

Differentially Private Machine Learning via Tensorflow

Steve Chien Google Brain Privacy and Security

Team Members

Research and engineering for privacy and security for machine learning models and data.

Ulfar Erlingsson

Ananth Raghunathan

Ilya Mironov

Steve Chien

Nicholas Carlini

Shuang Song

Nicolas Papernot

Abhradeep Thakurta

From Monday: DP-SGD

Define set of parameters w, function L(w) to optimize. Initialize parameters to w_{0} .

```
For t = 1, ..., T:

Select random subset of B training examples B_t.

For each x in B_t, let g_x = \text{Clip}(\nabla L(w_t, x), S)

Set g_t(x_i) = \nabla_{\theta} L(\theta, x_i) for each x_i.

Compute gradient g_t = \sum_x g_x

Update w_{t+1} = w_t - (\eta_t/B)(g_t + N(\theta, \sigma^2 S^2 I)).

Output w_T.
```

See "Deep Learning with Differential Privacy", Abadi et al, 2016.

Some Takeaways

- Three new hyperparameters:
 - **B**: Number of elements per batch
 - S: L2-norm for clipping
 - *o*: Noise multiplier
- Privacy bound ε is a function of sampling ratio *B/N*, number of steps *T*, and noise multiplier σ .
- Effective noise multiplier is σ/B .
- Practical running time is linear in *B*.

For a given σ , can increase privacy at a cost in running time.

Tensorflow Privacy

DP-SGD library open sourced on GitHub in December 2018.

- Easily produces differentially private versions of tf.Optimizer classes.
 - Allows tf.Estimator-based models to be easily turned into DP models.
- Includes MNIST tutorial and analysis tools.
- Try it out here: <u>https://github.com/tensorflow/privacy</u>
 Feedback and contributions welcome!

Demo: TF Privacy on MNIST

Data: 60,000 training images and 10,000 test images.

Model: Simple two-level convolutional neural network with one dense hidden layer.

Baseline (non-private) accuracy: 98.74% in 60 epochs.

Link to Google Colab

$$\varepsilon$$
 = 7.44, accuracy = 97.68%