferromagnetism in statistical physics.

ZG (1, β) is generating functions of edge cuts in G .

ZG (1, β) is the partition function of the 2-state Potts model.

ZG (λ, β) for non-real β, λ relates to output probabilities for certain
quantum circuits (Mann, Brenner 2018+)
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The Lee-Yang theorem

Theorem (Lee and Yang, 1952)

Fix β ∈ [−1, 1]. Then for any graph G , the zeros of the univariate
polynomial, ZG (λ, β), lie on the unit circle in the complex plane.

A lot of follow up work by many many people

Today: where on the circle are these zeros?

If β = 1, ZG = (1 + λ)|V |, which has only one zero: −1.

For any other β, the roots of all graphs are in fact dense on the circle.

We will consider the class of bounded degree graphs.
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Overview of the rest of the talk

Results for all bounded degree graphs

Algorithmic consequences

Ideas of proof (use of complex dynamics)

Open problems and questions
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Zeros for bounded degree graphs: Ferromagnetic case

Gd+1 is collection of all graphs of maximum degree at most d + 1.
Denote unit circle by ∂D; identified with [−π, π).

Theorem (Peters, R. 18+)

Let d ∈N≥2 and let β ∈ ( d−1d+1 , 1). Then there exists θ = θβ ∈ (−π, π)
such that the following holds:

(i) for any λ = e iϑ ,|ϑ| < θ and any graph G ∈ Gd+1 we have
ZG (λ, β) 6= 0;

(ii) the set {λ ∈ C | ZG (λ, β) = 0 for some G ∈ Gd+1} is dense in
∂D \ (−θ, θ).

Part (ii) independently proved by Chio, He, Ji, and Roeder (2018+).

Extends some results of Barata and Marchetti and Barata and
Goldbaum for d = 2 on Cayley trees.
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Zeros for bounded degree graphs: Anti-Ferromagnetic case

Gd+1 is collection of all graphs of maximum degree at most d + 1.

Theorem (Peters, R. 18+)

Let d ∈N≥2 and let β ∈ (1, d+1
d−1 ). Then there exists α = αβ ∈ (−π, π)

such that the following holds:

(i) for any λ = e iϑ, |ϑ| < α, any r ≥ 0 and any graph G ∈ Gd+1 we
have ZG (r · λ, β) 6= 0;

(ii) the set {λ ∈ C | ZG (λ, β) = 0 for some G ∈ Gd+1} accumulates on
e iα and e−iα.
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Algorithmic consequences

Corollary

There exists an FPTAS for computing ZG (λ, β) for each fixed β and λ as
above and G ∈ Gd+1.

(What is known about approximating ZG when G ∈ Gd+1)

FPRAS on all graphs when 0 < β < 1 and λ > 0 (Jerrum and
Sinclair 1993)

FPTAS when λ = 1 and β ∈ (1, d+1
d−1 ) (Sinclair, P. Srivastava, and

Thurley, 2014)

FPTAS when λ = 1 and |β− 1| ≤ O(1/d), (Barvinok and Soberón
2017 combined with Patel, R. 2017)

FPTAS when β ∈ [−1, 1] and |λ| < 1 (Liu, Sinclair, P. Srivastava,
2017)
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High level idea of the proof

Transform the problem to ratios of partition functions.

Express the ratio as an iteration of a rational map and apply
techniques/ideas from complex dynamics.

Same structure/idea was used by Peters and R. to solve a conjecture
of Sokal concerning the location of zeros for the independence
polynomial.
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Ratios of partition functions

ZG (λ, β) = ∑
U⊆V

λ|U | · β|δ(U)|.

ZG = ZG ,v ,in + ZG ,v ,out

RG ,v :=
ZG ,v ,in

ZG ,v ,out

Then (‘ignoring’ the situation that ZG ,v ,in = ZG ,v ,out = 0),

ZG 6= 0 ⇐⇒ RG ,v 6= −1.
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High level idea of proof II

Step 1: Analyse the ratio on Cayley trees using complex dynamics.
(This allows to prove parts (ii))

Step 2: Extend results to all trees with boundary conditions.

Step 3: Use Weitz’ self avoiding walk tree to go from trees to all
graphs.
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A recurrence for ratios

Let Tk,d be the rooted Cayley tree of down degree d with k layers , i.e.
T0,d consists of a single vertex and Tk,d consists of d copies of Tk−1,d
connected to the root.

Lemma

RTk,d
= λ

(
RTk−1,d + β

βRTk−1,d + 1

)d

.
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Towards dynamical systems

Define

f : Ĉ→ Ĉ by R 7→ λ

(
R + β

βR + 1

)d

.

Lemma

For Cayley trees Tk = Tk,d :

ZTk
(β, λ) 6= 0 for all k ⇐⇒ f ◦k(1) 6= −1 for all k.
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Basic observations when β ∈ (0, 1)

Let

g(R) =
R + β

βR + 1
then f (R) = λ · g(R)d

g is a Möbius transformation and preserves the circle, ∂D, its interior
and its exterior. (Implies Lee-Yang Thm. for trees.)

f is an orientation preserving d-fold covering of ∂D

f ′(R) = f (R)
d(1− β2)

(R + β)(βR + 1)
.

So |f ′(R)| is minimal at R = 1 and increasing with |Arg(R)|.
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Observations from complex dynamics

Definition (Informal)

The Fatou set F is the set of points for which nearby points behave
similarly under iteration of the map f . The Julia set J is the complement
of the Fatou set F .

A fixed point R (R is such that f (R) = R) is called
attracting if |f ′(R)| < 1, parabolic if f ′(R) = 1 and repelling if
f ′(R)| > 1.

Montel’s theorem implies that the Julia set is contained in the unit
circle, ∂D.

Two options for the Julia set J:

J is the entire circle (so no attracting fixed points on the circle).
J is not the entire circle, in which case the Fatou set is a single
component and contains a unique attracting or parabolic fixed point on
∂D.
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The derivative at 1

f ′(R) = f (R)
d(1− β2)

(R + β)(βR + 1)
let βc =

d − 1

d + 1
.

if β ∈ (0, βc), |f ′(1)| > 1 (Julia set is ∂D)

if β = βc , |f ′(1)| = 1.

if β ∈ (βc , 1), |f ′(1)| < 1.

Lemma

If β ∈ (0, βc), then the collection of parameters λ for which −1 is
contained in the orbit of the initial value R0 = 1 is dense in ∂D.

Corollary

If β ∈ (0, βc), then the zeros of ZTk,d
(λ, β) are dense in ∂D.
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Analysis of parabolic fixed points

Fix β ∈ (βc , 1).

Lemma

There exists a unique θ ∈ (0, π) such that for the two parameters
λ = e±iθ, f has a unique parabolic fixed point R. It satisfies the equation:

R2 +
d(β2 − 1) + (1 + β2)

β
R + 1 = 0.

Lemma

The map f has a parabolic or attracting fixed point on ∂D if and only if
λ = e iϑ with |ϑ| ≤ θ.

This can be used to prove our theorem for Cayley trees.
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High level idea of proof part (i)

Step 1: Analyse the ratio on Cayley trees using complex dynamics.

Step 2: Extend results to all trees with boundary conditions.

The recurrence for general trees is given as

(R1, . . . ,Rd ) 7→ F (R1, . . . ,Rd ) := λ
d

∏
i=1

Ri + β

βRi + 1
.

Let I be the circular interval [1, R̂ ] (R̂ is the attracting fixed point.)
Then for any R ∈ I , f (R) ∈ I .
Let C be the cone through I . Then for any R1, . . . ,Rd ∈ C ,
F (R1, . . . ,Rd ) ∈ C .

Step 3: Use Weitz’ self avoiding walk tree to go from trees to all
graphs.
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Questions/Open Problems I

Theorem (Liu, Sinclair, Srivastava, 2018+)

for each d ≥ 2 there exists a region B ⊂ C containing the interval
( d−1d+1 , d+1

d−1 ) such that for all β ∈ B, and all graphs G ∈ Gd+1,
ZG (1, β) 6= 0.

Question

What is the maximal domain B containing ( d−1d+1 , d+1
d−1 ) such that the

above statement still holds?
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Questions/Open Problems II

Definition

The partition function of the Potts model is defined for β ∈ C, k ∈N and
a graph G by

PG (β, k) = ∑
φ:V→[k ]

β# monochromatic edges .

Note ZG (1, β) = β|E |PG (1/β, 2).

Question

Let k ∈N. Is it true that there exists a region B containing the interval
( d+1−k

d+1 , 1) such that for all β ∈ B and graphs G ∈ Gd+1, PG (β, k) 6= 0?

With Bencs, Davies and Patel: can find a region that contains the interval[
d + 1− (k − 1)/e

d + 1
, 1

)
.
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Questions/Open Problems III

More antiferromagnetic (β > 1) zeros:

Theorem (Bencs, Buys, Guerini, Peters, 19+)

Let d ∈N≥2 and let β ∈ (1, d+1
d−1 ). Then there exists θ = θβ > αβ such

that the set {λ | ZG (λ, β) = 0} for some G ∈ Gd+1 is dense in the
circular interval (−θ, θ).

Question

What happens in between θ and α?

Preliminary work of Bencs, Buys, Guerini and Peters suggests that there is
an interval I ⊂ (α, θ) on which the roots accumulate.
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circular interval (−θ, θ).

Question

What happens in between θ and α?

Preliminary work of Bencs, Buys, Guerini and Peters suggests that there is
an interval I ⊂ (α, θ) on which the roots accumulate.
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Questions/Open Problems IV

Let d ∈N≥2, let β ∈ ( d−1d+1 , 1) and let θ = θβ.

Corollary

For any λ = e iϑ ,|ϑ| < θ there is an FPTAS for computing ZG (λ, β) for
all graphs G ∈ Gd+1.

Question

How hard is it to approximate ZG (λ, β) when λ = e iϑ ,|ϑ| > θβ?
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Thank you for your attention!
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