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From Monday: DP-SGD
Define set of parameters w, function L(w) to optimize.

Initialize parameters to w
0
.

For t = 1, ..., T:

  Select random subset of B training examples B
t
.

  For each x in B
t
, let g

x
 = Clip(∇L(w

t
,x),S)

    Set g
t
(x

i
) = ∇θL(θ,xi) for each xi.

    Compute gradient g
t
 = Σ

x
g
x

  Update w
t+1

 = w
t
 − (η

t
/B)(g

t 
+ N(0,σ2S2I).

Output w
T
.

See "Deep Learning with Differential Privacy", Abadi et al, 2016.



Some Takeaways
● Three new hyperparameters:

○ B: Number of elements per batch
○ S: L2-norm for clipping
○ σ: Noise multiplier

● Privacy bound ε is a function of sampling ratio B/N, number of steps T, and 
noise multiplier σ. 

● Effective noise multiplier is σ/B.

● Practical running time is linear in B.

For a given σ, can increase privacy 
at a cost in running time. 



Tensorflow Privacy
DP-SGD library open sourced on GitHub in December 2018.

● Easily produces differentially private versions of tf.Optimizer classes.
○ Allows tf.Estimator-based models to be easily turned into DP models.

● Includes MNIST tutorial and analysis tools.

● Try it out here: https://github.com/tensorflow/privacy
○ Feedback and contributions welcome!

https://github.com/tensorflow/privacy


Demo: TF Privacy on MNIST
Data: 60,000 training images and 10,000 test images.
Model: Simple two-level convolutional neural network with one dense hidden 
layer.
Baseline (non-private) accuracy: 98.74% in 60 epochs.

ε = 7.44, accuracy = 97.68%

Link to Google Colab

https://colab.research.google.com/drive/1oxnESuwagNxb2k75NtifWWfT2XWiE5jL

