Remarks on the Riemann Hypothesis

Charles M. Newman

Courant Institute of Mathematical Sciences \& NYU Shanghai

Introduction

For a function $f \geq 0$ with $\int_{-\infty}^{\infty} f(u) d u<\infty$; let

$$
L_{f, \lambda}(w):=\int_{-\infty}^{\infty} e^{w u} e^{\lambda u^{2}} f(u) d u
$$

for $w \in \mathbb{C}, \lambda \in \mathbb{R}$ where possible (e.g., $\lambda<0$); and

$$
L_{\rho, \lambda}(w):=\int_{\mathbb{R}} e^{w u+\lambda u^{2}} d \rho(u)
$$

We take f (or ρ) to be even (and ρ is usually a probability measure).

Riemann Hypothesis (RH) — 1859

For a specific function Φ,

$\mathrm{RH} \Longleftrightarrow$ zeros in \mathbb{C} of $L_{\Phi, 0}$ all pure imaginary;

we'll say $L_{\Phi, 0}$ is $\mathrm{PIZ} . \Phi$ is defined so that

$$
L_{\Phi, 0}=\left.C s(s-1) \pi^{-s / 2} \Gamma(s / 2) \sum_{1}^{\infty} n^{-s}\right|_{s=1 / 2+w / 2}
$$

and its explicit formula is

$$
\Phi=\sum_{1}^{\infty}\left(n^{4} \pi^{2} e^{9 u}-\frac{3}{2} n^{2} \pi e^{5 u}\right) e^{-n^{2} \pi e^{4 u}}
$$

Graph of Φ

Some History

- Polya '20s: hoped that $L_{\Phi, \lambda}$ is $\operatorname{PIZ} \forall \lambda \in \mathbb{R}$; he proved that PIZ for $\lambda_{1} \Longrightarrow$ PIZ for $\lambda \geq \lambda_{1}$. (I.e., increasing/decreasing λ helps/hurts PIZ.)
- de Bruijn '50: $L_{\Phi, \lambda}$ is PIZ for $\lambda \geq 1 / 2$. (Based on zeros of $L_{\Phi, 0}$ being in critical strip.)
- N. '76: $\exists \lambda$ s.t. $L_{\Phi, \lambda}$ is not PIZ and thus $\exists \Lambda \in(-\infty, 1 / 2]$ such that PIZ for $\lambda \geq \Lambda$ but not for $\lambda<\Lambda$. Λ is now called the de Bruijn-Newman constant.

$$
\mathrm{RH} \Longleftrightarrow \Lambda \leq 0
$$

Some History

- de B. ‘50: $\Lambda \leq 1 / 2$,
- N. '76: $\Lambda>-\infty$.

There is also
N. '76 Conjecture: $\Lambda \geq 0$;
i.e., the RH , if true, is only barely so.
\exists series of bounds on Λ better than $\Lambda>-\infty$ and $\Lambda \leq 1 / 2$:

- $\Lambda>-50$ (Csordas-Norfolk-Varga '88), ... ,
- $\Lambda>-4.3 \times 10^{-6}$ (Csordas-Smith-Varga '94), ... ,
- $\Lambda>-1.1 \times 10^{-11}$ (Saouter-Gourdon-Demichel '11);
- $\Lambda<1 / 2$ (Ki-Kim-Lee '09).

Update

- B. Rodgers - T. Tao (arXiv 18 January 2018):

Proof of N. Conjecture: $\Lambda \geq 0$

Methods - extend Csordas-Smith-Varga work to study motion in t of zeros of $L_{\Phi, t}$.

- New Project (see terrytao.wordpress.com) to improve upper bound $\Lambda<1 / 2$ of Ki-Kim-Lee: this is Polymath 15 project; as of October 2018: $\Lambda<0.22$ (with possibility of $\Lambda<0.11$); uses Ki-Kim-Lee result that $\lambda>0 \Rightarrow$ number of $L_{\Phi, \lambda}$ zeros off imaginary axis is finite.

Mathematical Physics Background

Math. Phys. interest starts from the ' 52 Ising model Thm. of Lee and Yang that generates ρ 's s.t. $L_{\rho, \lambda}$ is PIZ for $\lambda \geq 0$.

For Euclidean Field Theory, would like $f=e^{-V}$ s.t. $L_{f, \lambda}$ is PIZ also for all $\lambda<0$; call such an f "perfect".

Example, Polya '20s, Simon-Griffiths '73

$$
e^{-a u^{4}-b u^{2}} \text { for } a>0, b \in \mathbb{R} \text { is perfect. }
$$

Motivated by $e^{-a \cosh (u)}$, N ' 76 determined all perfect f 's; they did not include $e^{-a \cosh (u)}$ or Φ of RH (which proved $\Lambda>-\infty$).

Some related results

Theorem A (N., Wei WU '17)
 If $\int e^{\lambda u^{2}} d \rho=\infty \forall \lambda>0$; then for every $\lambda<0, L_{\rho, \lambda}$ is not PIZ.

Proof is based on a surprising weak convergence result (Thm. B below). (\exists also a connection to Gaussian Multiplicative Chaos.)

Some related results

Definition

A random variable X is in \mathscr{Z} if:
(i) $X \stackrel{d}{=}-X$, and (ii) $E\left[e^{b X^{2}}\right]<\infty$ for some $b>0$, and
(iii) $E\left(e^{z X}\right)$ has only PIZ.

Theorem B (N., WU '17)

If each $X_{n} \in \mathscr{Z}\left(\right.$ with $\mathbf{b}=\mathbf{b}\left(\mathbf{X}_{\mathbf{n}}\right)$) and $X_{n} \xrightarrow{d} X$, then $X \in \mathscr{Z}$.

How Th. $\mathrm{B} \Longrightarrow$ Th. A: If conclusion of Th. A not valid, then $\rho_{\lambda_{0}} \equiv C_{\lambda_{0}} e^{\lambda_{0} u^{2}} d \rho \in \mathscr{Z}$ for some $\lambda_{0}<0$; then by Polya would be in $\mathscr{Z} \forall \lambda \in\left(\lambda_{0}, 0\right)$, but $\rho_{\lambda} \rightarrow \rho$ as $\lambda \uparrow 0$. So by Th. $\mathrm{B}, \rho \in \mathscr{Z}$. But $\rho \notin \mathscr{Z}$ since by assumptions of Th . A, it doesn't satisfy (ii).

Proof of Theorem B

Key to the proof of $\mathrm{Th} . \mathrm{B}$ is a Hadamard factorization:

$$
X \in \mathscr{Z} \Rightarrow E\left(e^{z X}\right)=e^{B z^{2}} \prod_{k}\left(1+\frac{z^{2}}{y_{k}^{2}}\right)
$$

with $B \geq 0, y_{k} \in \mathbb{R}, \sum 1 / y_{k}^{2}<\infty$ and $E\left(X^{2}\right)=2\left(B+\sum 1 / y_{k}^{2}\right)$.

Remark about N. '76:

A perfect $f(u)$ must be of form

$$
K u^{2 m} e^{-a u^{4}-b u^{2}} \prod\left(1+\frac{u^{2}}{y_{k}^{2}}\right) e^{-u^{2} / y_{k}^{2}}
$$

with $\sum 1 / y_{k}^{4}<\infty, a>0, b \in \mathbb{R}\left(\right.$ or $\left.a=0, b+\sum 1 / y_{k}^{2}>0\right)$.

Thanks!

