Counting Hypergraph Colourings in the Local Lemma Regime

Heng Guo (University of Edinburgh)
Joint with Chao Liao (SJTU), Pinyan Lu (SHUFE), and Chihao Zhang (SJTU)

Berkeley, CA, Mar 22nd, 2019

Colourings

Graph (proper) colouring

3-colouring of the Petersen graph

Phase transitions

Phase transitions:
as some parameter changes, macroscopic behaviours of the whole system change drastically.
E.g. ice \rightarrow water \rightarrow water vapor

Computational complexity may also have transitions.

Computational phase transitions

As parameters change, the computational complexity of a problem may change drastically.

Determine whether a graph is q-colourable (or find one if it exists):

- $q=1,2$: trivial;
- $q \geqslant 3$: NP-hard.

What about graphs with maximum degree Δ ?

colourable by simple greedy algorithm;

- $q \geqslant \Delta-k_{\Delta}+1$: polynomial-time (Molloy, Reed '01'14);
$\therefore q \leqslant \triangle-k_{\triangle} \quad$ NP-hard (Embden-Weineri, Hougardy, and Kreuter '98).

COMPUTATIONAL PHASE TRANSITIONS

As parameters change, the computational complexity of a problem may change drastically.

Determine whether a graph is q-colourable (or find one if it exists):

- $\mathrm{q}=1,2$: trivial;
- $q \geqslant 3$: NP-hard.

What about graphs with maximum degree Δ ?

Computational phase transitions

As parameters change, the computational complexity of a problem may change drastically.

Determine whether a graph is q-colourable (or find one if it exists):

- $\mathrm{q}=1,2$: trivial;
- $q \geqslant 3$: NP-hard.

What about graphs with maximum degree Δ ?

- $\mathrm{q} \geqslant \Delta+1 \quad$: colourable by simple greedy algorithm;
- $\mathrm{q} \geqslant \Delta-\mathrm{k}_{\Delta}+1$: polynomial-time (Molloy, Reed '01 '14);
- $q \leqslant \Delta-k_{\Delta} \quad: N P-h a r d ~(E m b d e n-W e i n e r t, ~ H o u g a r d y, ~$ $\left(k_{\Delta} \approx \sqrt{\Delta}-2\right) \quad$ and Kreuter '98).

Thresholds for randomly colouring a graph

Can we generate a uniform proper colouring at random efficiently? (closely related to approximately count the number of colourings)

- $q>2 \Delta$
rapid mixing of Glauber dynamics by Jerrum (1995); Salas and Sokal (1997):
- $q>\frac{11}{6} \Delta$
rapid mixing of WSK dynamics by Vigoda (2000);
improved by Chen and Moitra (2019); Delcourt, Perarnau, and Postle (2019) to $q>\left(\frac{11}{6}-\varepsilon\right) \Delta$ for a small constant ε;
- $q<\Delta$: NP-hard by Galanis, Štefankovič, and Vigoda (2015);

It is conjectured that there is a threshold and q_{c}
This is the unique-
ness threshold of Gibbs measures in an infinite \triangle regular tree (namely a
Bethe lattice), by Jonasson (2002).

Thresholds for randomly colouring a graph

Can we generate a uniform proper colouring at random efficiently? (closely related to approximately count the number of colourings)

- $\mathrm{q}>2 \Delta$: rapid mixing of Glauber dynamics by Jerrum (1995); Salas and Sokal (1997);
- $q>\frac{11}{6} \Delta$: rapid mixing of WSK dynamics by Vigoda (2000); improved by Chen and Moitra (2019); Delcourt, Perarnau, and Postle (2019) to $q>\left(\frac{11}{6}-\varepsilon\right) \Delta$ for a small constant ε; - $\mathrm{q}<\Delta \quad:$ NP-hard by Galanis, Štefankovič, and Vigoda (2015);

It is conjectured that there is a threshold and q_{c} This is the uniqueness threshold of Gibbs measures in an infinite Δ-rgular tree (namely a Bethe lattice), by Jonasson (2002).

Thresholds for randomly colouring a graph

Can we generate a uniform proper colouring at random efficiently? (closely related to approximately count the number of colourings)

- $\mathrm{q}>2 \Delta$: rapid mixing of Glauber dynamics by Jerrum (1995); Salas and Sokal (1997);
- $\mathrm{q}>\frac{11}{6} \Delta$: rapid mixing of WSK dynamics by Vigoda (2000);
improved by Chen and Moitra (2019); Delcourt, Perarnau, and Postle (2019) to $q>\left(\frac{11}{6}-\varepsilon\right) \Delta$ for a small constant ε; Nn-hard by Galanis, Štefankovič, and Vigoda (2015);

It is conjectured that there is a threshold and q_{c} ness threshold of Gibbs measures in an infinite Δ-regular tree (namely a Bethe lattice), by Jonasson (2002).

Thresholds for randomly colouring a graph

Can we generate a uniform proper colouring at random efficiently? (closely related to approximately count the number of colourings)

- $\mathrm{q}>2 \Delta$: rapid mixing of Glauber dynamics by Jerrum (1995); Salas and Sokal (1997);
- $q>\frac{11}{6} \Delta$: rapid mixing of WSK dynamics by Vigoda (2000); improved by Chen and Moitra (2019); Delcourt, Perarnau, and Postle (2019) to $\mathrm{q}>\left(\frac{11}{6}-\varepsilon\right) \Delta$ for a small constant ε;
- $\mathrm{q}<\Delta \quad:$ NP-hard by Galanis, Štefankovič, and Vigoda (2015);

It is conjectured that there is a threshold and $q_{c}=\Delta+1$. This is the uniqueness threshold of Gihhs meacures in an infinite Λ-regular tree (namely a Bethe lattice), by Jonasson (2002).

Thresholds for randomly colouring a graph

Can we generate a uniform proper colouring at random efficiently? (closely related to approximately count the number of colourings)

- $\mathrm{q}>2 \Delta$: rapid mixing of Glauber dynamics by Jerrum (1995); Salas and Sokal (1997);
- $q>\frac{11}{6} \Delta$: rapid mixing of WSK dynamics by Vigoda (2000); improved by Chen and Moitra (2019); Delcourt, Perarnau, and Postle (2019) to $\mathrm{q}>\left(\frac{11}{6}-\varepsilon\right) \Delta$ for a small constant ε;
- $q<\Delta \quad$: NP-hard by Galanis, Štefankovič, and Vigoda (2015); (even q)

It is conjectured that there is a threshold and $q_{c}=\Delta+1$. This is the uniqueness threshold of Gibbs measures in an infinite Δ-regular tree (namely a Bethe lattice), by Jonasson (2002).

Thresholds for randomly colouring a graph

Can we generate a uniform proper colouring at random efficiently?
(closely related to approximately count the number of colourings)

- $\mathrm{q}>2 \Delta$: rapid mixing of Glauber dynamics by Jerrum (1995); Salas and Sokal (1997);
- $q>\frac{11}{6} \Delta$: rapid mixing of WSK dynamics by Vigoda (2000); improved by Chen and Moitra (2019); Delcourt, Perarnau, and Postle (2019) to $\mathrm{q}>\left(\frac{11}{6}-\varepsilon\right) \Delta$ for a small constant ε;
- $q<\Delta \quad$: NP-hard by Galanis, Štefankovič, and Vigoda (2015); (even q)

It is conjectured that there is a threshold and $q_{c}=\Delta+1$. This is the uniqueness threshold of Gibbs measures in an infinite Δ-regular tree (namely a Bethe lattice), by Jonasson (2002).

Frozen

Sometimes you just cannot let it go.

Deterministic counting of colourings

MCMC is not the only method to count.

Correlation decay:

- Gamarnik, Katz (2012): $q \geqslant \alpha \Delta+\beta$ for large β and $\alpha \approx 2.84$;
- Lu, Yin (2013): q $\geqslant \alpha \wedge+1$ for $\alpha \approx 2.58$

Zeros of the chromatic polynomial:

- Patel, Regts (2017): $q>\alpha \Delta$ for $\alpha \approx 6.91$;
- Bencs, Davies, Patel, Regis (2019+): q $\geqslant \mathrm{e} \boldsymbol{\wedge}+1$

Cannot match randomised algorithms, yet.

DETERMINISTIC COUNTING OF COLOURINGS

MCMC is not the only method to count.

Correlation decay:

- Gamarnik, Katz (2012): $q \geqslant \alpha \Delta+\beta$ for large β and $\alpha \approx 2.84$;
- Lu, Yin (2013): $q \geqslant \alpha \Delta+1$ for $\alpha \approx 2.58$.

Zeros of the chromatic polynomial:

- Patel, Regts (2017): $q>\alpha \Delta$ for $\alpha \approx 6.91$;
- Bencs, Davies, Patel, Regts (2019+): $q \geqslant e \Delta+1$

Cannot match randomised algorithms, yet.

Deterministic counting of colourings

MCMC is not the only method to count.

Correlation decay:

- Gamarnik, Katz (2012): $q \geqslant \alpha \Delta+\beta$ for large β and $\alpha \approx 2.84$;
- Lu, Yin (2013): $q \geqslant \alpha \Delta+1$ for $\alpha \approx 2.58$.

Zeros of the chromatic polynomial:

- Patel, Regts (2017): $q>\alpha \Delta$ for $\alpha \approx 6.91$;
- Bencs, Davies, Patel, Regts (2019+): $q \geqslant e \Delta+1$.

Cannot match randomised algorithms, yet.

Deterministic counting of colourings

MCMC is not the only method to count.

Correlation decay:

- Gamarnik, Katz (2012): $q \geqslant \alpha \Delta+\beta$ for large β and $\alpha \approx 2.84$;
- Lu, Yin (2013): $q \geqslant \alpha \Delta+1$ for $\alpha \approx 2.58$.

Zeros of the chromatic polynomial:

- Patel, Regts (2017): $q>\alpha \Delta$ for $\alpha \approx 6.91$;
- Bencs, Davies, Patel, Regts (2019+): $q \geqslant e \Delta+1$.

Cannot match randomised algorithms, yet.

What about hypergraphs?

A proper hypergraph colouring is one where no edge is monochromatic.

Previous results

For k-uniform hypergraphs, Bordewich, Dyer, and Karpinski (2006) show that Glauber dynamics is rapidly mixing if

$$
k \geqslant 4 \text { and } q>\Delta \quad \text { or } \quad k=3 \text { and } q>1.5 \Delta .
$$

However, Lovász local lemma implies the existence of a proper colouring if

Frieze and Melsted (2011) gave examples where $\mathrm{q} \ll \Delta$, and there exists a colouring so that no move is possible ("frozen").

Frieze and Anastos (2017) showed that Glauber dynamics still converges rapidly if the hypergraph is simple and $q>\max \left\{C_{k} \log n, 500 k^{3} \Delta^{1}\right.$

Previous results

For k-uniform hypergraphs, Bordewich, Dyer, and Karpinski (2006) show that Glauber dynamics is rapidly mixing if

$$
k \geqslant 4 \text { and } q>\Delta \quad \text { or } \quad k=3 \text { and } q>1.5 \Delta .
$$

However, Lovász local lemma implies the existence of a proper colouring if $q>(e k \Delta)^{1 /(k-1)}$.

Frieze and Melsted (2011) gave examples where $q \ll \Delta$, and there exists a colouring so that no move is possible ("frozen").

Frieze and Anastos (2017) showed that Glauber dynamics still converges rapidly if the hypergraph is simple and $q>\max \left\{C_{k} \log n, 500 k^{3} \Delta^{1 /(k-1)}\right\}$.

Previous results

For k-uniform hypergraphs, Bordewich, Dyer, and Karpinski (2006) show that Glauber dynamics is rapidly mixing if

$$
k \geqslant 4 \text { and } q>\Delta \quad \text { or } \quad k=3 \text { and } q>1.5 \Delta .
$$

However, Lovász local lemma implies the existence of a proper colouring if $q>(e k \Delta)^{1 /(k-1)}$.

Frieze and Melsted (2011) gave examples where $\mathrm{q} \ll \Delta$, and there exists a colouring so that no move is possible ("frozen").

Frieze and Anastos (2017) showed that Glauber dynamics still converges rapidly if the hypergraph is simple and $q>\max \left\{\mathrm{C}_{\mathrm{k}} \log n, 500 \mathrm{k}^{3} \Delta^{1 /(k-1)}\right\}$.

Previous results

For k-uniform hypergraphs, Bordewich, Dyer, and Karpinski (2006) show that Glauber dynamics is rapidly mixing if

$$
k \geqslant 4 \text { and } q>\Delta \quad \text { or } \quad k=3 \text { and } q>1.5 \Delta .
$$

However, Lovász local lemma implies the existence of a proper colouring if $q>(e k \Delta)^{1 /(k-1)}$.

Frieze and Melsted (2011) gave examples where $\mathrm{q} \ll \Delta$, and there exists a colouring so that no move is possible ("frozen").

Frieze and Anastos (2017) showed that Glauber dynamics still converges rapidly if the hypergraph is simple and $q>\max \left\{C_{k} \log n, 500 k^{3} \Delta^{1 /(k-1)}\right\}$. (Simple: every two hyperedges intersect in at most one vertex.)

Our results

Theorem

For $\Delta \geqslant 2, \mathrm{k} \geqslant 28$, and $\mathrm{q}>315 \Delta^{\frac{14}{\mathrm{k}-14}}$, there is an FPTAS for the number of q -colourings in k -uniform hypergraphs with maximum degree Δ.

Theorem

For $\Delta \geqslant 2, \mathrm{k} \geqslant 28$, and $\mathrm{q} \geqslant 798 \Delta$, there is also an almost-uniform
polynomial-time sampler:

Our approach is a modified version of Moitra (2017) based on the Lovász local lemma. The original approach in this setting would require an extra condition of the form $k>C \log \Delta$.

Our results

Theorem

For $\Delta \geqslant 2, \mathrm{k} \geqslant 28$, and $\mathrm{q}>315 \Delta \frac{14}{\frac{14}{k-14}}$, there is an FPTAS for the number of q -colourings in k -uniform hypergraphs with maximum degree Δ.

Theorem
For $\Delta \geqslant 2, \mathrm{k} \geqslant 28$, and $\mathrm{q}>798 \Delta^{\frac{16}{k-16 / 3}}$, there is also an almost-uniform polynomial-time sampler.

Our approach is a modified version of Moitra (2017) based on the Lovász local lemma. The original approach in this setting would require an extra condition of the form $k>C \log \Delta$.

Our results

Theorem

For $\Delta \geqslant 2, \mathrm{k} \geqslant 28$, and $\mathrm{q}>315 \Delta \frac{14}{\frac{14}{k-14}}$, there is an FPTAS for the number of q -colourings in k -uniform hypergraphs with maximum degree Δ.

Theorem
For $\Delta \geqslant 2, \mathrm{k} \geqslant 28$, and $\mathrm{q}>798 \Delta^{\frac{16}{k-16 / 3}}$, there is also an almost-uniform polynomial-time sampler.

Our approach is a modified version of Moitra (2017) based on the Lovász local lemma. The original approach in this setting would require an extra condition of the form $\mathrm{k}>\mathrm{C} \log \Delta$.

LovÁSZ LOCAL LEMMA

(AND HOW IT HELPS WITH APPROXIMATE COUNTING)

Lovász local Lemma

The original local lemma (Erdős and Lovász 75) was introduced to show the existence of 3colourings in hypergraphs.

then a proper colouring exists.
T.jpically ...e set $\sim\left(\right.$ e) $-\frac{1}{1+}$ It gives

Notice that $\operatorname{Pr}(e$ is monochromatic $)=\frac{q}{q^{k}}=\frac{1}{q^{k-1}}$

Lovász local Lemma

The original local lemma (Erdős and Lovász 75) was introduced to show the existence of 3colourings in hypergraphs.

Let $\mathrm{H}=(\mathrm{V}, \mathcal{E})$ be the hypergraph, and $\Gamma(e)$ be the set of hyperedges intersecting $e \in \mathcal{E}$. Then $|\Gamma(e)| \leqslant(\Delta-1) k$.

Theorem (Lovász '77)
If there exists an assignment $\mathrm{x}: \mathcal{\varepsilon} \rightarrow(0,1)$ such that for every $\mathrm{e} \in \mathcal{E}$ we have

then a proper colouring exists.
Tvpically we set $x(e)=\frac{1}{1 .}$. It , gives

Notice that $\operatorname{Pr}(e$ is monochromatic $)=\frac{q}{q^{k}}=\frac{1}{q^{k-1}}$

Lovász local Lemma

The original local lemma (Erdős and Lovász 75) was introduced to show the existence of 3colourings in hypergraphs.

Let $H=(V, \mathcal{E})$ be the hypergraph, and $\Gamma(e)$ be the set of hyperedges intersecting $\mathrm{e} \in \mathcal{E}$. Then $|\Gamma(\mathrm{e})| \leqslant(\Delta-1) k$.

Theorem (Lovász '77)
If there exists an assignment $x: \mathcal{E} \rightarrow(0,1)$ such that for every $e \in \mathcal{E}$ we have

$$
\begin{equation*}
\operatorname{Pr}(\mathrm{e} \text { is monochromatic }) \leqslant x(\mathrm{e}) \prod_{\mathrm{e}^{\prime} \in \Gamma(e)}\left(1-x\left(e^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

then a proper colouring exists.
Typically we set $x(e)=\frac{1}{k \Delta}$. It gives

Notice that $\operatorname{Pr}(e$ is monochromatic $)=\frac{q}{q^{k}}=\frac{1}{q^{k-1}}$
Thus $\mathrm{q}^{\text {² }}{ }^{1} \geqslant$ ek Δ, or equivalently $\mathrm{q} \geqslant(\text { ek } \Delta)^{1} \mathrm{~T}$ suffices.

Lovász local lemma

The original local lemma (Erdős and Lovász 75) was introduced to show the existence of 3colourings in hypergraphs.

Let $\mathrm{H}=(\mathrm{V}, \mathcal{E})$ be the hypergraph, and $\Gamma(e)$ be the set of hyperedges intersecting $e \in \mathcal{E}$. Then $|\Gamma(e)| \leqslant(\Delta-1) k$.

Theorem (Lovász '77)
If there exists an assignment $x: \mathcal{E} \rightarrow(0,1)$ such that for every $e \in \mathcal{E}$ we have

$$
\begin{equation*}
\operatorname{Pr}(e \text { is monochromatic }) \leqslant x(e) \prod_{e^{\prime} \in \Gamma(e)}\left(1-x\left(e^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

then a proper colouring exists.
Typically we set $x(e)=\frac{1}{k \Delta}$. It gives

$$
\begin{equation*}
x(e) \prod_{e^{\prime} \in \Gamma(e)}\left(1-x\left(e^{\prime}\right)\right) \geqslant \frac{1}{k \Delta}\left(1-\frac{1}{k \Delta}\right)^{k(\Delta-1)} \geqslant \frac{1}{e k \Delta} . \tag{2}
\end{equation*}
$$

Notice that $\operatorname{Pr}(e$ is monochromatic $)=\frac{q}{q^{k}}=\frac{1}{q^{k-1}}$

Lovász local lemma

The original local lemma (Erdős and Lovász 75) was introduced to show the existence of 3colourings in hypergraphs.

Let $\mathrm{H}=(\mathrm{V}, \mathcal{E})$ be the hypergraph, and $\Gamma(e)$ be the set of hyperedges intersecting $e \in \mathcal{E}$. Then $|\Gamma(e)| \leqslant(\Delta-1) k$.

Theorem (Lovász '77)
If there exists an assignment $x: \mathcal{E} \rightarrow(0,1)$ such that for every $e \in \mathcal{E}$ we have

$$
\begin{equation*}
\operatorname{Pr}(e \text { is monochromatic }) \leqslant x(e) \prod_{e^{\prime} \in \Gamma(e)}\left(1-x\left(e^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

then a proper colouring exists.
Typically we set $x(e)=\frac{1}{k \Delta}$. It gives

$$
\begin{equation*}
x(e) \prod_{e^{\prime} \in \Gamma(e)}\left(1-x\left(e^{\prime}\right)\right) \geqslant \frac{1}{k \Delta}\left(1-\frac{1}{k \Delta}\right)^{k(\Delta-1)} \geqslant \frac{1}{e k \Delta} . \tag{2}
\end{equation*}
$$

Notice that $\operatorname{Pr}(e$ is monochromatic $)=\frac{q}{q^{k}}=\frac{1}{q^{k-1}}$.
Thus $\mathrm{q}^{\mathrm{k}-1} \geqslant e^{k} \Delta$, or equivalently $\mathrm{q} \geqslant\left(e^{k} \Delta\right)^{k-1}$ suffices.

Lovász local lemma

The original local lemma (Erdős and Lovász 75) was introduced to show the existence of 3colourings in hypergraphs.

Let $\mathrm{H}=(\mathrm{V}, \mathcal{E})$ be the hypergraph, and $\Gamma(e)$ be the set of hyperedges intersecting $e \in \mathcal{E}$. Then $|\Gamma(e)| \leqslant(\Delta-1) k$.

Theorem (Lovász '77)
If there exists an assignment $x: \mathcal{E} \rightarrow(0,1)$ such that for every $e \in \mathcal{E}$ we have

$$
\begin{equation*}
\operatorname{Pr}(e \text { is monochromatic }) \leqslant x(e) \prod_{e^{\prime} \in \Gamma(e)}\left(1-x\left(e^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

then a proper colouring exists.
Typically we set $x(e)=\frac{1}{k \Delta}$. It gives

$$
\begin{equation*}
x(e) \prod_{e^{\prime} \in \Gamma(e)}\left(1-x\left(e^{\prime}\right)\right) \geqslant \frac{1}{k \Delta}\left(1-\frac{1}{k \Delta}\right)^{k(\Delta-1)} \geqslant \frac{1}{e k \Delta} . \tag{2}
\end{equation*}
$$

Notice that $\operatorname{Pr}(e$ is monochromatic $)=\frac{q}{q^{k}}=\frac{1}{q^{k-1}}$.
Thus $\mathrm{q}^{\mathrm{k}-1} \geqslant e \mathrm{k} \Delta$, or equivalently $\mathrm{q} \geqslant(e k \Delta)^{\frac{1}{k-1}}$ suffices.

Reducing TO COMPUTING MARGINAL PROBABILITIES

For approximate counting, we use the (algorithmic) local lemma to find a partial colouring τ so that every hyperedge is satisfied by the first k_{1} vertices.
(This will succeed as long as $q>\left(e k_{1} \Delta\right)^{\frac{1}{k_{1}-1}} \cdot k_{1}$ will eventually be set to $\frac{k}{14}$.)

Then we compute the probability of τ by "pinning" vertices one by one.
Let $\mathrm{U}=\left\{u_{1}, \ldots, u_{r}\right\}$ be the support of τ, and $\mu(\cdot)$ be the Gibbs (uniform) distribution on all proper colourings.

$$
\frac{q^{n-r}}{|\mathcal{C}|}=\operatorname{Pr}_{\sigma \sim \mu}(\sigma \models \tau)
$$

Reducing TO COMPUTING MARGINAL PROBABILITIES

For approximate counting, we use the (algorithmic) local lemma to find a partial colouring τ so that every hyperedge is satisfied by the first k_{1} vertices.
(This will succeed as long as $q>\left(e k_{1} \Delta\right)^{\frac{1}{k_{1}-1}} \cdot k_{1}$ will eventually be set to $\frac{k}{14}$.)

Then we compute the probability of τ by "pinning" vertices one by one.
Let $\mathrm{U}=\left\{u_{1}, \ldots, u_{r}\right\}$ be the support of τ, and $\mu(\cdot)$ be the Gibbs (uniform) distribution on all proper colourings.

$$
\begin{aligned}
\frac{\mathrm{q}^{\mathrm{n}-\mathrm{r}}}{|\mathcal{C}|} & =\underset{\sigma \sim \mu}{\operatorname{Pr}}(\sigma \models \tau) \\
& =\underset{\sigma \sim \mu}{\operatorname{Pr}}(\forall u \in \mathrm{u}, \sigma(u)=\tau(u))
\end{aligned}
$$

Reducing TO COMPUTING MARGINAL PROBABILITIES

For approximate counting, we use the (algorithmic) local lemma to find a partial colouring τ so that every hyperedge is satisfied by the first k_{1} vertices.
(This will succeed as long as $q>\left(e k_{1} \Delta\right)^{\frac{1}{k_{1}-1}} \cdot k_{1}$ will eventually be set to $\frac{k}{14}$.)

Then we compute the probability of τ by "pinning" vertices one by one.
Let $\mathrm{U}=\left\{u_{1}, \ldots, u_{r}\right\}$ be the support of τ, and $\mu(\cdot)$ be the Gibbs (uniform) distribution on all proper colourings.

$$
\begin{aligned}
\frac{\mathrm{q}^{n-r}}{|\mathcal{C}|} & =\underset{\sigma \sim \mu}{\operatorname{Pr}}(\sigma \models \tau) \\
& =\underset{\sigma \sim \mu}{\operatorname{Pr}}(\forall u \in \mathrm{u}, \sigma(u)=\tau(u)) \\
& =\prod_{i=1}^{r} \underset{\sigma \sim \mu}{\operatorname{Pr}}\left(\sigma\left(u_{i}\right)=\tau\left(u_{i}\right) \mid \forall j<i, \sigma\left(u_{j}\right)=\tau\left(u_{j}\right)\right)
\end{aligned}
$$

Reducing TO COMPUTING MARGINAL PROBABILITIES

For approximate counting, we use the (algorithmic) local lemma to find a partial colouring τ so that every hyperedge is satisfied by the first k_{1} vertices.
(This will succeed as long as $q>\left(e k_{1} \Delta\right)^{\frac{1}{k_{1}-1}} \cdot k_{1}$ will eventually be set to $\frac{k}{14}$.)

Then we compute the probability of τ by "pinning" vertices one by one.
Let $\mathrm{U}=\left\{\mathfrak{u}_{1}, \ldots, \mathfrak{u}_{r}\right\}$ be the support of τ, and $\mu(\cdot)$ be the Gibbs (uniform) distribution on all proper colourings.

$$
\begin{aligned}
\frac{\mathrm{q}^{n-r}}{|\mathcal{C}|} & =\underset{\sigma \sim \mu}{\operatorname{Pr}}(\sigma \models \tau) \\
& =\underset{\sigma \sim \mu}{\operatorname{Pr}}(\forall u \in \mathrm{u}, \sigma(u)=\tau(u)) \\
& =\prod_{i=1}^{r} \operatorname{Pr}_{\sigma \sim \mu}\left(\sigma\left(u_{i}\right)=\tau\left(u_{i}\right) \mid \forall j<i, \sigma\left(u_{j}\right)=\tau\left(u_{j}\right)\right)
\end{aligned}
$$

Thus the key is to estimate marginal probabilities under partial colourings (up to $1 \pm \frac{\varepsilon}{n}$ error), where at least $k-k_{1}$ vertices are uncoloured in every edge.

Local lemma controls the conditional distribution

Let \mathcal{C} be the set of all proper colourings.
Let $\mu(\cdot)$ be the Gibbs (uniform) distribution on all proper colourings (namely the product distribution conditioned on no monochromatic edge).

The local lemma also gives an upper bound for any event under $\mu(\cdot)$.
Theorem (Haeupler, Saha, and Srinivasan '11)
If LLL condition (1) holds for every $\mathrm{e} \in \mathcal{E}$, then for any event B, it holds that

Local lemma controls the conditional distribution

Let \mathcal{C} be the set of all proper colourings.
Let $\mu(\cdot)$ be the Gibbs (uniform) distribution on all proper colourings
(namely the product distribution conditioned on no monochromatic edge).

The local lemma also gives an upper bound for any event under $\mu(\cdot)$.

Theorem (Haeupler, Saha, and Srinivasan '11)
If LLL condition (1) holds for every $\mathrm{e} \in \mathcal{E}$, then for any event B , it holds that

$$
\mu(B) \leqslant \operatorname{Pr}(B) \prod_{e \in \Gamma(B)}(1-x(e))^{-1} .
$$

Local Uniformity

Lemma

If $\forall \mathrm{e} \in \mathcal{E}, \mathrm{k}^{\prime} \leqslant|\mathrm{e}| \leqslant \mathrm{k}, \mathrm{t} \geqslant \mathrm{k}$ and $\mathrm{q} \geqslant(\mathrm{et} \Delta)^{\frac{1}{\mathrm{k}^{\prime}-1}}$, then for any $v \in \mathrm{~V}$ and any colour $c \in[q]$,

$$
\frac{1}{q}\left(1-\frac{1}{t}\right) \leqslant \underset{\sigma \sim \mu}{\operatorname{Pr}}(\sigma(v)=c) \leqslant \frac{1}{q}\left(1+\frac{4}{t}\right)
$$

The upper bound comes from a direct application.

The lower bound is obtained by giving upper bounds for "blocking cases"

Local Uniformity

Lemma

If $\forall \mathrm{e} \in \mathcal{E}, \mathrm{k}^{\prime} \leqslant|\mathrm{e}| \leqslant \mathrm{k}, \mathrm{t} \geqslant \mathrm{k}$ and $\mathrm{q} \geqslant(\mathrm{et} \Delta)^{\frac{1}{\mathrm{k}^{\prime}-1}}$, then for any $v \in \mathrm{~V}$ and any colour $c \in[q]$,

$$
\frac{1}{q}\left(1-\frac{1}{t}\right) \leqslant \underset{\sigma \sim \mu}{\operatorname{Pr}}(\sigma(v)=c) \leqslant \frac{1}{q}\left(1+\frac{4}{t}\right)
$$

The upper bound comes from a direct application.

The lower bound is obtained by giving upper bounds for "blocking cases".

Local Uniformity

Lemma

If $\forall \mathrm{e} \in \mathcal{E}, \mathrm{k}^{\prime} \leqslant|\mathrm{e}| \leqslant \mathrm{k}, \mathrm{t} \geqslant \mathrm{k}$ and $\mathrm{q} \geqslant(\mathrm{et} \Delta)^{\frac{1}{\mathrm{k}^{\prime}-1}}$, then for any $v \in \mathrm{~V}$ and any colour $c \in[q]$,

$$
\frac{1}{q}\left(1-\frac{1}{t}\right) \leqslant \operatorname{Pr}_{\sigma \sim \mu}(\sigma(v)=c) \leqslant \frac{1}{q}\left(1+\frac{4}{t}\right)
$$

We use this lemma with $\mathrm{t} \approx \Delta^{\mathrm{C}}$ at various places with various C . Recall that our assumption is of the form $q \geqslant C_{1} \Delta^{\frac{C_{2}}{k-C_{3}}}$.

Under μ, all vertices are very close to uniform.
We use this lemma when some vertices are alres dy coloured, namely for μ conditioned on a partial colouring.
The quantity k^{\prime} is the minimum number of uncoloured vertices among all unsatisfied hvperedges (namelv $k^{\prime}=k-k_{1}$).

LOCAL UNIFORMITY

Lemma

If $\forall \mathrm{e} \in \mathcal{E}, \mathrm{k}^{\prime} \leqslant|\mathrm{e}| \leqslant \mathrm{k}, \mathrm{t} \geqslant \mathrm{k}$ and $\mathrm{q} \geqslant(\mathrm{et} \Delta)^{\frac{1}{\mathrm{k}^{\prime}-1}}$, then for any $v \in \mathrm{~V}$ and any colour $c \in[q]$,

$$
\frac{1}{q}\left(1-\frac{1}{t}\right) \leqslant \underset{\sigma \sim \mu}{\operatorname{Pr}}(\sigma(v)=c) \leqslant \frac{1}{q}\left(1+\frac{4}{t}\right) .
$$

We use this lemma with $\mathrm{t} \approx \Delta^{\mathrm{C}}$ at various places with various C . Recall that our assumption is of the form $q \geqslant C_{1} \Delta^{\frac{C_{2}}{k-C_{3}}}$.

Under μ, all vertices are very close to uniform.
We use this lemma when some vertices are already coloured, namely for μ conditioned on a partial colouring.
The quantity k^{\prime} is the minimum rumber of uncoloured vertices among all unsatisfied hyperedges (namely $k^{\prime}=k-k_{1}$).

Local Uniformity

Lemma

If $\forall \mathrm{e} \in \mathcal{E}, \mathrm{k}^{\prime} \leqslant|\mathrm{e}| \leqslant \mathrm{k}, \mathrm{t} \geqslant \mathrm{k}$ and $\mathrm{q} \geqslant(\mathrm{et} \Delta)^{\frac{1}{\mathrm{k}^{\prime}-1}}$, then for any $v \in \mathrm{~V}$ and any colour $c \in[q]$,

$$
\frac{1}{q}\left(1-\frac{1}{t}\right) \leqslant \operatorname{Pr}_{\sigma \sim \mu}(\sigma(v)=c) \leqslant \frac{1}{q}\left(1+\frac{4}{t}\right)
$$

We use this lemma with $\mathrm{t} \approx \Delta^{\mathrm{C}}$ at various places with various C . Recall that our assumption is of the form $q \geqslant C_{1} \Delta^{\frac{C_{2}}{k-C_{3}}}$.

Under μ, all vertices are uniform.
We use this lemma when some vertices are already coloured, namely for μ conditioned on a partial colouring.
The quantity k^{\prime} is the minimum number of uncoloured vertices among all unsatisfied hyperedges (namely $\mathrm{k}^{\prime}=\mathrm{k}-\mathrm{k}_{1}$).

Local Uniformity

Lemma

If $\forall \mathrm{e} \in \mathcal{E}, \mathrm{k}^{\prime} \leqslant|\mathrm{e}| \leqslant \mathrm{k}, \mathrm{t} \geqslant \mathrm{k}$ and $\mathrm{q} \geqslant(\mathrm{et} \Delta)^{\frac{1}{\mathrm{k}^{\prime}-1}}$, then for any $v \in \mathrm{~V}$ and any colour $c \in[q]$,

$$
\frac{1}{q}\left(1-\frac{1}{t}\right) \leqslant \operatorname{Pr}_{\sigma \sim \mu}(\sigma(v)=c) \leqslant \frac{1}{q}\left(1+\frac{4}{t}\right)
$$

We use this lemma with $\mathrm{t} \approx \Delta^{\mathrm{C}}$ at various places with various C . Recall that our assumption is of the form $q \geqslant C_{1} \Delta^{\frac{C_{2}}{k-C_{3}}}$.

Under μ, all vertices are uniform.
We use this lemma when some vertices are already coloured, namely for μ conditioned on a partial colouring.
The quantity k^{\prime} is the minimum number of uncoloured vertices among all unsatisfied hyperedges (namely $\mathrm{k}^{\prime}=\mathrm{k}-\mathrm{k}_{1}$).

A good start, but not enough. The goal is $\left(1 \pm \frac{\varepsilon}{n}\right)$-approximation of the marginals.

Coupling

Say we want to compute the marginal probability of v.
Let \mathcal{C}_{i} be the set of colourings where v is coloured i, and μ_{i} be uniform over $\mathcal{C}_{\mathfrak{i}}$. We want to couple μ_{1} and μ_{2}.

1. For any hyperedge e intersecting both V_{1} and V_{2}, let u be its first vertex. Couple u maximally assuming its marginal probabilities are known.
2. Remove all hyperedges that are satisfied in both copies.
3. If an edge has k_{2} vertices coloured, put all remaining vertices in V_{1} (failed) and remove the edge.

Stop: all hyperedges intersecting V_{1} are removed.

Coupling

Say we want to compute the marginal probability of v.
Let \mathcal{C}_{i} be the set of colourings where v is coloured i, and μ_{i} be uniform over \mathcal{C}_{i}. We want to couple μ_{1} and μ_{2}.

Start: $\mathrm{V}_{1}=\{v\}, \mathrm{V}_{\mathrm{col}}=\{v\}$. Maintain $\mathrm{V}_{2}=\mathrm{V} \backslash \mathrm{V}_{1}$.

Body:

1. For any hyperedge e intersecting both V_{1} and V_{2}, let u be its first vertex. Couple u maximally assuming its marginal probabilities are known.
2. Remove all hyperedges that are satisfied in both copies.
3. If an edge has k_{2} vertices coloured, put all remaining vertices in V_{1} (failed) and remove the edge.

Stop: all hyperedges intersecting V_{1} are removed.
(The constant k_{2} is eventually set to $\frac{3 k}{7}$ for approximate counting.)

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.
If $q>C \Delta^{, \quad-K_{2}}$, then the coupling stops in $O(\log n)$ steps with probability $1-O\left(\frac{1}{n^{c}}\right)$
Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.
If $q>C \Delta^{, \pi_{2}}$, then the coupting stops in $O(\log n)^{*}$ steps with probability $1-O\left(\frac{1}{n^{c}}\right)$
Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.
If $q>C \Delta^{, \pi_{2}}$, then the coupting stops in $O(\log n)^{*}$ steps with probability $1-O\left(\frac{1}{n^{c}}\right)$
Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.
If $\mathrm{q}>\mathrm{C} \triangle \overline{\mathbb{R}^{\prime}-k_{2}}$, then the coupling stops in $\mathrm{O}(\log n)$ steps with probability $1-O\left(\frac{1}{n^{c}}\right)$
Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.
If $q>C \triangle^{4^{\prime}-\Re_{2}}$, then the coupting stops in $O(\log n)^{\circ}$ steps with probability $1-\bigcirc\left(\frac{1}{n c}\right)$
Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.
If $\mathrm{q}>\mathrm{C} \triangle \overline{\mathrm{R}^{\prime}-\mathrm{k}_{2}}$, then the coupling stops in $\mathrm{O}(\log n)$ steps with probability $1-O\left(\frac{1}{n^{c}}\right)$
Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.
If $\mathrm{q}>\mathrm{C} \triangle \overline{\mathrm{R}^{\prime}-\mathrm{k}_{2}}$, then the coupling stops in $\mathrm{O}(\log n)$ steps with probability $1-O\left(\frac{1}{n^{c}}\right)$
Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.

Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.

Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.

Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.

Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.

Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.

Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\text {col }}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.
If $\mathrm{q}>\mathrm{C} \Delta^{\frac{3}{\mathrm{k}^{\prime}-\mathrm{k}_{2}}}$, then the coupling stops in $\mathrm{O}(\log n)$ steps with probability $1-\mathrm{O}\left(\frac{1}{n^{\mathrm{c}}}\right)$.
Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling - An example

V_{1} : descrepency. $\quad \mathrm{V}_{\mathrm{col}}$: coloured. $\quad \mathrm{V}_{2}:=\mathrm{V} \backslash \mathrm{V}_{1}$.
Stop: all hyperedges intersecting V_{1} are removed.

At any time, there are at least $k^{\prime}-k_{2}$ empty vertices in any hyperedge.
If $\mathrm{q}>\mathrm{C} \Delta^{\frac{3}{\mathrm{k}^{\prime}-\mathrm{k}_{2}}}$, then the coupling stops in $\mathrm{O}(\log n)$ steps with probability $1-\mathrm{O}\left(\frac{1}{n^{\mathrm{c}}}\right)$.
Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.

Coupling tree

Coupling tree \mathcal{T} : each node is a pair of partial colourings (x, y).
The children of (x, y) are all q^{2} ways to extend them to the next vertex.

LINEAR PROGRAM

We cannot really run the coupling. Instead, we set up a linear program. The variables are to mimic:

$$
\begin{aligned}
& \mathbf{p}_{x, y}^{\chi}=\frac{\left|\mathfrak{e}_{1}\right|}{\left|\mathfrak{C}_{\chi}\right|} \cdot \mu_{\mathrm{cp}}(x, y), \\
& \mathbf{p}_{x, y}^{y}=\frac{\left|\mathfrak{C}_{2}\right|}{\left|\mathfrak{C}_{y}\right|} \cdot \mu_{\mathrm{cp}}(x, y),
\end{aligned}
$$

where \mathcal{C}_{i} is the set of colourings s.t. $v \leftarrow \mathfrak{i}$ for $\mathfrak{i}=1,2$, and $\mathfrak{C}_{x}\left(\right.$ or $\left.\mathcal{C}_{y}\right)$ is the set of colourings consistent with χ (or y).

Note that $\sum_{y} p_{x, y}^{x}=1$ and thus $0 \leqslant p_{x, y}^{x}, p_{x, y}^{y} \leqslant 1$
We can write down linear constraints for these variables.

LINEAR PROGRAM

We cannot really run the coupling. Instead, we set up a linear program. The variables are to mimic:

$$
\begin{aligned}
& \mathbf{p}_{x, y}^{\chi}=\frac{\left|\mathfrak{e}_{1}\right|}{\left|\mathfrak{C}_{x}\right|} \cdot \mu_{\mathrm{cp}}(x, y), \\
& \mathbf{p}_{x, y}^{y}=\frac{\left|\mathfrak{C}_{2}\right|}{\left|\mathfrak{C}_{y}\right|} \cdot \mu_{\mathrm{cp}}(x, y),
\end{aligned}
$$

where \mathcal{C}_{i} is the set of colourings s.t. $v \leftarrow \mathfrak{i}$ for $\mathfrak{i}=1,2$, and $\mathcal{C}_{x}\left(\right.$ or $\left.\mathcal{C}_{y}\right)$ is the set of colourings consistent with χ (or y).

Note that $\sum_{y} p_{x, y}^{x}=1$ and thus $0 \leqslant p_{x, y}^{x}, p_{x, y}^{y} \leqslant 1$.
We can write down linear constraints for these variables.

LINEAR PROGRAM

We cannot really run the coupling. Instead, we set up a linear program. The variables are to mimic:

$$
\begin{aligned}
& \mathbf{p}_{x, y}^{\chi}=\frac{\left|\mathfrak{e}_{1}\right|}{\left|\mathfrak{C}_{\chi}\right|} \cdot \mu_{\mathrm{cp}}(x, y), \\
& \mathbf{p}_{x, y}^{y}=\frac{\left|\mathfrak{C}_{2}\right|}{\left|\mathfrak{C}_{y}\right|} \cdot \mu_{\mathrm{cp}}(x, y),
\end{aligned}
$$

where \mathcal{C}_{i} is the set of colourings s.t. $v \leftarrow \mathfrak{i}$ for $\mathfrak{i}=1,2$, and $\mathcal{C}_{x}\left(\right.$ or $\left.\mathcal{C}_{y}\right)$ is the set of colourings consistent with χ (or y).

Note that $\sum_{y} p_{x, y}^{x}=1$ and thus $0 \leqslant p_{x, y}^{x}, p_{x, y}^{y} \leqslant 1$.
We can write down linear constraints for these variables.

Constraints 1

From the definition: $\frac{\left|\mathcal{C}_{1}\right|}{\left|\mathcal{C}_{2}\right|}=\frac{p_{x, y}^{x}}{p_{x}^{y}, y} \cdot \frac{\left|\mathcal{C}_{x}\right|}{\left|\mathcal{C}_{y}\right|}$.

If (x, y) is a leaf in \mathcal{T}, then we can compute $\frac{\left|\mathcal{C}_{x}\right|}{\left|\mathcal{C}_{y}\right|}$ in time $\exp \left(\left|V_{1} \backslash V_{\text {col }}\right|\right)$.

Constraints 1: For every leaf (x, y), we have the constraints:

Here \underline{r} and \bar{r} are our guessed lower and upper bounds for $\frac{\left|\mathcal{C}_{1}\right|}{\left|\mathcal{C}_{2}\right|}$.

Constraints 1

From the definition: $\frac{\left|\mathfrak{C}_{1}\right|}{\left|\mathcal{C}_{2}\right|}=\frac{p_{x}^{x}, y}{p_{x, y}^{y}} \cdot \frac{\left|\mathfrak{C}_{x}\right|}{\left|\mathfrak{C}_{y}\right|}$.

If (x, y) is a leaf in \mathcal{T}, then we can compute $\frac{\left|\mathcal{C}_{x}\right|}{\left|\mathcal{C}_{y}\right|}$ in time $\exp \left(\left|\mathrm{V}_{1} \backslash \mathrm{~V}_{\mathrm{col}}\right|\right)$.

Constraints 1: For every leaf (x, y), we have the constraints:

Here \underline{r} and \bar{r} are our guessed lower and upper bounds for $\frac{\left|\mathcal{C}_{1}\right|}{\left|\mathcal{C}_{2}\right|}$.

Constraints 1

From the definition: $\frac{\left|\mathfrak{C}_{1}\right|}{\left|\mathcal{C}_{2}\right|}=\frac{p_{x}^{x}, y}{p_{x, y}^{y}} \cdot \frac{\left|\mathfrak{C}_{x}\right|}{\left|\mathfrak{C}_{y}\right|}$.

If (x, y) is a leaf in \mathcal{T}, then we can compute $\frac{\left|\mathcal{C}_{x}\right|}{\left|\mathcal{C}_{y}\right|}$ in time $\exp \left(\left|\mathrm{V}_{1} \backslash \mathrm{~V}_{\mathrm{col}}\right|\right)$.

Constraints 1: For every leaf (x, y), we have the constraints:

$$
\underline{r} \leqslant \frac{p_{x, y}^{x}}{p_{x, y}^{y}} \cdot \frac{\left|\mathcal{C}_{x}\right|}{\left|\mathcal{C}_{y}\right|} \leqslant \bar{r}
$$

Here \underline{r} and \bar{r} are our guessed lower and upper bounds for $\frac{\left|\mathcal{C}_{1}\right|}{\left|\mathcal{C}_{2}\right|}$.

Constraints 2

Constraints 2: For the root $\left(x_{0}, y_{0}\right) \in \mathcal{T}$, we have

$$
p_{x_{0}, y_{0}}^{x_{0}}=p_{x_{0}, y_{0}}^{y_{0}^{o}}=1 .
$$

Moreover, for every non-leaf $(x, y) \in \mathcal{T}$, let u be the next vertex to couple. For every $\mathrm{c} \in[q]$,

$$
\begin{aligned}
& \sum_{c^{\prime} \in[q]} p_{x^{u \leftarrow c}, y^{u \leftarrow c^{\prime}}}^{x^{u \leftarrow c}}=\frac{\left|\mathcal{C}_{1}\right|}{\left|\mathcal{C}_{x^{u \leftarrow c}}\right|} \cdot \frac{\left|\mathcal{C}_{x^{u \leftarrow c}}\right|}{\left|\mathcal{C}_{x}\right|} \cdot \mu_{c p}(x, y)=p_{x, y}^{x} ; \\
& \sum_{c^{\prime} \in[q]} p_{x^{u \leftarrow c^{\prime}}, y^{u \leftarrow c}}^{y^{u \leftarrow c}}=\frac{\left|\mathcal{C}_{2}\right|}{\left|\mathcal{C}_{y^{u \leftarrow c}}\right|} \cdot \frac{\left|\mathcal{C}_{y^{u \leftarrow c}}\right|}{\left|\mathcal{C}_{y}\right|} \cdot \mu_{c p}(x, y)=p_{x, y}^{y} .
\end{aligned}
$$

Recover the marginals

Due to Constraints 2, a simple induction shows that for every $\sigma \in \mathcal{C}_{1}$,

$$
\sum_{(x, y) \in \mathcal{L}(\mathcal{T}): \sigma \mid=x} p_{x, y}^{x}=1
$$

Rewrite $\left|\mathcal{C}_{1}\right|$:

$$
\begin{aligned}
\left|\mathcal{C}_{1}\right| & =\sum_{\sigma \in \mathcal{C}_{1}} 1=\sum_{\sigma \in \mathcal{C}_{1}} \sum_{(x, y) \in \mathcal{L}(\mathcal{T}): \sigma \mid=x} p_{x, y}^{x} \\
& =\sum_{(x, y) \in \mathcal{L}(\mathcal{T})} \sum_{\sigma \mid=x} p_{x, y}^{x} \\
& =\sum_{(x, y) \in \mathcal{L}(\mathcal{T})} p_{x, y}^{x}\left|C_{x}\right|
\end{aligned}
$$

Similar equalities hold on the y side, implying:

$$
\frac{\left|\mathcal{C}_{1}\right|}{\left|\mathcal{C}_{2}\right|}=\frac{\sum_{(x, y) \in \mathcal{L}(\mathcal{T})} p_{x, y}^{x}\left|C_{x}\right|}{\sum_{(x, y) \in \mathcal{L}(\mathcal{T})} p_{x, y}^{y}\left|C_{y}\right|}
$$

Recover the marginals (cont.)

$$
\frac{\left|\mathfrak{C}_{1}\right|}{\left|\mathfrak{C}_{2}\right|}=\frac{\sum_{(x, y) \in \mathcal{L}(\mathcal{T})} p_{x, y}^{x}\left|C_{x}\right|}{\sum_{(x, y) \in \mathcal{L}(\mathcal{T})} p_{x, y}^{y}\left|C_{y}\right|}
$$

Recall Constraints 1. For any $(x, y) \in \mathcal{L}(\mathcal{T})$,

$$
\underline{r} \leqslant \frac{p_{x, y}^{x}\left|C_{x}\right|}{p_{x, y}^{y}\left|C_{y}\right|} \leqslant \bar{r} .
$$

It implies that

$$
\underline{\mathrm{r}} \leqslant \frac{\left|\mathfrak{C}_{1}\right|}{\left|\mathfrak{C}_{2}\right|} \leqslant \overline{\mathrm{r}} .
$$

Constraints 3

Unfortunately, the whole linear program is exponentially large. The saving grace is that the coupling stops at $O(\log n)$ size whp.

If we truncate at $O(\log n)$ levels, the error should be small, due to local uniformity.

Constraints 3: For every $\mathrm{c}, \mathrm{c}^{\prime} \in[\mathrm{q}]$ that $\mathrm{c} \neq \mathrm{c}^{\prime}$:

The quantity t will eventually be set as $C(k \Delta)^{6}$

Constraints 3

Unfortunately, the whole linear program is exponentially large. The saving grace is that the coupling stops at $\mathrm{O}(\log n)$ size whp.

If we truncate at $\mathrm{O}(\log n)$ levels, the error should be small, due to local uniformity.

Constraints 3: For every $c, c^{\prime} \in[q]$ that $c \neq c^{\prime}$:

$$
\begin{aligned}
& p_{x^{u \leftarrow c}, y^{u \leftarrow c^{\prime}}}^{x^{u \leftarrow c}} \leqslant \frac{5}{t} \cdot p_{x, y}^{x} ; \\
& p_{x^{u \leftarrow c}, y^{u \leftarrow c^{\prime}}}^{y^{u \leftarrow c^{\prime}}} \leqslant \frac{5}{t} \cdot p_{x, y}^{y} .
\end{aligned}
$$

The quantity t will eventually be set as $C(k \Delta)^{6}$.

Truncation error

Recall that

$$
\left|\mathcal{C}_{1}\right|=\sum_{\sigma \in \mathcal{C}_{1}} \sum_{(x, y) \in \mathcal{L}(\mathcal{T}): \sigma \models x} p_{x, y}^{x} .
$$

The truncation error from a particular $\sigma \in \mathcal{C}_{1}$ comes from conditioned on outputing σ, the coupling lasts too long.

Such "bad" colourings do exist (all early vertices are monochromatic).

We prove two things:

1. The fraction of "bad" colourings is small;
2. For every "good" colouring, the truncation error is small because of Constraints 3 .

Truncation error

Recall that

$$
\left|\mathfrak{C}_{1}\right|=\sum_{\sigma \in \mathbb{E}_{1}} \sum_{(x, y) \in \mathcal{L}(\mathcal{T}): \sigma \mid=x} p_{x, y}^{x} .
$$

The truncation error from a particular $\sigma \in \mathcal{C}_{1}$ comes from conditioned on outputing σ, the coupling lasts too long.

Such "bad" colourings do exist (all early vertices are monochromatic).

We prove two things:

1. The fraction of "bad" colourings is small;
2. For every "good" colouring, the truncation error is small because of Constraints 3 .

Truncation error

Recall that

$$
\left|\mathcal{C}_{1}\right|=\sum_{\sigma \in \mathcal{C}_{1}} \sum_{(x, y) \in \mathcal{L}(\mathcal{T}): \sigma \models x} p_{x, y}^{x}
$$

The truncation error from a particular $\sigma \in \mathcal{C}_{1}$ comes from conditioned on outputing σ, the coupling lasts too long.

Such "bad" colourings do exist (all early vertices are monochromatic).

We prove two things:

1. The fraction of "bad" colourings is small;
2. For every "good" colouring, the truncation error is small because of Constraints 3 .

Bound the error

A "bad" colouring must fail many hyperedges during the coupling, but we couple k_{2} vertices of every hyperedge.

Thus its fraction is small if k_{2} is sufficiently large.

The error allowed by Constraints 3 is controlled by the number of empty vertices in the coupling process, namely the quantity $k^{\prime}-k_{2}$.

The larger $k^{\prime}-k_{2}$, the more uniform all vertices are and the smaller coupling
errors.

We solve an optimization problem to get the best k_{2} balancing the two points above.

Bound the error

A "bad" colouring must fail many hyperedges during the coupling, but we couple k_{2} vertices of every hyperedge.

Thus its fraction is small if k_{2} is sufficiently large.

The error allowed by Constraints $\mathbf{3}$ is controlled by the number of empty vertices in the coupling process, namely the quantity $k^{\prime}-k_{2}$.

The larger $k^{\prime}-k_{2}$, the more uniform all vertices are and the smaller coupling errors.

We solve an optimization problem to get the best k_{2} balancing the two points above.

BOUND THE ERROR

A "bad" colouring must fail many hyperedges during the coupling, but we couple k_{2} vertices of every hyperedge.

Thus its fraction is small if k_{2} is sufficiently large.

The error allowed by Constraints 3 is controlled by the number of empty vertices in the coupling process, namely the quantity $k^{\prime}-k_{2}$.

The larger $k^{\prime}-k_{2}$, the more uniform all vertices are and the smaller coupling errors.

We solve an optimization problem to get the best k_{2} balancing the two points above.

Counting and sampling

So far we are calculating the marginal probability, which requires that there are sufficiently many uncoloured vertices in all hyperedges.

- For approximate counting, we use the local lemma to find a partial colouring so that every hyperedge is satisfied by its first $\frac{\mathrm{k}}{1 / 1}$ vertices. Then we compute the marginal probability of this partial colouring by pinning vertices one by one.
- For sampling, we use the marginal to colour vertices, similar to the coupling process. We colour $\frac{3 \mathrm{~K}}{1 /}$ vertices of every hyperedge. With high probability, every remaining connected component has size $O(\log n)$

Counting and SAMPling

So far we are calculating the marginal probability, which requires that there are sufficiently many uncoloured vertices in all hyperedges.

- For approximate counting, we use the local lemma to find a partial colouring so that every hyperedge is satisfied by its first $\frac{k}{14}$ vertices.
Then we compute the marginal probability of this partial colouring by pinning vertices one by one.
- For sampling, we use the marginal to colour vertices, similar to the counling process. W/e colour $\frac{3 \mathrm{k}}{\mathrm{g}}$ vertices of every hyneredge With high probability, every remaining connected component has size

Counting and SAMPling

So far we are calculating the marginal probability, which requires that there are sufficiently many uncoloured vertices in all hyperedges.

- For approximate counting, we use the local lemma to find a partial colouring so that every hyperedge is satisfied by its first $\frac{k}{14}$ vertices.
Then we compute the marginal probability of this partial colouring by pinning vertices one by one.
- For sampling, we use the marginal to colour vertices, similar to the coupling process. We colour $\frac{3 k}{16}$ vertices of every hyperedge.
With high probability, every remaining connected component has size $O(\log n)$.

Concluding remarks

Open Problems

- What is the correct threshold for hypergraph colouring?
- What about NP-hardness of sampling hypergraph colourings?
- Does this method work for graph colourings?
- Can we show anything about the zeros of hypergraph colourings?

Open problems

- What is the correct threshold for hypergraph colouring?
- Is it $\mathrm{q} \asymp \Delta^{\frac{2}{k}}$?
- What about NP-hardness of sampling hypergraph colourings?
- Does this method work for graph colourings?
- Can we show anything about the zeros of hypergraph colourings?

Open problems

- What is the correct threshold for hypergraph colouring?
- Is it $\mathrm{q} \asymp \Delta^{\frac{2}{k}}$?
- What about NP-hardness of sampling hypergraph colourings?
- Does this method work for graph colourings?
- Can we show anything about the zeros of hypergraph colourings?

Open problems

- What is the correct threshold for hypergraph colouring?
- Is it $\mathrm{q} \asymp \Delta^{\frac{2}{k}}$?
- What about NP-hardness of sampling hypergraph colourings?
- Does this method work for graph colourings?
- Can we show anything about the zeros of hypergraph colourings?

Thank you!

arXiv:1711.03396

